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Abstract

In recent years, researchers have developed novel Quantum-
Inspired Neural Network (QINN) frameworks for the Natural
Language Processing (NLP) tasks, inspired by the theoretical
investigations of quantum cognition. However, we have found
that the training efficiency of QINNs is significantly lower
than that of classical networks. We analyze the unitary trans-
formation modules of existing QINNs based on the time dis-
placement symmetry of quantum mechanics and discover that
they are resembling a mathematical form similar to the first-
order Euler method. The high truncation error associated with
Euler method affects the training efficiency of QINNs. In or-
der to enhance the training efficiency of QINNs, we general-
ize QINNs’ unitary transformation modules to the Quantum-
like high-order Runge-Kutta methods (QRKs). Moreover, we
present the results of experiments on conversation emotion
recognition and text classification tasks to validate the effec-
tiveness of the proposed approach.

Introduction
In recent years, researchers have discovered quantum-like
phenomena in language understanding (Bruza, Kitto, and
McEvoy 2008), leading to the proposal of Quantum-Inspired
Neural Networks (QINNs) (Mönning 2019; Shi et al. 2021;
Li, Wang, and Melucci 2019; Gkoumas et al. 2021; Chen,
Pan, and Dong 2021; Li et al. 2021b) based on quantum
probability theory. Through theoretical analysis, researchers
have demonstrated the rationality of integrating quantum
theory with neural network frameworks (Zhang et al. 2018b,
2019). QINNs are primarily applied to Natural Language
Processing (NLP) tasks. When modeling dynamic evolution
processes of semantic information, such as dynamic emo-
tional states in a conversation, QINNs utilize unitary trans-
formation of quantum states to track this process (Li et al.
2021b). This approach is similar to the evolution of quan-
tum states over time.

However, when the QINNs based on unitary transforma-
tion is applied to downstream prediction tasks, the train-
ing efficiency is significantly lower than that of classical

*These authors contributed equally.
†Corresponding author: Peng Zhang (pzhang@tju.edu.cn)

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

QINN based on 
unitary transformation

Low training efficiency
The problom

Time displacement symmetry 
in quantum mechanics 

The analysis method

The Euler method has 
high truncation error 

The reason

A quantum-like RK method 
with low truncation error 

The resolution

QINN with RK method 
Our proposed module

Figure 1: This is our research idea. The specific details are
elaborated in Section Methodology.

networks. For example, when both the DialogueRNN (Ma-
jumder et al. 2019) and QINNs are used for prediction tasks,
after the initial training periods (approximately two epochs),
DialogueRNN’s accuracy in predicting labels starts to im-
prove, while QINN requires at least several times the train-
ing periods of DialogueRNN before the QINN’s prediction
accuracy improves. This signifies the evident inadequacy of
QINN’s training efficiency. In the experimental section, we
provide detailed experimental results.

In order to explore the reasons behind this phenomenon,
we conducted an analysis of the QINN’s unitary transforma-
tion module. Our research idea is shown in Fig. 1. Based on
theory of differential equations and the symmetry principle
of time displacement in quantum mechanics (Jinyan 2000),
we derived that the unitary transformation module in QINN
is a numerical solving process similar to the Euler method.
However, lower-order Runge-Kutta method (RK), including
the Euler method, exhibit higher truncation errors compared
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to higher-order RK methods, and the truncation error of the
Euler method is not negligible (He et al. 2019). Based on the
discovery, we designed relevant experiments, and the experi-
mental results confirmed that the high truncation error has an
impact on training efficiency. Therefore, we propose a mod-
ified unitary transformation module based on time displace-
ment symmetry to alleviate the impact of truncation errors
and improve training efficiency.

In our work, we improve the unitary transformation mod-
ule of QINNs in order to address the issue of training ef-
ficiency. Our analysis indicates that the unitary transforma-
tion module can be replaced by the Quantum-like high-order
Runge-Kutta methods (QRKs), which reduces the truncation
errors introduced by the Euler method and significantly im-
proves the training efficiency of QINN. In comparison to the
Classical high-order Runge-Kutta methods (CRKs), QRKs
are derived from the perspective of quantum mechanics sym-
metry principles, and the modeling approach is constrained
by unitary property, resulting in a smaller range of truncation
errors.

The main contributions of this paper are summarized as
follows.
• We analyze the reason for the low training efficiency of

QINNs from the perspective of the time displacement
symmetry in quantum mechanics and differential equa-
tions.

• We propose the Quantum-like high-order Runge-Kutta
methods (QRKs) based on time displacement symmetry
to enhance the training efficiency and model performance
of QINNs.

• We apply QRKs to the QINNs based on unitary transfor-
mation, namely Quantum Measurement inspired Neural
Network (QMNN) and Quantum Language Model with
Entanglement Embedding (QLM-EE), achieving supe-
rior performance on conversational emotion recognition
and text classification datasets.

Preliminaries on Quantum Theory and
Runge-Kutta Method

Quantum Theory
State Mathematically, an n-level quantum system can be
described by an n-dimensional Hilbert space Hn. Any quan-
tum pure state can be described by a unit complex vector v
on Hn. The pure state can be represented as a density ma-
trix ρ = vv†, where v† is conjugate transpose of v. For the
set of pure states {vi}i=n

i=1 with weights {pi}i=n
i=1 that sum

up to 1, this mixed state’s density matrix ρ is computed by
ρ =

∑n
i=1 piviv

†
i .

Unitary Transformation The evolution of a closed quan-
tum system is described by a unitary transformation (Nielsen
and Chuang 2002). That is, the state vt of the system at time
t is related to the state vt+∆t of the system at time t+∆t by
a complex unitary matrix U ∈ H which depends only on the
times t and t + ∆t as Uvt = vt+∆t, and complex unitary
matrix U is satisfying UU† = I . When the quantum system
is represented as a density matrix ρ, the evolution makes the
state change to UρtU

† = ρt+∆t.

Runge-Kutta Method
The Runge-Kutta (RK) methods are commonly used to solve
Ordinary Differential Equation (ODE) in numerical analy-
sis. The forward Euler method is a first-order RK method.
High-order RK methods can achieve lower truncation errors
than lower-order RK methods, including the forward Euler
method. Therefore, the RK methods are ideal tools to con-
struct network models from the dynamical systems view.

The RK methods are numerical methods originated from
the Euler method. There are two types of RK methods: ex-
plicit and implicit ones. The family of RK methods is given
by the following equations (Süli and Mayers 2003)

yn+1 = yn + ϵ
∑m

i=1 λiKi

K1 = f(xn, yn)

Ki = f(xn + aiϵ, yn + ϵ
∑i−1

j=1 bijKj)
(1)

where i = 2, 3, ..., r, λi, ai and bij are coefficients, ϵ is the
time-step size that can be adaptive for different time steps,
and O(ϵm+1) is the truncation error of m-order RK method.

It is necessary to specify α in order to control the error of
approximation in common numerical analysis. The varying
time-step size can be adaptive to the regions with the differ-
ent rates of change. The truncation error is lower when α is
smaller. Adopting the RK methods brings higher prediction
accuracy and better generalization capability into the neural
network (Wang and Lin 1998).

Related Works of Quantum-Inspired Neural
Network

After the advent of statistical language models, the Quan-
tum Language Model (QLM) (Sordoni, Nie, and Bengio
2013) was introduced. It aimed to unite single words and
compound terms within the same probability space, ef-
fectively preventing an exponential expansion of the term
space. To enhance the practicality of quantum language
models, the Neural Network based Quantum-like Language
Model (NNQLM) (Zhang et al. 2018a) was later proposed.
This model integrates quantum language model into an
end-to-end Neural Network (NN) structure. Subsequently,
a multitude of Quantum-Inspired Neural Network (QINN)
models emerged for various Natural Language Processing
(NLP) tasks. There are two QINN models include Quantum
Measurement inspired Neural Network (QMNN) (Li et al.
2021b) and Quantum Language Model with Entanglement
Embedding (QLM-EE) (Chen, Pan, and Dong 2021), which
has a unitary transformation module.

QMNN is a quantum-like framework for the conversa-
tional emotion recognition task. In the task, the emotions of
speakers are evolving throughout the conversation. Hence
it is intuitive to employ quantum unitary transformation to
track the dynamics of emotional states in a conversation.
QMNN fuses the unimodal features (i.e., acoustic, visual
and textual modalities) into a quantum mixed state ρ, and
UρU† represents the evolution of ρ over time, where U is a
complex-valued unitary matrix. QMNN implements a sepa-
rate optimizer based on the Riemannian approach (Wisdom
et al. 2016) to update unitary matrices.
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QLM-EE employs a unitary transformation module to en-
code the correlations between the words as a quantum en-
tangled state. In QLM-EE, each word wi is embedded as a
quantum pure state and described by a unit complex-valued
vector wi corresponding to the superposition of sememes
(Li, Wang, and Melucci 2019). The word sequences are
given as the tensor product of word states, which takes as
s = w1 ⊗ ... ⊗ wL. Subsequently, the transformation in-
duced by the NN layer can be formally written as

s′ = Ws (2)

where W is the weight matrix. Then the output vector must
be normalized by

sE =
s′

∥s′∥2
(3)

According to the standard Gram-Schmidt procedure, Eq. 2
and Eq. 3 form a unitary transformation, and complete the
entangled state representation of word sequences.

Methodology
In this section, we propose a Quantum-like Runge-Kutta
Methods (QRKs). First, we introduce the relationship be-
tween unitary transformation and RK method, and then we
introduce how to apply RK method to quantum-inspired
neural network.

Unitary Transformation of QINNs Are an Eular
Method
In QINNs, the unitary matrices are weight matrices sub-
jected to the unitary constraint. From the perspective of
quantum mechanics, utilizing unitary matrices solely as
weight matrices in QINNs is insufficient. This approach
does not take into account the significant role of unitary ma-
trix in quantum mechanical symmetry. For a physical sys-
tem, it undergoes evolution over time, referred to as time
displacement. Time displacement belongs to the continuous
transformation, which is a unitary transformation. Given that
the research domain of QINNs primarily pertains to the pro-
cess of modeling sequential information, we analyze the uni-
tary transformation process in QINNs from the viewpoint of
time displacement. This process must adhere to the time dis-
placement symmetry as Theorem. 1.

Theorem 1 Time Displacement Symmetry (Jinyan 2000).
According to the Schrodinger equation, ih̄ ∂

∂tv = Hv. If the
Hamiltonian H does not depend explicitly on time t, then
the evolution of the system state over time is independent
of the choice of initial time, resulting in time displacement
symmetry. The evolution of the state over time can be ex-
pressed as vt = e−iHt/h̄v0, where e−iHt/h̄ is the operator
for time displacement t of the system. For any infinitesimal
time displacement ∆t and initial time t,

vt+∆t = exp(−iH∆t/h̄)vt

≈ (1− iH∆t/h̄)vt

= vt − iHαvt

(4)

where α is a minimum value, which replaces ∆t/h̄.

Corollary 1 The equation describing the evolution of quan-
tum state vt is equivalent to the first-order Euler numerical
solution if f(t,vt) is a continuous function.

Proof 1 From the perspective of linear algebra, H can be
considered as a square matrix that operates on the quan-
tum state vt, where H = H†. This operation can be viewed
as a linear transformation of quantum state vt. This lin-
ear transformation can be written as f(t,vt) = −iHvt.
The Eq. 4 can be written as a continuous function vt+∆t =
vt+αf(vt). After we replace f(vt) with K1, vt+∆t can be
expressed as

vt+∆t = vt + αK1 (5)

According to the Eq. 1, the first-order Euler method is ex-
pressed as yn+1 = yn + ϵλ1K1. Mathematically, the evo-
lution process of the quantum state vt is equivalent to the
first-order Euler method.

For continuous function f(vt) with K1, the Euler method
shown as vt+∆t has high truncation error because it is a first-
order approximation to the true solution. This introduces the
drawback of the first-order Euler method to the unitary trans-
formation module, which is difficult to learn the long-range
information in the continuous network, reducing accuracy of
model outputs (Zhu, Chang, and Fu 2022; Li et al. 2021a).
Therefore, due to the limitation of Euler method, it results in
the low training efficiency of QINNs. In Experiments Sec-
tion, we demonstrated this impact in the conversational emo-
tion recognitionn task.

From Unitary Transformation to High-Order RK
Method
By analyzing the physical meaning of unitary transforma-
tion, we found that the Euler method’s truncation error lim-
its the training efficiency of QINNs. While stacking unitary
transformation modules may seem like a straightforward ap-
proach to quickly capture features and enhance the model’s
training efficiency, it is not always effective in NLP tasks. In
fact, research has shown that when more layers are stacked,
errors can propagate through the neural network and hinder
the system’s ability to benefit from an extremely deep model
(Li et al. 2020; Dai et al. 2019).

In the differential equations, the Euler method is a low-
order RK method. The higher-order RK methods have lower
truncation errors than lower-order RK method (Zhang et al.
2021). Therefore, we need to consider how to use high-order
RK methods to reasonably improve the existing QINNs.

According to the time displacement of a quantum state,
we extend the unitary transformation of QINNs to the multi-
time step time displacement. Taking two-time step as an ex-
ample, according to Eq. 4, the quantum state vt+∆t evolu-
tion process can be iteratively calculated as{

vt+2∆t = vt + αK1 + αf(vt+∆t)
f(vt+∆t) = f(vt + αK1)

(6)

where f(vt+∆t) is the RK block K2 in the second-order RK
method. We generalize the single time step unitary transfor-
mation to the n-time step unitary transformation. We assume
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Figure 2: The structures of quantum-like second-order RK
method, quantum-like third-order RK method and quantum-
like fourth-order RK method.

that n-time step unitary transformation is performed on a
state vt, and vt+n∆t is expressed as


vt+n∆t = vt +

∑n
i=1 αKi

K1 = f(vt)

Ki = f(vt +
∑i−1

j=1 αKj)
(7)

where i = 2, 3, ..., n, α is a minimum value, and f() is a
continuous function. In Eq. 1, the λ, b ∈ R are coefficients
of classical high-order RK method. Since α → 0+, α

λ and α
b

approximate to α. Therefore, our investigation revealed that
the n-time step unitary transformation can be interpreted as a
Quantum-like n-order RK method, called QRK. When n =
1, it is the unitary transformation of QINNs, which is a first-
order RK method, including the Euler method.

We establish a unifying framework for QINN’s unitary
transformation module by a formalism based on the high-
order RK method. Specifically, we show that any multi-step
time displacement can be expressed as a variant of the high-
order RK method. Therefore, we can use the advantages of
high-order RK method to improve the training efficiency of
QINNs.

The Error Range of the Unitary Matrix and the
Truncation Error of RK Method

Although we have established a correspondence between the
unitary transformation and a high-order RK method, the di-
rect substitution of the unitary transformation module with
a classical high-order RK method is not feasible. The high-
order RK method we derived relies on the multi-step time
displacement of a quantum state, which must be constrained
by its unitary property. In other words, our proposed method
is a quantum-like method that leverages the unitary con-
straint to achieve a smaller truncation error. To establish
this advantage, we conduct an analysis of the correlation be-
tween the quantum state and the high-order RK method.

For any quantum state vt+n∆t, we treat vt+n∆t as a gen-
eral continuous function from the perspective of linear alge-
bra, and it can be expressed as a linear combination of a set
of functions{

vt+n∆t = vt + n∆t
∑m

i=1 CiKi

Ki = f(t+ ain∆t,vt + n∆t
∑i−1

j=1 bijKj)
(8)

where m is the order of RK method. Then the truncation
error is determined by Taylor expansion

Tt+n∆t = vt+n∆t − vt − n∆t

m∑
i=1

CiKi

= O((nαh̄)m+1)

(9)

where ∆t = αh̄, and α also determines the truncation error
of the RK method on the quantum state. In Eq. 4, I− iHα is
a unitary matrix U (Jinyan 2000) and satisfies the following
condition:

U†U = (I− iH†α)(I− iHα)

= I+ iα(H† −H) +O(α2)
(10)

When α → 0+, U†U ≈ I. So α is the error introduced
when modeling the unitary matrix U. In Eq. 1, the step-size
of the high-order RK method satisfies ϵ>0.

We find that the truncation error of the high-order RK
method and the truncation error of the quantum state-based
high-order RK method satisfy O(ϵm+1)>O((nαh̄)m+1).
Therefore, the unitary transformation is a quantum-like
high-order RK method, the classical high-order RK method
cannot be directly used to replace the unitary transformation
module of QINNs. Due to the existence of the unitary con-
straint, the truncation error becomes a controllable variable,
thereby further enhancing the effectiveness and the training
efficiency of QINNs.

Note that it is crucial to handle the value of α with care.
In the case where α = 0, the unitary matrix U degener-
ates into the identity matrix I, leading to inefficient quantum
state evolution. Moreover, the unitary transformation mod-
ule might even lose its functionality. In the ablation exper-
iments, we verified the crucial role of α in QINNs in both
conversational emotion recognition task and text classifica-
tion task.
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F1 and Joy F1. The QMNN-QRK2 has the best training efficiency.

Quantum-Inspired Neural Network With
Runge-Kutta Method
We describe the workflow of QINN with high-order QRK
method to model the word sequence (sentence or phrase) in
Fig. 2. In our work, we use the second-order QRK method
(QRK2), third-order QRK method (QRK3) and fourth-order
QRK method (QRK4).

In QINNs, they use unitary transformation module to ex-
tract and model language semantics as v′ = Uv, where v is
the quantum state of word or phase. We have already proved
the relationship of unitary transformation and RK method.
Therefore, we use QRKs instead of unitary transformation
module. Taking QRK4 as an example, there are four QRK
blocks as shown in Eq. 11 and f() = −iHα.

vt+∆t = vt +
∑4

i=1 αKi

K1 = f(ϕ(t))
K2 = f(ϕ(t) + αK1)
K3 = f(ϕ(t) + αK2)
K4 = f(ϕ(t) + αK3)

(11)

where ∆t is the sum of the four evolution times. QRK4 per-
forms four feature extractions on vt in turn, so QRK4 can be
regarded as a multi-layer quantum-inspired neural network
module.

Experiments
Experimental Setup
Baselines. (1) To analyze QINN’s training efficiency, we
choose QMNN (Li et al. 2021b) and QLM-EE (Chen, Pan,
and Dong 2021) because they use the unitary transforma-
tion modules. To provide a comprehensive comparison, we
also included four important QINN models, NNQLM-I,
NNQLM-II (Zhang et al. 2018a), C-NNQLM-I and C-
NNQLM-II (Zhang et al. 2022).

(2) To compare QINN with classical models that share
similar frameworks, we have choose Multimodal Trans-
former (MulT) (Tsai et al. 2019), DialogueRNN (Ma-
jumder et al. 2019), Fasttext (Joulin et al. 2016) and
Text-CNN (Rakhlin 2016). The reason for choosing Dia-
logueRNN is that QMNN is a quantum-like RNN, and the
reason for choosing CNN is that NNQLM and C-NNQLM

are QINN based on the CNN framework, and QLM-EE is
currently a representative model of this type of QINN model.

(3) To compare quantum-like high-order RK methods
with classical high-order RK methods, we replace the uni-
tary transformation modules with classical high-order RK
methods as QMNN-CRK and QLM-EE-CRK.

Tasks, Datasets, and Metrics. We conducted experi-
ments on conversational emotion recognition and text clas-
sification tasks.

(1) For conversational emotion recognitionn task, we
chose MELD (Poria et al. 2018). MELD is a multi-party
conversation dataset crawled from the Friends TV series. In
training dataset, MELD contains 1039 dialogues and 9989
utterances. F1 and precision are used for evaluation.

(2) For text classification task, we chose four text clas-
sification datasets: MR (Hu and Liu 2004), CR (Pang and
Lee 2005), SUBJ (Wiebe, Wilson, and Cardie 2005), MPQA
(Pang and Lee 2004). MR contains 11.9K training data, 20K
vocabulary, and two classes. CR contains 4K training data,
6K vocabulary, and two classes. SUBJ contains 10K train-
ing data, 21K vocabulary, and two classes. MPQA contains
11K training data, 6K vocabulary, and two classes. Accuracy
(ACC) is used for evaluation.

Implementations. (1) For conversational emotion
recognition task, we trained the QINN with quantum-
like high-order RK (QMNN-QRK) methods on one
NVidia Tesla K80 GPU. QMNN-QRK hyperparam-
eters are searched within embedding dimensions
d ∈ {50, 100, 120, 160, 200}, the size of last hidden
layer in {16, 24, 32, 48, 64}. Stochastic gradient descent
(SGD) is used as the optimizer with a learning rate
lr ∈ {0.001, 0.002, 0.005, 0.008}. The batch size varies
in {24, 32, 48}. The dropout rate for the last hidden layer
varies in {0.001, 0.005, 0.01, 0.05, 0.1, 0.2, 0.3, 0.5}. The α
varies in {0, 0.5, 0.05, 0.0001, 0.00001}. We set the number
of parties K = 1 for MELD.

(2) For text classification task, we trained the QINN with
quantum-like high-order RK (QLM-EE-QRK) methods on
one NVidia Tesla K80 GPU. We search the hyperparame-
ters from a parameter pool, with batch size in {4, 8, 16, 32},
learning rate in {0.01, 0.1, 0.3, 0.5}, L2-regularization rate
is 0.001, the number of filter is 100, the size of filter is 200.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

17981



Model Neutral Surprise Sad Joy Angry
F1 P F1 P F1 P F1 P F1 P

MulT 76.46 71.74 47.50 41.34 22.52 36.17 52.40 51.82 46.64 42.75
DialogueRNN 74.70 72.13 47.76 41.13 15.58 24.00 49.48 51.62 46.09 34.51
QMNN 77.00 71.23 49.76 45.81 16.50 24.30 52.08 53.48 43.17 42.86
QMNN-CRK2 76.50 71.27 48.96 44.47 21.71 26.76 51.65 52.77 38.65 43.06
QMNN-QRK2 77.61 73.13 49.51 51.00 22.77 31.41 53.52 55.10 42.78 49.05

Table 1: Performances of models on MELD in percentage. The best performance values among all models are in bold. P is
Precision.

Model MR SUBJ CR MPQA
Text-CNN 76.9 90.7 80.1 84.5
NNQLM-II 74.8 83.6 77.8 83.2
C-NNQLM-II 76.2 90.9 83.3 86.9
C-NNQLM-II† 75.1 88.9 77.8 84.7
C-NNQLM-II†† 77.4 89.1 79.9 85.3
Fasttext 72.6 86.7 75.2 82.8
NNQLM-I∗ 62.9 86.6 75.5 82.9
NNQLM-I∗∗ 73.1 89.4 78.2 84.9
C-NNQLM-I∗ 73.9 89.6 78.1 86.3
C-NNQLM-I∗∗ 76.9 90.1 79.4 85.5
QLM-EE 71.7 89.6 78.5 80.9
QLM-EE-CRK4 77.1 91.8 82.2 81.5
QLM-EE-QRK4 78.8 94.6 84.4 85.5

Table 2: The results of text classification task. ∗ and ∗∗ are
two important version of NNQLM-I and C-NNQLM-I, ∗
adopts only diagonal elements of density matrices, ∗∗ pro-
cesses all elements of density matrices. † and †† are two im-
portant version of C-NNQLM-II, † is weight sharing scheme
with words, †† is weight sharing scheme with dimensions.

The number of words in a sequence is N ∈ {1, 2, 3}, the
word embedding dimension is D ∈ {4, 6, 8, 16}, the number
of measurement vectors is M ∈ {800, 1000, 1500}. We test
single-layer and two-layer fully connected neural networks
with {128, 256, 512} neurons for entanglement embedding.

Main Results
QINN With QRK Outperforms QINN and Other Base-
lines. (1) As shown in Table. 1, we compared QMNN-
QRK2 and QINN baselines (original QMNN and QMNN-
CRK2) on MELD dataset, where RK2 represents the
second-order RK method. We also compared QMNN-QRK2
with the classical baselines (DialogueRNN and MulT) on
MELD dataset. QMNN-QRK2 achieves the highest F1 and
precision in most emotional labels. Compared to QMNN
with unitary transformation module, the QRK method can
significantly improve the performance of QMNN. Further-
more, when we replaced the unitary transformation mod-
ule of QMNN with the classical second-order RK method,
the performance of QMNN-CRK2 was inferior to that of
QMNN-QRK2. This result suggests that the QRK method
with unitary constraint offers distinct advantages over the
classical RK method.

(2) As shown in Table. 2, we compared QLM-EE-QRK4

Model (param) MR SUBJ CR MPQA
QLM-EE(298K) 71.7 89.6 78.5 80.9
QLM-EE-CRK2(249K) 70.2 86.5 79.0 79.4
QLM-EE-QRK2(249K) 78.5 93.2 82.2 85.3
QLM-EE-CRK3(249K) 77.1 91.8 80.1 81.5
QLM-EE-QRK3(249K) 77.8 93.8 83.8 85.0
QLM-EE-CRK4(249K) 77.1 91.8 82.2 81.5
QLM-EE-QRK4(249K) 78.8 94.6 84.4 85.5

Table 3: The results of QLM-EE-QRK’s sensitivity on the
order. The param is the parameters of QLM-EE, QLM-EE-
CRKs, and QLM-EE-QRKs.

and QINN baselines (original QLM-EE and QLM-EE-
CRK4) on four datasets, where RK4 represents the fourth-
order RK method. QLM-EE-QRK4 achieves the best re-
sults compared to QINN baselines on MR, SUBJ, and CR,
but slightly underperforms C-NNQLM on MPQA. Com-
pared to QLM-EE with unitary transformation module, the
QRK method can significantly improve the performance of
QLM-EE. Specifically, QLM-EE-QRK4 achieves 7.1, 5.0,
5.9, and 4.6 ACC score improvements on MR, SUBJ, CR,
and MPQA, respectively. Due to unitary constraint, QLM-
EE-QRK4 outperforms QLM-EE-CRK4.

The Quantum-Like High-Order RK Method Can En-
hance the Training Efficiency of QINN. We analyze the
training efficiency of QMNN-QRK2 and QMNN. As illus-
trated in Fig. 3, where the epoch number is plotted on the ab-
scissa and the F1 score on the ordinate, we can observe sig-
nificant differences. Let’s consider Neutral F1 in the MELD
dataset as an example. We noticed that the Neutral F1 score
predicted by QMNN remained unchanged until the sixth
epoch, whereas the model performance of DialogueRNN
started improving after the second epoch. This indicates a
substantial disparity in training efficiency between QMNN
and DialogueRNN. However, when replacing the unitary
transformation module in QMNN with the QRK2 method,
we noticed an improvement in model performance starting
from the first epoch, with the F1 score gradually stabiliz-
ing after the fourth epoch. These outcomes suggest that the
quantum-like RK method has indeed enhanced the training
efficiency of QINN. This phenomenon is also consistent in
the classification of other emotions, such as Joy F1.
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QMNN-QRK2 Neutral Surprise Sad Joy Angry
value of α F1 P F1 P F1 P F1 P F1 P
0.5 75.64 70.11 47.86 44.05 16.00 23.81 50.75 47.00 35.93 43.00
0.05 76.07 70.65 47.92 46.78 17.39 21.90 51.97 49.65 38.43 45.75
0.0001 76.51 72.58 47.93 47.12 19.54 27.59 52.51 53.56 43.00 45.28
0.00001 77.61 73.13 49.51 51.00 22.77 31.41 53.52 55.10 42.78 49.05
0 75.52 70.90 46.28 42.43 2.80 13.33 47.33 43.61 28.21 39.32

Table 4: The results of QMNN-QRK’s sensitivity on the range of truncation error.

QLM-EE α MR SUBJ CR MPQA

QRK2

0.5 69.9 88.4 73.7 78.6
0.05 74.6 90.7 79.6 81.0
0.0001 76.6 90.8 80.1 81.4
0.00001 78.5 93.2 82.2 85.0

QRK3

0.5 76.7 90.8 80.4 81.7
0.05 77.5 91.8 80.1 81.8
0.0001 76.5 91.7 80.3 82.5
0.00001 77.8 93.8 83.8 85.0

QRK4

0.5 76.7 90.8 80.1 82.3
0.05 77.4 91.8 80.1 82.5
0.0001 76.9 91.7 79.8 83.0
0.00001 78.8 94.6 84.4 85.5

Table 5: The results of QLM-EE-QRK’s sensitivity on the
range of truncation error.

Ablation Study
Sensitivity on the Order. (1) In previous experiments, we
set the order of QLM-EE-QRK and QLM-EE-CRK to four.
In this section, we perform the statistical analysis and abla-
tion experiments on the text classification datasets.

(2) We set the order of QLM-EE-QRK and QLM-EE-
CRK to 2, 3, and 4, that is, limiting the maximum num-
ber of layer to 2, 3, and 4, respectively. From Table. 3,
the QLM-EE-QRK4 achieves the best results. We posit that
the utilization of high-order RK methods can effectively re-
duce truncation error in text classification tasks. When the
order of RK method is the same, QLM-EE-QRK outper-
forms QLM-EE-CRK, demonstrating the importance of uni-
tary constraint. Meanwhile, we found that the number of pa-
rameters between QLM-EE-QRK and QLM-EE is equiva-
lent, so the performance improvement of QLM-EE-QRK is
not brought about by additional parameters.

Sensitivity on the Range of Truncation Error. (1) Ac-
cording to our derivation, the truncation error range of the
QRK method is controlled by the minimum value α of the
unitary matrix. In previous experiments, we set α of QLM-
EE-QRK and QMNN-QRK to 0.00001. In this section, we
perform the statistical analysis and ablation experiments on
the text classification and the conversational emotion recog-
nition datasets.

(2) We choose α of QLM-EE-QRK and QMNN-QRK in
{0.5, 0.05, 0.0001, 0.00001, 0}. From Table. 4, setting α of
QMNN-QRK to 0.00001 achieves the best results. Further-
more, we observe a gradual improvement in the model’s per-

formance as α value ranges from 0.5 to 0.00001. In addition,
we set α to 0 to investigate the impact of omitting training
during the unitary transformation. Our results indicate that
the model’s performance is significantly poorer without uni-
tary transformation, underscoring the crucial role of the uni-
tary transformation in effectiveness.

(3) From Table. 5, setting α of QLM-EE-QRK to 0.00001
achieves the best results. We found that as α decreases,
the gap in performance between QLM-EE-QRKs of dif-
ferent orders also decreases. However, the time complexity
O(nL) of the model increases as the order n of the model
increases, where L is the sequence length. The result in
Table. 5 demonstrates that the performance of lower-order
models can be improved by decreasing α, thereby reducing
the time complexity of the model.

Conclusion
In this paper, we have demonstrated the inherent consistency
between unitary transformations and high-order RK meth-
ods. Based on this foundation, we propose a Quantum-like
high-order RK (QRK) module for QINN. Through experi-
ments, we have verified the effectiveness of our method in
enhancing the training efficiency of QINN based on unitary
evolution, and it also shows improvements in experimen-
tal results compared to other QINN approaches. However,
this work serves as a foundational study on QINN training
efficiency and does not extensively explore model perfor-
mance enhancements. In the future, we will further explore
the relationship between NeuralODE and QINNs, and en-
hance model performance by refining multi-modal modeling
methods based on QINN.
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