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Abstract

This paper develops a novel rating-based reinforcement learn-
ing (RbRL) approach that uses human ratings to obtain hu-
man guidance in reinforcement learning. Different from the
existing preference-based and ranking-based reinforcement
learning paradigms, based on human relative preferences over
sample pairs, the proposed rating-based reinforcement learn-
ing approach is based on human evaluation of individual tra-
jectories without relative comparisons between sample pairs.
The rating-based reinforcement learning approach builds on
a new prediction model for human ratings and a novel multi-
class loss function. We finally conduct several experimental
studies based on synthetic ratings and real human ratings to
evaluate the performance of the new rating-based reinforce-
ment learning approach.

Introduction

With the development of deep neural network theory and
improvements in computing hardware, deep reinforcement
learning (RL) has become capable of handling complex
tasks with large state and/or action spaces (e.g., Go and Atari
games) and yielding human-level or better-than-human-
level performance (Silver et al. 2016; Mnih et al. 2015).
Numerous approaches, such as DQN (Mnih et al. 2015),
DDPG (Lillicrap et al. 2015), PPO (Schulman et al. 2017),
and SAC (Haarnoja et al. 2018) have been developed to ad-
dress challenges such as stability, exploration, and conver-
gence for various applications (Li 2019) such as robotic con-
trol, autonomous driving, and gaming. Despite the important
and fundamental advances behind these algorithms, one key
obstacle for the wide application of deep RL is the required
knowledge of a reward function, which is often unavailable
in practical applications.

Although human experts could design reward functions
in some domains, the cost is high because human experts
need to understand the relationship between the mission
objective and state-action values and may need to spend
extensive time adjusting reward parameters and trade-offs
not to encounter adverse behaviors such as reward hack-
ing (Amodei et al. 2016). Another approach is to uti-
lize qualitative human inputs indirectly to learn a reward
function, such that humans guide reward function design
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without directly handcrafting the reward. Existing work
on reward learning includes inverse reinforcement learning
(IRL) (Ziebart et al. 2008), preference-based reinforcement
learning (PbRL) (Christiano et al. 2017), and the combina-
tion of demonstrations and relative preferences, e.g. learning
from preferences over demonstrations (Brown et al. 2019).

Existing human-guided reward learning approaches have
demonstrated effective performance in various tasks. How-
ever, they suffer from some key limitations. For example,
IRL requires expert demonstrations and hence, cannot be di-
rectly applied to tasks that are difficult for humans to demon-
strate. PbRL is a practical approach to learning rewards for
RL, since it is straightforward for humans to provide accu-
rate relative preference information. Yet, RL from pairwise
preferences suffers from some key disadvantages. First, each
pairwise preference provides only a single bit of informa-
tion, which can result in sample inefficiency. In addition, due
to their binary nature, standard preference queries do not in-
dicate how much better or worse one sample is than another.
Furthermore, because preference queries are relative, they
cannot directly provide a global view of each sample’s abso-
lute quality (good vs. bad); for instance, if all choices shown
to the user are of poor quality, the user cannot say, “A is bet-
ter than B, but they’re both bad!”. Thus, a PbRL algorithm
may be more easily trapped in a local optimum, and cannot
know to what extent its performance approaches the user’s
goal. Finally, PbRL methods often require strict preferences,
such that comparisons between similar-quality or incompa-
rable trajectories cannot be used in reward learning. While
some works use weak preference queries (B1yik et al. 2020;
Biyik, Talati, and Sadigh 2022), in which the user can state
that two choices are equally preferable, there is no way to
specify the quality (good vs. poor) of such trajectories; thus,
valuable information remains untapped.

The objective of this paper is to design a new rating-
based RL (RbRL) approach that infers reward functions
via multi-class human ratings. RbRL differs from IRL and
PbRL in that it leverages human ratings on individual sam-
ples, whereas IRL uses demonstrations and PbRL uses rel-
ative pairwise comparisons. In each query, RbRL displays
one trajectory to a human and requests the human to pro-
vide a discrete rating. The number of rating classes can be
as low as two, e.g. “bad” and “good”, and can be as high
as desired. For example, when the number of rating classes
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is b, the 5 possible human ratings could correspond to “very
bad”, “bad”, “ok”, “good”, and “very good”. It is worth men-
tioning that the statement “samples A and B are both rated
as ‘good’ ” may provide more information than stating that
“A and B are equally preferable”, which can be inferred by
the former. However, “A and B are equally preferable” may
be important information for fine-tuning. In addition, a per-
son can also intentionally assign high ratings to samples that
contain rare states, which would be beneficial for address-
ing the exploration issue (Ecoffet et al. 2019) in RL. For
both PbRL and RbRL, obtaining good samples requires ex-
ploration, and both will suffer without any well-performing
samples.

The main contributions of this paper are as follows. First,
we propose a novel RbRL framework for reward function
and policy learning from qualitative, absolute human eval-
uations. Second, we design a new multi-class cross-entropy
loss function that accepts multi-class human ratings as the
input. The new loss function is based on the computation
of a relative episodic reward index and the design of a new
multi-class probability distribution function based on this in-
dex. Third, we conduct several experimental studies to quan-
tify the impact of the number of rating classes on the perfor-
mance of RbRL, and compare RbRL and PbRL under both
synthetic and real human feedback. Our studies suggest that
(1) too few or too many rating classes can be disadvanta-
geous, (2) RbRL can outperform PbRL under both synthetic
and real human feedback, and (3) people find RbRL to be
less demanding, discouraging, and frustrating than PbRL.

Related Work

Inverse Reinforcement Learning (IRL) seeks to infer re-
ward functions from demonstrations such that the learned
reward functions generate behaviors that are similar to
the demonstrations. Numerous IRL methods (Ng, Rus-
sell et al. 2000), such as maximum entropy IRL (Ziebart
et al. 2008; Wulfmeier, Ondruska, and Posner 2015), non-
linear IRL (Finn, Levine, and Abbeel 2016), Bayesian
IRL (Levine, Popovic, and Koltun 2011; Choi and Kim
2011, 2012), adversarial IRL (Fu, Luo, and Levine 2018),
and behavioral cloning IRL (Szot et al. 2022) have been de-
veloped to infer reward functions. The need for demonstra-
tions often makes these IRL methods costly, since human
experts are needed to provide demonstrations.

Instead of requiring human demonstrations, PbRL (Wirth
et al. 2017; Christiano et al. 2017; Ibarz et al. 2018; Liang
et al. 2022; Zhan, Tao, and Cao 2021; Xu et al. 2020; Lee,
Smith, and Abbeel 2021; Park et al. 2022) leverages human
pairwise preferences over trajectory pairs to learn reward
functions. Querying humans for pairwise preferences rather
than demonstrations can dramatically save human time. In
addition, by leveraging techniques such as adversarial neu-
ral networks (Zhan, Tao, and Cao 2021), additional human
time can be saved by learning a well-performing model to
predict human preference. Another benefit of PbRL is that
humans can provide preferences with respect to uncertainty
to promote exploration (Liang et al. 2022). Despite these
benefits, PbRL can be ineffective, especially for complex
environments, because pairwise preferences only provide
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relative information rather than directly evaluating sample
quality; while in some domains, sampled pairs may be se-
lected carefully to infer global information, in practice, even
if one sample is preferred over another, it does not necessar-
ily mean that this sample is good. People can also have dif-
ficulty when comparing similar samples, thus taking more
time and potentially yielding inaccurate preference labels.
Notably, several works have sought to improve sample ef-
ficiency of PbRL; for instance, PEBBLE (Lee, Smith, and
Abbeel 2021) considers off-policy PbRL, and SURF (Park
et al. 2022) explores data augmentations in PbRL. These
contributions are orthogonal to ours, as they could straight-
forwardly be applied within our proposed RbRL framework.

Other methods for learning reward functions from hu-
mans include combining relative rankings and demonstra-
tions, e.g. by inferring rewards via rankings over a pool of
demonstrations (Brown et al. 2020, 2019; Brown, Goo, and
Niekum 2020) to extrapolate better-than-demonstrator per-
formance from the learned rewards, or first learning from
demonstrations and then fine-tuning with preferences (Ibarz
et al. 2018; Biyik et al. 2022). Finally, in the TAMER frame-
work (Knox and Stone 2009; Warnell et al. 2018; Celemin
and Ruiz-del Solar 2015), a person gives positive (encourag-
ing) and negative (discouraging) feedback to an agent with
respect to specific states and actions, instead of over entire
trajectories. These methods generally take actions greedily
with respect to the learned reward, which may not yield an
optimal policy in continuous control settings.

Problem Formulation

We consider a Markov decision process without reward
(MDP\R) augmented with ratings, which is a tuple of the
form (S, A,T,p,v,n). Here, S is the set of states, A is
the set of possible actions, T : S x A x S — [0,1] is a
state transition probability function specifying the probabil-
ity p(s’ | s,a) of reaching state s’ € S after taking action
a in state s, p : S — [0, 1] specifies the initial state distri-
bution, + is a discount factor, and n is the number of rating
classes. The learning agent interacts with the environment
through rollout trajectories, where a length-k trajectory seg-
ment takes the form (s, a1, $2, a9, ..., Sk, ax). A policy ©
is a function that maps states to actions, such that 7(a | s) is
the probability of taking action a € A in state s € S.

In traditional RL, the environment would receive a reward
signal 7 : § x A — R, mapping state-action pairs to a nu-
merical reward, such that at time-step ¢, the algorithm re-
ceives a reward r; = r(sy,a;), where (s, a;) is the state-
action pair at time ¢. Accordingly, the standard RL prob-
lem can be formulated as a search for the optimal policy
7*, where 7 = argmax. Y ,~ o E(s, a,)~ps {ytr(st, at)},
a; ~ 7(-|st), and p, is the marginal state-action distribu-
tion induced by the policy 7. Note that standard RL assumes
the availability of the reward function r. When such a re-
ward function is unavailable, standard RL and its variants
may not be used to derive control policies. Instead, we as-
sume that the user can assign any given trajectory segment
T = (%1,01,..., Sk, ax) arating in the set {0,1,...,n — 1}
indicating the quality of that segment, where 0 is the lowest
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possible rating, while n — 1 is the highest possible rating.

The algorithm presents a series of trajectory segments o
to the human and receives corresponding human ratings. Let
X := {(04,¢i)}._, be the dataset of observed human rat-
ings, where ¢; € {0,...,n — 1} is the rating class assigned
to segment o;, and [ is the number of rated segments con-
tained in X at the given point during learning.

Note that descriptive labels can also be given to the rating
classes. For example, for n = 4 rating classes, we can call
the rating class 0 “very bad”, the rating class 1 “bad”, the
rating class 2 “good”, and the rating class 3 “very good”.
With n = 3 rating classes, we can call the rating class 0
“bad”, the rating class 1 “neutral”, and class 2 “good”.

Rating-based Reinforcement Learning
Different from the binary-class reward learning in Christiano
etal. (2017) that utilizes relative human preferences between
segment pairs, RbRL utilizes non-binary multi-class ratings
for individual segments. We call this a multi-class reinforce-
ment learning approach based on ratings.

Modeling Reward and Return

Our approach learns a reward model 7+ : § x A — R
that predicts state-action rewards 7(s,a). We further de-
fine R(o) = Zle ¥t~ (sy, a;) as the cumulative dis-
counted reward, or the return, of length-k trajectory segment
o.Larger R(J) corresponds to a higher predicted human rat-

ing for segment o. Next, we define R(o) as a function map-
ping a trajectory segment o to an estimated total discounted
reward, normalized to fall in the interval [0, 1] based on the
dataset of rated trajectory segments X:

R(0) -

max, ey R(c")

ming e x R(U’)

R(o) = ey

D) ’
Novel Rating-Based Cross-Entropy Loss Function

— miny e x R(o

To construct a new (cross-entropy) loss function that can
take multi-class human ratings as the input, we need to es-
timate the human’s rating class predictions. In addition, the
range of the estimated rating class should belong to the in-
terval [0, 1] for the cross-entropy computation. We here pro-
pose a new multi-class cross-entropy loss given by:

Z(Zuo ) log Qg<>>>, 5

ceX
where X is the collected dataset of user-labeled segments,
i, (7) is an indicator that equals 1 when the user assigns
rating 7 to trajectory segment o, and Q. (i) € [0, 1] is the
estimated probability that the human assigns the segment o
to the 4th rating class. Next, we will model the probabilities
Q- (1) of the human choosing each rating class. Notably, we
do this without comparing the segment o to other segments.

L(7)

Modeling Human Rating Probabilities

We next describe our model for @, (7) based on the normal-
ized predicted returns R(c). To model the probability that o
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belongs to a particular class, we will first model separations
between the rating classes in reward space. ~

We define rating class boundaries Ry, Ry, ..., R, in the
space of normalized trajectory returns such that 0 := Ry <
Ry < ... < R, := 1. Then, if a segment ¢ has normal-
ized predicted return R(c) such that R; < R(0) < Riy1,
we wish to model that ¢ belongs to rating class ¢ with the
highest probability.

For example, when the total number of rating classes is
n = 4, we aim to model the lower and upper return bounds
for rating classes 0, 1,2, and 3, which for instance, could
respectively correspond to “very bad”, “bad”, “good”, and
“very good”. In this case, if 0 < R(c) < Ry, then we would
like our model to predict that o most likely belongs to class
0 (“very bad”), while if R, < R(c) < Rs, then our model
should predict that o most likely belongs to class 2 (“good”).

Given the rating category separations R;, we model Q) ()
as a function of the normalized predicted returns R(c):

e—k(R(U)—Ri)(R(O’)—Ri+1)

Z;Zol e—k(R(o)—R;)(R(0)—R;11)’

Qo (1) =

3)

where k is a hyperparameter modeling human label noisi-
ness, and the denominator ensures that Z?:_Ol Qs (i) = 1,
i.e. that the class probabilities sum to 1.

To gain intuition for Equation (3), note that when R( )€
(R;, Riy1), such that the predicted return falls within rating
class i’s predicted boundaries, then —(R(c) — R;)(R(c) —
Rz+1) > 0 while —(R(0) — R;j)(R(0) — Rj41) < 0 for
all j # 4. This means that Q, () > Q,(j), j # 1, so that
the model assigns category ¢ the highest class probability,
as desired. Furthermore we note that Q,(¢) is maximized
when R(0) = 3(R; + R;11), such that the predicted return
falls directly 1n the center of category ¢’s predrcted range.
As R(c) becomes increasingly further from % S(Ri + Riy1),
the modeled probability @, (z) of class i monotomcally de-
creases. We next show how to compute the class boundaries
Ry,i=1,...,n—1

Modeling Boundaries between Rating Categories

Next, we discuss how to model the boundaries between rat-
ing categories, 0 =: Ry < R; < ... < R, := 1. This re-
quires selecting the range, or the upper and lower bounds of
R, corresponding to each rating class. We determine these
boundary values based on the distribution of R(c) for the
trajectory segments 0 € X and the number of observed sam-
ples in X from each rating class. We select the R; values
such that the number of training data samples that the model
assigns to each modeled rating class matches the number of
samples in X that the human assigned to that rating class.
Note that this does not require the predicted ratings based
on R(o) to match the human ratings for o in the training
data X, but ensures that the proportions of segments in the
training dataset X assigned to each rating class matches that
in X. This matching in rating class proportions is desirable
for learning an appropriate reward function based on hu-
man preference, since different humans could give ratings in
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significantly different proportions depending on their pref-
erences and latent reward functions, as modeled by R.

To define each R; so that the number of samples in each
modeled rating category reflects the numbers of ratings in
the human data, we first sort the estimated returns R(cr) for
all 0 € X from lowest to highest, and label these sorted es-
timates as Rl < Rg << Rl, where [ is the cardinality
of X. Denoting via k; the number of segments that the hu-
man assigned to rating class j, j € {0,--- ,n — 1}, we can
then model each category boundary R;,i ¢ {0,n} (since
Ry :=0and R,, := 1 by definition), as follows:

B - Rygon, + Rigugm,

P B i e B =N S TR
5 i€ n

1}, @

where k{'™ : Z;:O k; is the total number of segments that
the human assigned to any rating category j < ¢. When the
user has not assigned any ratings within a particular cate-
gory, i.e., k; = 0 for some ¢, then we define the upper bound
for category i as Ry, , := Ry,.

This definition guarantees that when all normalized re-
turn predictions R(U), o € X, are distinct, then our model
places ko segments within interval [Ro, R1), k; segments
within each interval (R;, R;1+1) for1 <i <n—2,and k,,_1
segments in (R,,_1, R,], and thus predicts that k; segments
most likely have rating <.

Synthetic Experiments
Setup

We conduct synthetic experiments based on the setup in Lee
et al. (2021) to evaluate RbRL relative to the PbRL base-
line (Lee et al. 2021). The code can be found at https:
//tb.gy/tdpcdy. The goal is to learn to perform a task by
obtaining feedback from a teacher, in this case a synthetic
human. For the PbRL baseline, we generate synthetic feed-
back such that in each queried pair of segments, the seg-
ment with the higher ground truth cumulative reward is pre-
ferred. In contrast to the synthetic preferences between sam-
ple pairs in Lee et al. (2021), RbRL was given synthetic rat-
ings generated for individual samples, where these ratings
were given by comparing the sample’s ground truth return to
the ground truth rating class boundaries. For simplicity, we
selected these ground truth rating class boundaries so that
rating classes are evenly spaced in reward space.

For the synthetic PbRL experiments, we selected pref-
erence queries using the ensemble disagreement approach
in Lee et al. (2021). We extend this method to select rat-
ing queries for the synthetic RbRL experiments, designing
an ensemble-based approach as in Lee et al. (2021) to se-
lect trajectory segments for which to obtain synthetic rat-
ings. First, we train a reward predictor ensemble and obtain
the predicted reward for every candidate segment and en-
semble member. We then select the segment with the largest
standard deviation over the ensemble to receive a rating la-
bel. We study the Walker and Quadruped tasks in Lee et al.
(2021), with 1000 and 2000 synthetic queries, respectively.

For all synthetic experiments, the reward network param-
eters are optimized to minimize the cross entropy loss (2)
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based on the respective batch of data via the computation
of (3). We use the same neural network structures for
both the reward predictor and control policy and the same
hyperparameters as in Lee et al. (2021).
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Figure 1: Performance of RbRL in synthetic experiments for
different n, compared to PbRL: mean reward + standard er-
ror over 10 runs for Walker (top) and Quadruped (bottom).

Results

Figure 1 shows the performance of RbRL for different num-
bers of rating classes (i.e. values of n) and PbRL for two en-
vironments from Lee et al. (2021): Walker and Quadruped.
We observe that a higher number of rating classes yields bet-
ter performance for Walker. In addition, RbRL withn = 5,6
outperforms PbRL. However, for Quadruped, while RbRL
with n = 2,3 still outperforms PbRL, a higher number of
rating classes decreases performance; this decrease may be
caused by the selection of rating class boundaries used to
generate the synthetic feedback. The results indicate that
RbRL is effective and can provide better performance than
PbRL even if synthetic ratings feedback is generated using
reward thresholds that are evenly distributed, without further
optimization of their selection. We expect further optimiza-
tion of the boundaries used to generate synthetic feedback
to yield improved performance. For our experiments, we de-
fined the rating boundaries by finding the maximum possible
reward range for a segment and evenly dividing by the num-
ber of rating classes.
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Human Experiments
Setup

We conduct all human experiments by following a similar
setup to Christiano et al. (2017). In particular, our tests were
approved by the UTSA IRB Office, including proper steps
to ensure privacy and informed consent of all participants.
In particular, the goal is to learn to perform a given task
by obtaining feedback from a teacher, in this case a human.
Different from PbRL in Christiano et al. (2017), which asks
humans to provide their preferences between sample pairs,
typically in the form of short video segments, RbRL asks
humans to evaluate individual samples, also in the form of
short video segments, to provide their ratings, e.g., “segment
performance is good” or “segment performance is bad”.

For all human experiments, we trained a reward predictor
by minimizing the cross entropy loss (2) based on the re-
spective batch of data via the computation of (3). We used
the same neural network structures for both the reward pre-
dictor and control policy and the same hyperparameters as
in Christiano et al. (2017).

RbRL with Different Numbers of Rating Classes

To evaluate the impact of the number of rating classes n
on RbRL’s performance, we first conduct tests in which
a human expert (an author on the study) provides ratings
with n = 2,...,8 in the Cheetah MuJoCo environment. In
particular, three experiment runs were conducted for each
n € {2,3,...,8}. Fig. 2 shows the performance of RbRL
for each n, where the solid bar represents the mean perfor-
mance and the vertical line represents the standard error over
3 experiment runs. It can be observed that RbRL performs
better for n € {3,4,...,7} than for n € {2,8}, indicat-
ing that allowing more rating classes is typically beneficial.
However, an overly large number of rating classes n will
lead to difficulties and inaccuracies in the human ratings,
and hence n must be set to a reasonable value. Indeed, for
smaller n, one can more intuitively assign physical meanings
to each n, whereas for overly large n, it becomes difficult to
assign such physical meanings, and hence it will be more
challenging for users to provide consistent ratings.
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Figure 2: RbRL performance for different n in a human ex-
periment: performance in the Cheetah environment (mean +
standard error over 3 experiment runs).
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RbRL Human User Study

To evaluate the effectiveness of RbRL for non-expert users,
we conducted an IRB-approved human user study. We con-
ducted tests on 3 of the OpenAl Gym MuJoCo Environ-
ments also used in Christiano et al. (2017): Swimmer, Hop-
per and Cheetah. A total of 20 participants were recruited
(7 for Cheetah, 7 for Swimmer, and 6 for Hopper). In our
experiments, we provided a single 1 to 2 second long video
segment to query users for each rating, while we provided
pairs of 1 to 2 second videos to obtain human pairwise pref-
erences. For Cheetah, the goal is to move the agent to the
right as fast as possible; this is the same goal encoded in the
default hand-crafted environment reward. Similarly, the goal
for Swimmer matches that of the default hand-crafted envi-
ronment reward. However, for Hopper, we instructed users
to teach the agent to perform a backflip, which differs from
the goal encoded by the default hand-crafted environment
reward. We chose to study the back flip task to see how
well RbRL can learn new behaviors for which a reward is
unknown. Thus, the performance of Cheetah and Swimmer
can be evaluated via the hand-crafted environment rewards,
while the Hopper task cannot be evaluated via its hand-
crafted environment reward. For Hopper, the performance
of RbRL will be evaluated based on evaluating the agent’s
behavior when running the learned policies from RbRL.

During the user study, each participant performed two
tests—one for RbRL and one for PboRL—in one of the three
MuJoCo environments, both for n = 2 rating classes. To
eliminate potential bias, we assigned each participant a ran-
domized order in which to perform the PbRL and RbRL ex-
periment runs. Because the participants had no prior knowl-
edge of the MuJoCo environments tested, we provided sam-
ple videos to show desired and undesired behaviors so that
the participants could better understand the task. Upon re-
quest, the participants could also conduct mock tests before
we initiated human data collection. For each experiment run,
the participant was given 30 minutes to give rating/prefer-
ence labels. Once finished, the participant filled out a ques-
tionnaire about the tested algorithm. The participant was
then given a 10 minute break before conducting the second
test and completing the questionnaire about the other algo-
rithm. Afterwards, the participant completed a questionnaire
comparing the two algorithms. Policy and reward learning
occurred during the 30 minutes in which the user answered
queries, and then continued after the human stepped away
until code execution reached 4 million environment time-
steps.

Performance Figure 3 shows the performance of PbRL
and RbRL across the seven participants for the Cheetah and
Swimmer tasks. We see that RbRL performs similarly to or
better than PbRL. In particular, RbRL can learn quickly in
both cases, evidenced by the fast reward growth early dur-
ing learning. Figure 3 additionally displays results when an
expert (an author on the study) provided ratings and prefer-
ences for Cheetah and Swimmer. For consistency, the same
expert tested PbRL and RbRL in each environment. We ob-
serve that for the expert trials, RbRL performs consistently
better than PbRL given the same human time. These results
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suggest that RbRL can outperform PbRL regardless of the
user’s environment domain knowledge. It can also be ob-
served that the RbRL and PbRL trials with expert users out-
perform the trials in which feedback is given by non-experts.
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Figure 3: Performance of RbRL and PbRL in the human user
study: Cheetah (top) and Swimmer (bottom). For non-expert
users, the plots show mean =+ standard error over 7 users.
The expert results are each over a single experiment run.

Although RbRL performs similarly to PbRL in the Chee-
tah task, we observed that some participants performed very
poorly in this environment, perhaps due to lack of under-
standing of the task. By analyzing the raw data of all par-
ticipants for Cheetah and Swimmer, we can see that one of
the trials for Cheetah (RbRL) performs very poorly (with
the final reward less than —10). For all other tests, including
both PbRL and RbRL, the final reward is in positive territory,
usually more than 20. Hence, it may be more meaningful to
evaluate the mean results for individuals who perform rea-
sonably. Figure 4 shows the mean reward for the top 3 non-
expert users at different iterations for Cheetah and Swim-
mer. It can be observed that RbRL consistently outperforms
PbRL and learns the goal faster than PbRL.

To compare PbRL and RbRL in the Hopper backflip task,
we ran the learned policies for the 6 participants to gener-
ate videos. Videos for the best learned policies from PbRL
and RbRL can be found at rb.gy/ntlqm6, and indicate that
(1) both RbRL and PbRL can learn the backflip, and (2) the
backflip learned via RbRL fits better with our understanding
of a desired backflip.
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Figure 4: RbRL and PbRL performance for the top 3 (non-
expert) user study participants: mean reward + standard er-
ror over the 3 experiment runs each for Cheetah (top) and
Swimmer (bottom).

User Questionnaire Results The previous results in this
section focus on evaluating the performance of RbRL and
PbRL via the ground-truth environment reward (Cheetah
and Swimmer) and the learned behavior (Hopper). To un-
derstand how the non-expert users view their experience of
giving rating and preferences, we conduct a post-experiment
user questionnaire. The questionnaire asked users for feed-
back about their experience supervising PbRL and RbRL
and to compare PbRL and RbRL. Figure 5 displays the
normalized survey results from the 20 user study partici-
pants. In particular, the top subfigure of Figure 5 shows the
participants’ responses with respect to their separate opin-
ions about PbRL and RbRL. These responses suggest that
PbRL is more demanding and difficult than RbRL, lead-
ing users to feel more insecure and discouraged than when
using RbRL. The bottom subfigure of Figure 5 shows the
survey responses when users were asked to compare PbRL
and RbRL; these results confirm the above findings and also
show that users perceive themselves as completing the task
more successfully when providing ratings (RbRL). One in-
teresting observation is that the participants prefer RbRL and
PbRL equally, which differs from the other findings. How-
ever, one participant stated that he/she preferred PbRL be-
cause PbRL is more challenging, which is counter-intuitive.
This suggests that “liking” one algorithm more than the
other is a very subjective concept, making the responses for
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this question less informative than those for the other survey
questions.

Frustration (RbRL)
Frustration (PbRL)
Difficulty (RbRL)
Difficulty (PbRL)

Success (RbRL)
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Mental Demand |
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Figure 5: Participants’ responses to survey questions about
RbRL and PbRL. The blue bar indicates the median and the
edges depict the 1st quartile (left) and 3rd quartile (right).

Human Time  We also conducted a quantitative analy-
sis of human time effectiveness when humans were asked
to give ratings and preferences. Figure 6 shows the aver-
age number of human queries provided in 30 minutes for
Cheetah, Swimmer, Hopper, and for all three environments
combined. It can be observed that the participants can pro-
vide more ratings than pairwise preferences in all environ-
ments, indicating that it is easier and more efficient to pro-
vide ratings than to provide pairwise preferences. On aver-
age, participants can provide approximately 14.03 ratings
per minute, while they provide only 8.7 preferences per
minute, which means that providing a preference requires
62% more time than providing a rating. For Cheetah, provid-
ing a preference requires 100%+ more time than providing
a rating, which is mainly due to the need to compare video
pairs that are very similar. For Swimmer and Hopper, the
environments and goals are somewhat more complicated.
Hence, providing ratings can be slightly more challenging,
but is still easier than providing pairwise preferences.

Discussion and Open Challenges

One key difference between PbRL and RbRL is the value of
the acquired human data. Because ratings in RbRL are not
relative, they have the potential to provide more global value
than preferences, especially when queries are not carefully
selected. For environments with large state-action spaces,
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Figure 6: Number of queries provided in 30 minutes in our
human user study (mean =+ standard error).

ratings can provide more value for reward learning. One lim-
itation of ratings feedback is that the number of data samples
in different rating classes can be very different, leading to
imbalanced datasets. Reward learning in RbRL can be nega-
tively impacted by this data imbalance issue (although our
experiments still show the benefits of RbRL over PbRL).
Hence, on-policy training with a large number of training
steps may not help reward learning in RbRL because the
collected human ratings data can become very unbalanced.
We expect that addressing the data imbalance issue would
further improve RbRL performance.

One challenge for RbRL is that ratings may not be given
consistently during learning, especially considering users’
attention span and fatigue level over time. Future work in-
cludes developing mechanisms to quantify users’ consis-
tency levels, the impact of user inconsistency, or solutions
to user inconsistency. Another potential limitation of RbRL
is that it learns a less refined reward function than PbRL be-
cause RbRL does not seek to distinguish between samples
from the same rating class. Hence, future work could inte-
grate RbRL and PbRL to create a multi-phase learning strat-
egy, where RbRL provides fast initial global learning while
PbRL further refines performance via local queries based on
sample pairs.

One open challenge is the lack of effective human in-
terfaces in existing code bases. For example, in Lee et al.
(2021), only synthetic human feedback is available. Al-
though a human interface is available for the algorithm
in Christiano et al. (2017), the use of Google cloud makes
it difficult to set up and operate efficiently. One of our future
goals is to address this challenge by developing an effec-
tive human interface for reinforcement learning from human
feedback, including preferences, ratings, and their variants.

Some detailed information was omitted in the paper due to
space limitation. Please refer to https://arxiv.org/pdf/2307.
16348.pdf for more details.

Acknowledgements

The authors were supported in part by Army Research Lab
under grant WO11NF2120232, Army Research Office under
grant W911NF2110103, and Office of Naval Research un-
der grant N000142212474. We thank Feng Tao, Van Ngo,
Gabriella Forbis for their helpful feedback, code, and tests.



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

References

Amodei, D.; Olah, C.; Steinhardt, J.; Christiano, P.; Schul-
man, J.; and Mané, D. 2016. Concrete problems in Al safety.
arXiv preprint arXiv:1606.06565.

Biyik, E.; Losey, D. P.; Palan, M.; Landolfi, N. C.; Shevchuk,
G.; and Sadigh, D. 2022. Learning reward functions from
diverse sources of human feedback: Optimally integrating
demonstrations and preferences. The International Journal
of Robotics Research, 41(1): 45-67.

Biyik, E.; Palan, M.; Landolfi, N. C.; Losey, D. P.; Sadigh,
D.; etal. 2020. Asking Easy Questions: A User-Friendly Ap-
proach to Active Reward Learning. In Conference on Robot
Learning, 1177-1190.

Buyik, E.; Talati, A.; and Sadigh, D. 2022. APReL: A library
for active preference-based reward learning algorithms. In
ACM/IEEE International Conference on Human-Robot In-
teraction (HRI), 613-617.

Brown, D.; Coleman, R.; Srinivasan, R.; and Niekum, S.
2020. Safe imitation learning via fast Bayesian reward in-
ference from preferences. In International Conference on
Machine Learning, 1165—-1177.

Brown, D.; Goo, W.; Nagarajan, P.; and Niekum, S. 2019.
Extrapolating beyond suboptimal demonstrations via inverse
reinforcement learning from observations. In Proceedings

of the International Conference on Machine Learning, 783—
792.

Brown, D. S.; Goo, W.; and Niekum, S. 2020. Better-than-
demonstrator imitation learning via automatically-ranked
demonstrations. In Conference on Robot Learning, 330—
359.

Celemin, C.; and Ruiz-del Solar, J. 2015. COACH: Learning
continuous actions from corrective advice communicated by
humans. In 2015 International Conference on Advanced
Robotics (ICAR), 581-586.

Choi, J.; and Kim, K.-E. 2011. MAP inference for Bayesian
inverse reinforcement learning. Advances in Neural Infor-
mation Processing Systems, 24.

Choi, J.; and Kim, K.-E. 2012. Nonparametric Bayesian in-
verse reinforcement learning for multiple reward functions.
Advances in Neural Information Processing Systems, 25.

Christiano, P. F.; Leike, J.; Brown, T.; Martic, M.; Legg, S.;
and Amodei, D. 2017. Deep reinforcement learning from
human preferences. Advances in neural information pro-
cessing systems, 30.

Ecoffet, A.; Huizinga, J.; Lehman, J.; Stanley, K. O.; and
Clune, J. 2019. Go-explore: a new approach for hard-
exploration problems. arXiv preprint arXiv:1901.10995.

Finn, C.; Levine, S.; and Abbeel, P. 2016. Guided cost learn-
ing: Deep inverse optimal control via policy optimization.
In Proceedings of the International Conference on Machine
Learning, 49-58.

Fu, J.; Luo, K.; and Levine, S. 2018. Learning Robust Re-
wards with Adverserial Inverse Reinforcement Learning. In
International Conference on Learning Representations.

10214

Haarnoja, T.; Zhou, A.; Abbeel, P.; and Levine, S. 2018. Soft
actor-critic: Off-policy maximum entropy deep reinforce-
ment learning with a stochastic actor. In Proceedings of

the International Conference on Machine Learning, 1861—
1870.

Ibarz, B.; Leike, J.; Pohlen, T.; Irving, G.; Legg, S.; and
Amodei, D. 2018. Reward learning from human preferences
and demonstrations in Atari. Advances in Neural Informa-
tion Processing Systems, 31.

Knox, W. B.; and Stone, P. 2009. Interactively shap-
ing agents via human reinforcement: The TAMER frame-
work. In Proceedings of the fifth international conference
on Knowledge capture, 9—16.

Lee, K.; Smith, L.; Dragan, A.; and Abbeel, P. 2021. B-Pref:
Benchmarking Preference-Based Reinforcement Learning.
Advances in Neural Information Processing Systems.

Lee, K.; Smith, L. M.; and Abbeel, P. 2021. PEBBLE:
Feedback-Efficient Interactive Reinforcement Learning via
Relabeling Experience and Unsupervised Pre-training. In

International Conference on Machine Learning, 6152—
6163.

Levine, S.; Popovic, Z.; and Koltun, V. 2011. Nonlinear in-
verse reinforcement learning with Gaussian processes. Ad-
vances in Neural Information Processing Systems, 24.

Li, Y. 2019. Reinforcement learning applications. arXiv
preprint arXiv:1908.06973.

Liang, X.; Shu, K.; Lee, K.; and Abbeel, P. 2022. Reward
Uncertainty for Exploration in Preference-based Reinforce-
ment Learning. In International Conference on Learning
Representation.

Lillicrap, T. P.; Hunt, J. J.; Pritzel, A.; Heess, N.; Erez, T.;
Tassa, Y.; Silver, D.; and Wierstra, D. 2015. Continuous con-
trol with deep reinforcement learning. International Confer-
ence on Learning Representations.

Mnih, V.; Kavukcuoglu, K.; Silver, D.; Rusu, A. A.; Ve-
ness, J.; Bellemare, M. G.; Graves, A.; Riedmiller, M.; Fidje-
land, A. K.; Ostrovski, G.; et al. 2015. Human-level control
through deep reinforcement learning. Nature, 518(7540):
529-533.

Ng, A. Y.; Russell, S. J.; et al. 2000. Algorithms for inverse
reinforcement learning. In Proceedings of the International
Conference on Machine Learning, 2.

Park, J.; Seo, Y.; Shin, J.; Lee, H.; Abbeel, P.; and Lee,
K. 2022. SURF: Semi-supervised Reward Learning with
Data Augmentation for Feedback-efficient Preference-based
Reinforcement Learning. In International Conference on
Learning Representations.

Schulman, J.; Wolski, F.; Dhariwal, P.; Radford, A.; and
Klimov, O. 2017. Proximal policy optimization algorithms.
arXiv preprint arXiv:1707.06347.

Silver, D.; Huang, A.; Maddison, C. J.; Guez, A.; Sifre, L.;
Van Den Driessche, G.; Schrittwieser, J.; Antonoglou, I.;
Panneershelvam, V.; Lanctot, M.; et al. 2016. Mastering the
game of Go with deep neural networks and tree search. Na-
ture, 529(7587): 484.



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Szot, A.; Zhang, A.; Batra, D.; Kira, Z.; and Meier, F. 2022.
BC-IRL: Learning Generalizable Reward Functions from
Demonstrations. In The Eleventh International Conference
on Learning Representations.

Warnell, G.; Waytowich, N.; Lawhern, V.; and Stone, P.
2018. Deep TAMER: Interactive agent shaping in high-
dimensional state spaces. In Proceedings of the AAAI Con-
ference on Artificial Intelligence, volume 32.

Wirth, C.; Akrour, R.; Neumann, G.; Fiirnkranz, J.; et al.
2017. A survey of preference-based reinforcement learning
methods. Journal of Machine Learning Research, 18(136):
1-46.

Wulfmeier, M.; Ondruska, P.; and Posner, 1. 2015. Max-
imum entropy deep inverse reinforcement learning. arXiv
preprint arXiv:1507.04888.

Xu, Y.; Wang, R.; Yang, L.; Singh, A.; and Dubrawski, A.
2020. Preference-based reinforcement learning with finite-
time guarantees. Advances in Neural Information Process-
ing Systems, 33: 18784—18794.

Zhan, H.; Tao, F.; and Cao, Y. 2021. Human-guided Robot
Behavior Learning: A GAN-assisted Preference-based Re-
inforcement Learning Approach. IEEE Robotics and Au-
tomation Letters, 6(2): 3545-3552.

Ziebart, B. D.; Maas, A.; Bagnell, J. A.; and Dey, A. K.
2008. Maximum entropy inverse reinforcement learning.
Proceedings of the AAAI Conference on Artificial Intelli-
gence.

10215



