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Abstract

Anytime heuristic search algorithms try to find a (potentially
suboptimal) solution as quickly as possible and then work to
find better and better solutions until an optimal solution is ob-
tained or time is exhausted. The most widely-known anytime
search algorithms are based on best-first search. In this paper,
we propose a new algorithm, rectangle search, that is instead
based on beam search, a variant of breadth-first search. It re-
peatedly explores alternatives at all depth levels and is thus
best-suited to problems featuring deep local minima. Experi-
ments using a variety of popular search benchmarks suggest
that rectangle search is competitive with fixed-width beam
search and often performs better than the previous best any-
time search algorithms.

Introduction

It is often convenient to have a heuristic search algo-
rithm that can flexibly make use of however much time
is available. The search can be terminated whenever de-
sired and returns the best solution found so far. Dean and
Boddy (1988) termed these anytime algorithms. Russell and
Zilberstein (1991) further differentiated between interrupt-
ible algorithms, which quickly find a solution and then find
better solutions as time passes, eventually finding an optimal
plan if given sufficient time, and contract algorithms, which
are informed of the termination time in advance and thus
need only find a single solution before that time. Anytime
algorithms have been proposed as a useful tool for building
intelligent systems (Zilberstein 1996; Zilberstein and Rus-
sell 1996). While only a few contract search algorithms have
been proposed (Dionne, Thayer, and Ruml 2011), interrupt-
ible algorithms have been widely investigated and applied
(Likhachev and Ferguson 2009).

As we review below, the most well-known interruptible
anytime heuristic search algorithms are based on best-first
search. Best-first search is attractive as it is the basis for the
optimally-efficient optimal search algorithm A* (Hart, Nils-
son, and Raphael 1968) and it is relatively well understood.
However, because anytime algorithms are intended for use
cases in which the solutions found do not need to be proven
optimal, and are not even expected to be optimal, it is not
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obvious that best-first search is the most appropriate choice
of algorithmic architecture.

In this paper, we propose an interruptible algorithm called
rectangle search that is inspired by beam search, which is
based on breadth-first search rather than best-first search.
Rectangle search is straightforward and simple to imple-
ment: the beam incrementally widens and deepens. We study
rectangle search’s performance experimentally on seven
popular heuristic search benchmarks. We find that, overall,
rectangle search outperforms previously-proposed anytime
search algorithms. Furthermore, it tends to find solutions of
comparable cost at similar times when compared to fixed-
width beam search, with the added benefit of reducing solu-
tion cost over time. We investigate when it performs well or
poorly, finding that it performs well in problems with large
local minima. Overall, rectangle search appears to mark a
new state of the art for anytime search, while also serving as
a replacement for fixed-width beam search.

Background

Before presenting rectangle search, we first review relevant
prior work in anytime search and beam search.

Anytime Search

Most previous anytime algorithms are based on weighted
A* (Pohl 1973), which is a best-first search using f'(n) =
g(n) + w x h(n), where g(n) is the cost to reach n from
the start, A(n) is the estimated cost-to-go to the goal from n,
and w > 1. For example, anytime weighted A* (AWA*)
(Hansen and Zhou 2007) runs weighted A* but retains a
current incumbent solution and continues searching for bet-
ter solutions until there are no open nodes with f(n) =
g(n) + h(n) < g(incumbent), thus proving that the in-
cumbent is optimal.

Anytime Repairing A* (ARA*) (Likhachev, Gordon, and
Thrun 2004) is similar, but applies a schedule of decreasing
weights ending with w = 1. When a solution is found, it
decreases the weight according to the schedule and reorders
the open list. It terminates after finding a solution with w =
1 or after exhausting all nodes with f(n) < g(incumbent).

Anytime EES (AEES) (Thayer, Benton, and Helmert
2012) requires no weighting parameter and explicitly works
to minimize the time between finding new solutions by us-
ing distance-to-go estimates d(n). d(n) is an estimate of the
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Figure 1: The exploration of rectangle search.

number of actions along a minimum-cost path from node n
to a goal. Often this can be computed while calculating h(n).
AEES maintains an open list ordered on an error-adjusted

evaluation function f (n), a focal list ordered on an error-

adjusted distance-to-go measurement c?(n), and a cleanup
list ordered on f(n). It compares the current incumbent so-
lution’s cost to the lowest f-value among open nodes to de-
termine a bound w on solution suboptimality. The focal list

maintains only nodes n with f(n) < w- f(b) where b is the

lowest f -valued node, because these are predicted to lead to
a solution that is better than the current incumbent. AEES
was demonstrated to outperform other anytime algorithms
including ARA*, Anytime Nonparametric A* (ANA¥*) (Van
Den Berg et al. 2011), and Restarting Weighted A* (RWA*)
(Richter, Thayer, and Ruml 2010).

Beam Search

Beam search (Bisiani 1987) is an incomplete and subopti-
mal variant of breadth-first search. It expands a fixed max-
imum number of nodes at each depth level of the search,
referred to as the beam width b. All nodes from the beam at
the current level are expanded and then the best b among
those descendants are selected for the next level’s beam.
Only nodes at the same depth in the tree are compared. It
continues to search until either a solution is found or until no
new states are reachable from the current depth. A variant of
beam search using d(n) for node selection called bead out-
performs beam search using f(n) or h(n) in non-unit cost
domains (Lemons et al. 2022).

One issue with beam search is that when the beam width
b is increased, sometimes a higher cost solution is returned.
The algorithm monobead (Lemons et al. 2022) addresses
this issue. It regards the beam as an ordered sequence of
numbered slots. Given nodes on the beam at current depth
d, to fill beam slot 7 at the next depth level, the node at slot
1 of depth d’s beam is expanded, its children are added to a
priority queue for depth d + 1, and the best node from that
queue is selected. This iterates for values of ¢ from 1 to b,
with the priority queue retaining any children that were not
selected to fill previous slots. The node selected for slot ¢
at depth d + 1 is thus restricted to be a child of a node in
slots 1 through 7 at depth d. This careful selection order pre-
vents children of nodes at later slots from supplanting chil-
dren of earlier slots and preserves any solutions that would
have been found by searches with a narrower beam width.

Rectangle Search

One way to view rectangle search is as an iteratively widen-
ing and deepening monobead search that obviates the need

20752

Algorithm 1: Pseudocode for rectangle search.

1 begin

2 openlists < [0

3 closed + ()

4 incumbent < node with g = co

5 expand start and add children to openlists[0]
6 depth < 1

7 while non-empty lists exist in openlists do
8 for i =0...length(openlists) — 2 do
9 | select & expand from openlistsi]

10 extend openlists with () aspect times

11 for j =i+ 1...length(openlists) — 2 do
12 for k =1...depth do

13 | select & expand from openlists|j]

-
S

depth < depth + aspect
trim empty lists from start & end of openlists
return incumbent

-
wm

[
=)

Algorithm 2: Node selection & expansion.

Data: closed, openlists, i, incumbent

17 begin

18 do

19 | n < remove first node from openlistsi]
20 while f(n) > g(incumbent) ;

21 add n to closed

2 children < expand(n)
23 for each child in children do

2 if f(child) < g(incumbent) then

25 if child is a goal then

26 incumbent < child

27 report new incumbent

28 else

29 dup < child’s entry in closed

30 if child not in closed or
g(child) < g(dup) then

31 | add child to openlists|i + 1]

to pre-specify b. In each iteration ¢ it is allowed to expand
one new node at each previously explored depth level and
to expand ¢ nodes at a new depth level. This last step makes
the number of expansions at each allowed depth level equal,
resulting in a rectangular shape of the state space being ex-
plored, as shown in Figure 1. By default, the algorithm ex-
plores only one additional depth level at each iteration (re-
sulting in a square), but this number of new levels can be
adjusted by setting an aspect parameter. We use rectangle(x)
to refer to rectangle search with aspect = x.

Figure 1 demonstrates three iterations of rectangle(1). In
the first iteration, node A is selected from the front of openl
(the open list for nodes at depth 1) and expanded, with its
children being inserted into open2. The second iteration be-
gins with node B being selected from openl and expanded
and its children also inserted into open2. The algorithm is
now allowed to expand two nodes at a new depth level, depth
2. At this level, nodes D and E are selected from the front of
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open2 and expanded, with their children being inserted into
opend. The third iteration consisted of node C being selected
at depth 1, node F being selected at depth 2, and nodes G, H,
and I being selected at depth 3. If no solution has been found
yet, the children of the nodes at depth 3 would be inserted
into a new open list for depth level 4 (not shown).

Algorithms 1 and 2 show the design of rectangle search.
It creates an ordered collection of priority queues, called
openlists, which initially contains only a single entry for
storing nodes at depth level 1 (line 2). The main loop at line 7
continues so long as there are open nodes at any depth level.
For all depth levels except the deepest, a single node is se-
lected and expanded, with its children being inserted into the
next depth level’s open list (line 31). Because of this struc-
ture, there will not have been any nodes previously expanded
from the deepest depth level represented in openlists. New
open lists are added to represent deeper levels (line 10), and
then up to depth many nodes will be selected from all but
the deepest depth level now represented in openlists. For
rectangle(1), this will result in depth many nodes being ex-
panded at a single new depth level at each iteration of the
main loop, and a single new priority queue being added to
openlists to hold the nodes at the new depth level to be
explored in the next iteration. While rectangle search could
order its priority queues on any criterion, we use d(n) to
encourage finding a first solution quickly.

Properties of Rectangle Search

Theorem 1. With an admissible heuristic, rectangle search
is complete.

Proof. Rectangle search begins from the start state and ter-
minates when no states remain at any depth level (line 7).
Because it begins with an incumbent cost value of oo, it will
not prune any non-duplicate nodes until a solution is found
(lines 20 and 24). It will search the entire reachable state
space if necessary to find a solution. 0

Theorem 2. With an admissible heuristic, the last solution
returned by rectangle search is optimal.

Proof. Rectangle search prunes only nodes with f-values
greater than or equal to the current incumbent (lines 20 and
24), which cannot lead to a better solution. It terminates
when no nodes remain at any depth (line 7). Therefore, it ex-
pands all nodes with f-value less than or equal to the optimal
solution and the last solution it returns will be optimal. [

Rectangle search is related to monobead search because
both algorithms select nodes for expansion at each level in
a well-defined order, with respect to beam slots. Rectangle
does not hold this strict ordering when expanding nodes at
a new depth level for the first time. It also performs dupli-
cate elimination without regard to the slot at which a node
was seen. However, once a depth level has had nodes se-
lected and expanded, only a single node will be selected and
expanded at a time for that level, preserving a monobead-
like order from that point onward. Therefore, the solutions
found by rectangle may not follow the monotonic ordering
ensured by monobeam. To highlight the similarity, we define
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a variant of rectangle search called strict rectangle that ex-
pands nodes at the deepest current depth level one at a time,
based on their slot index in the beam, and selects nodes to
fill those slots at the next depth level immediately after the
current node in that slot is expanded. Strict rectangle also
only eliminates duplicate nodes if the previously seen ver-
sion was expanded from the same slot as the duplicate or
earlier. With these restrictions, the node selection for a spe-
cific slot and depth are exactly the same for monobead and
strict rectangle search.

To estimate the overhead of rectangle search in relation to
a fixed-width beam search, we analyze the number of nodes
expanded by strict rectangle search relative to the number
of nodes expanded by monobead search. For simplicity, we
assume strict rectangle with aspect = 1. Let the first solution
found by monobead be generated when it expands a node
x in slot s at depth d. To provide an upper bound on the
extra work done by strict rectangle to find this solution, we
assume the beam width for monobead is equal to s, no other
solutions exist, and strict rectangle never runs out of nodes
to fill its beam. If s = d, strict rectangle will search exactly
the same region of the search space as monobead and the
number of nodes expanded by each will be equal. If s > d,
then strict rectangle will expand x during iteration s and will
have searched s — d — 1 superfluous depth levels (x will be
expanded before any node at depth s is expanded), each with
s — 1 nodes expanded. And if s < d, strict rectangle will
expand x during iteration d and will have expanded d — s
superfluous nodes at depth levels 1 to d — 1. This yields:

0 s=d
overhead << (s—d—1)(s—1) s>d
(d—=1)(d—s) s<d

In summary, the overhead of strict rectangle over monobead
is at most quadratic in whichever of d or s is greater.

As we will see in our experimental evaluation, rectan-
gle(1) is not well-suited for domains in which the heuristic
is very accurate and solutions are very deep (e.g., d > s).
Rectangle search must do O(d?) work to reach depth d,
whereas a best-first search might only need to do O(d) if
the heuristic is accurate. In this sense, rectangle(1) errs too
much on the side of exploration in such domains. Using a
larger aspect may help to reach deeper regions of the search
space earlier, but will still require some extraneous explo-
ration at higher levels.

On the other hand, rectangle search is not obliged to ex-
pand open nodes in order of their heuristic evaluation value
(be it f, h, or d). A local minimum (or crater) is a strongly
connected set of states with deceptive heuristic values that
are lower than the highest heuristic value necessary to en-
counter along a path from them to a goal (Wilt and Ruml
2014; Heusner 2019). Intuitively, they have low heuristic
values but are not actually close to a goal and expanding
these nodes does not necessarily represent progress. Unlike
many best-first searches, rectangle search does not need to
expand all nodes in a local minimum before expanding a
node with a higher heuristic value. Furthermore, we con-
jecture that rectangle’s similarity to monotonic beam search
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may aid in retaining diverse nodes during the search, pre-
venting a large local minimum from displacing all other
nodes in the beam and dominating the search.

Although it is based on breadth-first search, rectangle
search’s behavior has similarities to depth-first approaches.
When run with a large aspect value (e.g., 500 is evaluated
below), rectangle search’s behavior is similar to limited-
discrepancy search (Korf 1996). First, it repeatedly expands
the best-looking child of the previously expanded node,
forming a deep but thin probe into the state space. This is
similar to hill-climbing (Hoffmann and Nebel 2001) and
depth-first search. If the heuristic is accurate or goals are
plentiful, this will quickly find a goal. When a goal is found,
its cost establishes an f pruning bound that limits the depth
of subsequent search and forces the algorithm to widen more
rapidly. Rectangle search widens by expanding nodes at all
previous depth levels, allowing it, for example, to escape a
deep local minimum in d without expanding all nodes in
the minimum. This is similar in spirit to limited-discrepancy
search, a depth-first-search-based method in which alterna-
tives to the child preferred by a node ordering heuristic are
explored at every level of a tree, except that, by virtue of
its openlists, rectangle search has the flexibility to explore
alternatives anywhere in a depth layer.

Experimental Evaluation

To better understand rectangle search’s behavior, we imple-
mented it and other algorithms in C++ ! and compared their
anytime behavior on seven classic search benchmarks (and
for most, multiple variations in cost or action model). All al-
gorithms were given a 7.5GB memory limit and a 5 minute
time limit on a 2.6 GHz Intel Xeon E5-2630v3.

Relevant Comparators

In addition to best-first algorithms like ARA* and AEES,
we examined depth-first algorithms that can give anytime
results. DFS* (Vempaty, Kumar, and Korf 1991) is an any-
time algorithm based on iterative deepening and depth-first
branch-and-bound. It performs a depth-first search with an
increasing cost bound (beginning with h(start) and dou-
bling at each iteration) until it finds an initial solution. It then
performs a branch-and-bound search with the incumbent so-
lution’s cost as the new bound. We implemented DFS* both
with and without child ordering.

We also implemented a similar variation of Improved
Limited Discrepancy Search (ILDS) (Korf 1996) which we
call ILDS*. Because ILDS requires a depth bound, ILDS*
begins with a depth bound equal to d(start) and performs
ILDS with an increasing number of discrepancies until all
nodes within the depth bound have been explored. When a
goal is found, it is retained as an incumbent. The search con-
tinues until no node with f(n) < g(incumbent) is pruned
based on the depth bound or discrepancy bound.

Another anytime algorithm with similarities to rectangle
search is Complete Anytime Beam Search (CABS) (Zhang
1998). As adapted by Libralesso et al. (2020), CABS per-
forms a sequence of increasing-width beam searches, dou-

'Code available at https://github.com/snlemons/search.
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bling the beam width at each iteration, and retaining the best
solution so far as an incumbent. It terminates when no node
excluded from the beam has f(n) < g(incumbent). While
CABS has been primarily used in depth-bounded problems,
many of our domains do not have fixed depths and therefore
our implementation of CABS uses a closed list.

To keep our plots clear, we only include the competi-
tive algorithms: ARA*, AEES, CABS, and rectangle search.
Plots for all algorithms in all domains are given in Lemons
et al. (2023). We ran ARA* in several previously-proposed
configurations: initial weights of 10 and 2.5 with a decre-
ment of 0.02 (Likhachev, Gordon, and Thrun 2004) and
a weight schedule of 5, 3, 2, 1.5, 1 (Thayer, Benton, and
Helmert 2012). Rectangle search was tested with aspect val-
ues of 1 and 500 (selected through preliminary tests).

The Sliding Tile Puzzle

Six different cost models of sliding tiles were used: unit
cost; heavy cost, where moving tile number ¢ costs ¢; sqrt
cost, moving ¢ costs \/t; inverse cost, 1/t; reverse cost,
#spaces — t, and reverse inverse cost, 1/(#spaces — t).
We tested both the 15-puzzle (4x4) and the 24-puzzle (5x5),
using a cost-weighted Manhattan distance heuristic.

Selected results are shown in Figures 2a and 2b (the leg-
end is in 2e). We plot anytime performance over time, in-
cluding before all algorithms have solved all instances. The
primary metric we use is average quality: the cost of the
best known solution (optimal if known, otherwise the best
solution cost given by any of the algorithms at any time),
divided by the cost of the incumbent solution (or oo if no
solution has been found yet.) Quality can range from O for
unsolved instances to a maximum of 1. A dot is included to
show when an algorithm has solved all instances. Before this
dot, an increase in average quality could be due to either a
new instance being solved or a better solution being found
for an instance that was already solved.

In both the 15- and 24-puzzle, and across all cost mod-
els, rectangle(1) achieves full coverage before other algo-
rithms and provides better solution cost from that point on-
ward. More specifically, both configurations of rectangle
reach full coverage first, with rectangle(1) having lower so-
lution costs at that point and rectangle(500) quickly catch-
ing up. In particular, in the inverse cost model rectangle(1),
rectangle(500), and AEES are the only algorithms to solve
all instances within our time bound.

Blocks World

We tested on 100 random blocks world instances with 20
blocks. We included two different action models: ‘blocks
world’, where blocks are directly moved to a stack as an ac-
tion, and ‘deep blocks world’ (Lelis, Zilles, and Holte 2013),
where picking up and putting down blocks each use an ac-
tion, leading to longer solutions. The heuristic used was the
number of blocks out of place (any block which is not in a
sequence of blocks from the table up which matches the goal
state). This heuristic value is doubled for deep blocks. For
both variants, rectangle search reaches full coverage earliest
and provides the best solution costs after.
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Figure 2: Anytime algorithms (2a-2f, legend in 2e). Rectangle (anytime) versus fixed-width bead (one shot, 2i).

The Pancake Problem

Two cost models were used: unit cost, and heavy cost
(Hatem and Ruml 2014), in which each pancake is given an
ID number from 1 through N (the number of pancakes), and
the cost of a flip is the ID of the pancake above the spatula.
50, 70, and 100 pancakes were used, with the gap heuristic
(Helmert 2010), with modifications to include cost per pan-
cake in the heavy cost model.

Selected results are shown in Figures 2d and 2e. In all the
sizes of unit pancake, rectangle(1) lags behind the other al-
gorithms in terms of solving. Once it has solved the prob-
lems, it provides better solution cost than the other algo-
rithms, but this is not desirable behavior for an anytime al-
gorithm. However, increasing aspect improves the perfor-
mance: rectangle(500) solves unit instances at around the
same time as the ARA* variants, and provides better solu-
tion cost than all algorithms shortly after. CABS reaches full
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coverage slightly earlier than other algorithms, but lacks in
terms of quality for much of the time. In heavy cost pan-
cakes, only rectangle(500), rectangle(1) and AEES solve
problems reliably, with rectangle(500) being a clear winner.

Vacuum World

In vacuum world (Russell and Norvig 2010) a robot must
vacuum up dirt in a grid world. We tested both unit costs
and heavy costs, where the cost of movement is equal to the
number of dirts that the robot has already vacuumed (Thayer
and Ruml 2011). The heuristic sums the number of remain-
ing dirts, the edges of the minimum spanning tree (MST) of
the Manhattan distances among the dirts, and the minimum
Manhattan distance from the agent to one of the dirts. For
the heavy cost model, the distance components were multi-
plied by the number of dirts cleaned so far. We tested three
problem sizes: 200x200 grid with 10 dirts, 500500 grid
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with 20 dirts, and 500x 500 grid with 60 dirts.

Selected results are shown in Figures 2g and 2h. ARA*
leads in performance in smaller unit cost problems, though
rectangle is competitive, reaching full coverage only slightly
after ARA*. Rectangle also improves quality beyond ARA*
shortly after reaching full coverage. As problem size in-
creases, ARA* loses its lead. In the 500x500 problems with
60 dirts rectangle(1) lags, but rectangle(500) dominates in
terms of coverage. CABS provides better quality for some
of the time in these largest vacuum problems. In heavy cost,
only rectangle and AEES are able to solve reliably in all
problem sizes tested, with rectangle(500) clearly superior.

Grid Pathfinding

For 2D grid pathfinding problems we used 5000x5000 maps
with random obstacles (grid-random) with 4-way movement
(unit cost and life cost (Ruml and Do 2007)), and struc-
tured maps of room64 and orz100d (Sturtevant 2012) with 8-
way movement. For 4-way movement, we use cost-adjusted
Manhattan distance; for 8-way movement, octile distance.

Results in the rooms map are shown in Figure 2f. Overall,
ARA* gives best results in all of the maps used. Rectangle
provides comparable solution costs for the instances which it
solves, but tends to lag significantly on coverage, even more
than AEES and CABS. The performance of rectangle(1) is
relatively consistent across the maps tested. However, the
performance of rectangle(500) is worse in orz100d than in
random grids, and worse in 64 room maps than in orz100d.
We will return to this phenomenon below.

A Platform Game

The platform domain (Burns, Ruml, and Do 2013) is based
on 2D video games in which a character jumps between
platforms to reach a goal location. The heuristic uses visi-
bility graphs and actions have unit cost. Not all actions in
this domain are reversible, as gravity has an effect on avail-
able movements while jumping. We used 100 problem in-
stances defined as 50x50 grids. Results are shown in Figure
2c. Most algorithms give comparable performance on this
domain, though ARA* provides slightly better quality and
is first to reach full coverage. The other algorithms approach
full coverage but do not quite reach it in the time given. It
is noteworthy that in this domain, rectangle(500) performs
worse than rectangle(1), indicating that reconsideration of
earlier steps may matter more than quick, deep exploration.

Dynamic Traffic

The traffic domain (Kiesel, Burns, and Ruml 2015) has both
fixed and moving obstacles that the agent must navigate
around to reach a goal. The agent knows the future positions
of all obstacles. When the agent collides with an obstacle,
it is returned to the start location. This search space is di-
rected, because the choices available to the agent change as
obstacles move and the same configuration of obstacles may
never occur again. We used 100 grid maps of size 100x100
with 5000 total obstacles.

In this domain, all algorithms give comparable perfor-
mance, except rectangle(1), which solves much later than all
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worse better
rect(500) | non-random grids pan, hvy vac
AEES 24, pan, bw
rect(1) pan, vac, traffic, grid tiles
CABS tiles, hvy pan, bw, grid
ARA* 5 15 inv, 24, pan, bw, hvy vac  plat, room, orz
ARA* 2.5 | 15 inv, 24, pan, bw, hvy vac  plat, room, orz
ARA* 10 | tiles, 24, pan, bw, hvy vac plat, room, orz

Table 1: Where each method is worse or better than others.

of the other algorithms. ARA* reaches full coverage slightly
before the other algorithms, but rectangle(500) and CABS
improve on quality more quickly than the other algorithms
after reaching full coverage.

Strengths and Weaknesses of Rectangle Search

Table 1 summarizes the domains in which each algorithm
performs exceptionally well or poorly relative to the others.
When a general domain like ‘tiles’ is listed instead of a spe-
cific variant like ‘hvy vac’, this indicates that most variants
gave similar relative performance. Rectangle search pro-
vides competitive results across a wide variety of domains.
While it is not the best algorithm in all domains, rectangle(1)
gives superior performance in all sliding tiles configurations,
and rectangle(500) in pancakes and the heavy vacuum prob-
lems. Perhaps more importantly, rectangle(500) is not en-
tirely inferior to other algorithms in any domain. Its only
clear failures are on the non-random map variants of grid
pathfinding (orz100d and 64room) — we discuss this below.
On the other hand, all other algorithms tested are markedly
inferior (either failing to solve or providing poor quality) in
at least two of the domains tested. For these reasons, rect-
angle(500) appears promising as a method of first resort on
new problem domains.

In cases where the heuristic gives extremely accurate
guidance, the additional exploration of rectangle(1) at higher
depth levels will be unnecessary and increasing aspect can
lead to rectangle finding solutions faster. However, not all
the settings in which rectangle search struggles to compete
are ones in which the heuristic is extremely accurate, and ad-
justing aspect does not adequately solve performance prob-
lems in all domains.

To understand how rectangle search can perform better
than best-first searches and when it can be expected to per-
form worse, we focus on heuristic error—in particular, lo-
cal minima. Consider the grid pathfinding problem shown
in Figure 3, with a large room containing a slalom of cup-
like obstacles and small exits from the room near the start.
States are colored green along the solution path and a gradi-
ent from yellow to red shows expansion order, with yellow
denoting earliest and dark red latest. If the goal location is
outside the room (left panels), most of the room forms one
large local minimum. The best path is to move through one
of the nearby exits but the heuristic tempts the search in-
ward. A best-first search (GBFS in the figure, as it is the
limiting case of ARA* and AEES) will explore the entire
local minimum until it has exhausted all states that appear
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goal outside

rectangle
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Figure 3: Good and bad scenarios for rectangle search vs best-first search.

better than the exits. Rectangle search (shown here with as-
pect=1), however, widens its exploration of the early regions
of the search space and finds a path through an exit and to
the goal quickly without exploring most of the local mini-
mum. On the other hand, when the goal is inside the obstacle
(right panels), the cups form many small local minima and it
is best for a search to focus its efforts inside the room. GBFS
quickly fills each minimum and reaches the goal, while rect-
angle’s skeptical widening causes it to search both inside and
outside the room, even re-expanding useless states when it
encounters better paths to them.

Rectangle search assumes that it is helpful to re-consider
early decisions. This allows it to escape problematic regions
of the search space such as a large minimum. But in prob-
lems where progress is periodically made and it is better
to commit to paths than to reconsider early choices, rect-
angle search will waste effort. Therefore, rectangle search
is strongest in problems where there are deep local minima
that it can avoid searching, but is not the best choice when
local minima are small and the search can profit from com-
mitting to nodes with low heuristic values. For example, in
the 64room map of grid pathfinding (Figure 2f), the rooms
create a sequence of local minima, causing rectangle search
to waste effort exploring adjacent rooms near the start while
ARA* and AEES can forget about a room once they escape
it. In contrast, the tiny local minima created by randomly
placed single-cell obstacles are easy to escape by generating
a few successors (considering alternative fringe nodes ear-
lier in the search is not necessary), so rectangle(500) is no
worse than other algorithms in such problems.

Comparison with Bead Search

We also performed a comparison of rectangle search with
fixed-width bead search to understand how the additional
overhead of rectangle search compares to the results obtain-
able by a well-selected beam width. In the sliding tile puz-
zle, rectangle search provides competitive quality to bead at
a variety of widths, and is able to continue improving its
solution quality where bead cannot. Figure 2i shows results
for the unit cost 24-puzzle. While rectangle(1) is clearly su-
perior in this setting, rectangle(500) still gives comparable
results to many of the fixed-width beam searches. Similar
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results were found for the rest of the sliding tiles, blocks
world, and the platform game. In the pancake problem, the
smaller vacuum problems, grid pathfinding, and traffic, it
is rectangle(500) which performs approximately as well as
fixed width bead searches or better, with rectangle(1) doing
as well as many but not all of the fixed-width bead searches.
In only the larger vacuum problems with unit cost do we
see both configurations of rectangle performing significantly
more poorly than bead searches.

Overall, rectangle search is able to provide solutions
about as quickly and with comparable quality to bead search
with fixed widths across most of the domains tested. This
means that even in settings where anytime behavior is not re-
quired, rectangle search can serve as the algorithm of choice.

Discussion

BULB (Furcy and Koenig 2005) behaves like regular beam
search until a given depth limit is reached, at which point it
uses backtracking to continue the search. In contrast, rectan-
gle search represents a new alternative to conventional beam
search and does not require a depth limit. For huge problems
where memory capacity is an issue, it would be interesting
to integrate BULB-like backtracking with rectangle search.

We have investigated rectangle search’s performance with
aspect=1 and aspect=500. Additional research will be nec-
essary to understand how to tune this parameter. Nonlinear
increases of width and depth are also a possibility. We leave
exploration of these variants to future work.

Conclusions

Rectangle search is an effective anytime algorithm with a
simple design. Unlike previous anytime algorithms, which
are based on best-first search, rectangle search is instead
based on breadth-first search. It has similarities to both
monotonic beam search and depth-first algorithms like
ILDS. It enforces exploration at a variety of depths in the
search tree, which allows it to escape large local minima.
Rectangle search is often an effective replacement for fixed-
width beam searches. Overall, rectangle search’s promising
performance suggests that suboptimal non-best-first heuris-
tic search deserves further exploration.
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