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Abstract

Foundation models have vast potential to enable diverse AI
applications. The powerful yet incomplete nature of these
models has spurred a wide range of mechanisms to augment
them with capabilities such as in-context learning, informa-
tion retrieval, and code interpreting. We propose VIEIRA,
a declarative framework that unifies these mechanisms in a
general solution for programming with foundation models.
VIEIRA follows a probabilistic relational paradigm and treats
foundation models as stateless functions with relational in-
puts and outputs. It supports neuro-symbolic applications by
enabling the seamless combination of such models with logic
programs, as well as complex, multi-modal applications by
streamlining the composition of diverse sub-models. We im-
plement VIEIRA by extending the SCALLOP compiler with a
foreign interface that supports foundation models as plugins.
We implement plugins for 12 foundation models including
GPT, CLIP, and SAM. We evaluate VIEIRA on 9 challeng-
ing tasks that span language, vision, and structured and vector
databases. Our evaluation shows that programs in VIEIRA are
concise, can incorporate modern foundation models, and have
comparable or better accuracy than competitive baselines.

Introduction
Foundation models are deep neural models that are trained
on a very large corpus of data and can be adapted to a wide
range of downstream tasks (Bommasani et al. 2021). Exem-
plars of foundation models include language models (LMs)
like GPT (Bubeck et al. 2023), vision models like Segment
Anything (Kirillov et al. 2023), and multi-modal models like
CLIP (Radford et al. 2021). While foundation models are
a fundamental building block, they are inadequate for pro-
gramming AI applications end-to-end. For example, LMs
hallucinate and produce nonfactual claims or incorrect rea-
soning chains (McKenna et al. 2023). Furthermore, they lack
the ability to reliably incorporate structured data, which is
the dominant form of data in modern databases. Finally,
composing different data modalities in custom or complex
patterns remains an open problem, despite the advent of
multi-modal foundation models such as ViLT (Radford et al.
2021) for visual question answering.

Copyright © 2024, Association for the Advancement of Artificial
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@gpt("The height of {{x}} is {{y}} in meters")
type height(bound x: String, y: i32)

// Retrieving height of mountains
rel mount_height(m, h) = mountain(m) and height(m, h)

(a) Program P1: Extracting knowledge using GPT.

@clip(["cat", "dog"])
type classify(bound img: Tensor, label: String)

// Classify each image as cat or dog
rel cat_or_dog(i, l) = image(i, m) and classify(m, l)

(b) Program P2: Classifying images using CLIP.
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(c) Example input-output relations of the programs.

Figure 1: Programs in VIEIRA using foundation models.

Various mechanisms have been proposed to augment
foundation models to overcome these limitations. For exam-
ple, PAL (Gao et al. 2023), WebGPT (Nakano et al. 2021),
and Toolformer (Schick et al. 2023) connect LMs with
search engines and external tools, expanding their informa-
tion retrieval and structural reasoning capabilities. LMQL
(Beurer-Kellner, Fischer, and Vechev 2022) generalizes pure
text prompting in LMs to incorporate scripting. In the do-
main of computer vision (CV), neuro-symbolic visual rea-
soning frameworks such as VISPROG (Gupta and Kembhavi
2022) compose diverse vision models with LMs and image
processing subroutines. Despite these advances, program-
mers lack a general solution that systematically incorporates
these methods into a single unified framework.

In this paper, we propose VIEIRA, a declarative frame-
work for programming with foundation models. VIEIRA fol-
lows a (probabilistic) relational paradigm due to its theoret-
ical and practical versatility. Structured data is commonly
stored in relational databases. Relations can also represent
structures such as scene graphs in vision and abstract syntax
trees in natural and formal languages. Moreover, extensions
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for probabilistic and differentiable reasoning enable the in-
tegration of relational programming with deep learning in
neuro-symbolic frameworks like DeepProbLog (Manhaeve
et al. 2018) and SCALLOP (Li, Huang, and Naik 2023).

In VIEIRA, relations form the abstraction layer for inter-
acting with foundation models. Our key insight is that foun-
dation models are stateless functions with relational inputs
and outputs. Fig. 1a shows a VIEIRA program which in-
vokes GPT to extract the height of mountains whose names
are specified in a structured table. Likewise, the program
in Fig. 1b uses the image-text alignment model CLIP to
classify images into discrete labels such as cat and dog.
Fig. 1c shows relational input-output examples for the two
programs. Notice that the CLIP model also outputs proba-
bilities that allow for probabilistic reasoning.

We implement VIEIRA by extending the SCALLOP com-
piler with a foreign interface that supports foundation mod-
els as plugins. We implement a customizable and extensi-
ble plugin library comprising 12 foundation models includ-
ing GPT, CLIP, and SAM. The resulting unified interface
enables a wide spectrum of applications with benefits such
as reduced hallucination, retrieval augmentation, and multi-
modal compositionality. We evaluate VIEIRA on 9 applica-
tions that span natural language reasoning, information re-
trieval, visual question answering, image generation, and
image editing. For these applications, we explore diverse
methods for programming with foundation models, such as
neuro-symbolic reasoning, combining semantic searching
with question answering, and modularly composing founda-
tion models. We not only observe on-par or superior perfor-
mance of our solutions compared to competitive baselines,
but also demonstrate their succinctness and ease-of-use.

We summarize our contributions as follows: (1) we in-
troduce a new approach based on relational programming
to build applications on top of foundation models; (2) we
implement an extensible plugin library of 12 programmable
foundation models; and (3) we evaluate VIEIRA on 9
benchmark tasks, and demonstrate comparable or better no-
training accuracy than neural-only as well as task-specific
baselines. Our framework, plugin library, and evaluations
are open-source and available at https://github.com/scallop-
lang/scallop.

Related Work
Neuro-symbolic methods. These methods combine the
complementary benefits of neural learning and symbolic rea-
soning. They include domain-specific solutions (Yi et al.
2018; Mao et al. 2019; Li et al. 2020; Wang et al. 2019;
Xu et al. 2022; Chen et al. 2020; Minervini et al. 2020)
as well as general programming frameworks, such as Deep-
ProbLog (Manhaeve et al. 2018) and SCALLOP (Li, Huang,
and Naik 2023). These methods typically concern training
or fine-tuning neural models in the presence of logical pro-
grams, whereas we target building applications atop foun-
dation models with zero-shot or few-shot examples. An-
other recent work, the STAR framework (Rajasekharan et al.
2023) also connects a language model (neural) to an an-
swer set programming reasoner (symbolic). It is conceptu-

ally similar to VIEIRA but only focuses on natural language
understanding and does not support probabilistic reasoning.

Foundation models. These models target different modal-
ities and domains (Touvron et al. 2023; OpenAI 2023; Rad-
ford et al. 2021; Kirillov et al. 2023; Radford et al. 2021).
Their reasoning capabilities continue to improve with larger
context sizes (Ratner et al. 2023), smarter data selection
(Adadi 2021), and the discovery of new prompting meth-
ods, such as chain-of-thought (Wei et al. 2023; Kojima et al.
2022), self-consistency (Wang et al. 2023), and ReAct (Yao
et al. 2023). VIEIRA is orthogonal to these techniques and
stands to further enhance the robustness and reliability of
foundation models in end-to-end AI applications.

Tools aiding language models. There are many efforts
that seek to improve the reasoning abilities of language
models (LMs) by incorporating external programs and
tools (Gao et al. 2023; Schick et al. 2023; Nakano et al.
2021; Davis and Aaronson 2023). For instance, AutoGPT
(Richards 2023) and TaskMatrix.AI (Liang et al. 2023) al-
lows black-box LMs to control symbolic reasoning by in-
voking commands or calling APIs. On the other hand, many
works attempt to extract structured information from LMs
for downstream tasks (Gupta and Kembhavi 2022; Beurer-
Kellner, Fischer, and Vechev 2022). VIEIRA unifies these
two strategies for augmenting model capabilities, and ex-
tends them into a glue language for composing multi-modal
foundation models.

Language
VIEIRA employs a declarative logic programming language
based on Datalog (Abiteboul, Hull, and Vianu 1994). In this
section, we present the core language and its foreign inter-
face for incorporating diverse foundation models.

Core Language
Relations and data types. The fundamental data type
in VIEIRA is set-valued relations comprising tuples of
statically-typed primitive values. Besides the standard prim-
itive types such as integers (e.g. i32) and string (String),
VIEIRA introduces two additional types for seamless inte-
gration of foundation models: Tensor and Algebraic Data
Types (ADTs). For example, we can declare a relation named
image to store tuples of image IDs and image Tensors:
type image(img_id: i32, img: Tensor)

The contents of this relation can be specified via a set of
tuples using the built-in foreign function $load_image:

rel image = {(0, $load_image("cat.png")), ...}

ADTs in VIEIRA enable the specification of domain spe-
cific languages (DSLs) to bridge structured and unstructured
data. For example, the following DSL for visual question an-
swering (VQA) describes queries to retrieve scene objects,
count objects, and check the existence of objects:

type Query = Scene() | Filter(Query, String)
| Count(Query) | Exists(Query) | ...

// How many balls are there?
const MY_QUERY = Count(Filter(Scene(), "ball"))
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Logical reasoning. Being based on Datalog, VIEIRA sup-
ports defining Horn rules, thereby allowing logical reason-
ing constructs such as conjunction, disjunction, recursion,
stratified negation, and aggregation. Recursion is particu-
larly useful for inductively defining the semantics of a DSL.
For example, a (partial) semantics for the above DSL is de-
fined as follows, where eval_o and eval_n are recursively
defined to evaluate objects and numbers, respectively:
// Scene returns all objects
rel eval_o(e, o) = case e is Scene() and obj(o)
// Filter applies filter using attributes
rel eval_o(e, o) = case e is Filter(f, a)

and eval_o(f, o) and attr(o, a)
// Count returns the number of evaluated objects
rel eval_n(e, n) = n := count(o: eval_o(e1, o)

where e1: case e is Count(e1))
... // other cases of ‘e’

Note that the case-is operator matches patterns of the ADT
and the count aggregator counts the number of entities.
When combined with foundation models, principled reason-
ing semantics in this style can compensate for individual
foundation models’ lack of reasoning capability.

Probabilistic soft logic. Tuples can be tagged with proba-
bilities. The example below shows hard-coded probabilities,
suggesting that the entity is more likely a dog than a cat:
rel animal = {0.1::(1,"cat"), 0.9::(1,"dog")}

Soft-logic operations produce probabilities as well. For in-
stance, the soft-eq operator (=̃) on Tensors derives cosine-
similarity between tensors, enabling features like soft-join
and applications like semantic search. In the following ex-
ample, we compute similarity scores between distinct docu-
ments by performing soft-join on their embeddings:
type doc(id: i32, embed: Tensor) // embed docs
rel sim(i, j) = doc(i, v) and doc(j, v) and i!=j
// equiv: sim(i, j) = doc(i, v1) and doc(j, v2)

and i!=j and v1~=v2

Notice that in the above rule, a join on a tensor value v is de-
sugared into a soft-eq on two individual variables (denoted
v1 and v2). Internally, with the provenance framework pro-
vided by SCALLOP (Li, Huang, and Naik 2023), we use the
top-k-proofs semiring (Huang et al. 2021) for scalable prob-
abilistic reasoning, thus enabling features such as ranking
and uncertainty estimation.

Foreign Interface
In order to incorporate foundation models, we design a
foreign interface with two main programming constructs,
called foreign predicate and foreign attribute. They can be
defined externally in languages like Python and imported
into VIEIRA for application.

Foreign Predicate (FP). Foreign predicates can be used in
rules just like other relations. However, instead of grounding
relational facts from a table, FPs ground facts by invoking
external functions. The syntax for defining FPs is as follows:

extern type PRED([bound|free]? ARG: TYPE, ...)

In addition to the type, each argument is specified either as
a bounded argument (using the keyword bound) or a free

@foreign_attribute
def clip(pred: Predicate, labels: List[str]):
# Sanity checks for predicate and labels...
assert pred.args[0].ty == Tensor and ...

@foreign_predicate(name=pred.name)
def run_clip(img: Tensor) -> Facts[str]:

# Invoke CLIP to classify image into labels
probs = clip_model(img, labels)
# Each result is tagged by a probability
for (prob, label) in zip(probs, labels):
yield (prob, (label,)) # prob::(label,)

return run_clip

Figure 2: Snippet of Python implementation of the foreign
attribute clip which uses the CLIP model for image classi-
fication. Notice that the FA clip returns the FP run_clip.

argument (using free or omitted for brevity). Semantically,
FPs are functions that take in a tuple of bounded arguments
and return a list of tuples of free arguments. The runtime
of VIEIRA performs memoization on FP results to avoid re-
dundant computation. Optionally, FPs can tag a probability
to each returned tuple for further probabilistic reasoning.

Foreign Attribute (FA). In VIEIRA, attributes can be used
to decorate declarations of predicates. They are higher-order
functions that take in the provided arguments and the dec-
orated predicate to return a new predicate. The syntax for
using an attribute to decorate a predicate is:
@ATTR(POS_ARG, ..., KEY=KW_ARG, ...)
type PRED([bound|free]? ARG: TYPE, ...)

The attribute is applied prior to the compilation of VIEIRA
programs. For interfacing with foundation models, the po-
sitional and keyword arguments are particularly helpful in
configuring the underlying model, hiding low-level details.
Fig. 2 illustrates one succinct implementation of the FA that
enables the use of the CLIP model shown in Fig. 1b.

Foundation Models
VIEIRA provides an extensible plugin framework that adapts
to the evolving landscape of foundation models. In this
work, we have implemented 7 plugins, covering 12 foun-
dation models, all through the foreign interface. Our design
principle for the interface is three-fold: simplicity, config-
urability, and compositionality. In this section, we present
several representative predicates and attributes which sub-
stantially support the applicability of VIEIRA to diverse ma-
chine learning tasks.

Text completion. In VIEIRA, language models like GPT
(OpenAI 2023) and LLaMA (Touvron et al. 2023) can be
used as basic foreign predicates for text completion:
extern type gpt(bound p: String, a: String)
rel ans(a) = gpt("population of NY is", a)

In this case, gpt is an arity-2 FP that takes in a String
as the prompt and produces a String as the response. It
uses the model gpt-3.5-turbo by default. To make the
interface more relational and structural, we provide an FA:
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@gpt("the population of {{loc}} is {{num}}",
examples=[("NY", 8468000), ...])

type population(bound loc: String, num: u32)

Here, we declare a relation named population which pro-
duces a population number (num) given a location (loc) as
input. Notice that structured few-shot examples are provided
through the argument examples.

Semantic parsing. One can directly configure language
models to perform semantic parsing. For instance, the se-
mantic parser for the simple Query DSL (partially defined
in the Language section) can be declared as follows:
@gpt_semantic_parse(

"Please semantically parse questions...",
examples=[("How many red things are there?",

"Count(Filter(Scene(), ’red’))"), ...])
type parse_query(bound x: String, y: Query)

Internally, the language model is expected to generate a fully
structured Query in its string form. Then, VIEIRA attempts
to parse the string to construct actual ADT values. In prac-
tice, the success of semantic parsing depends heavily on
the design of the DSL, involving factors like intuitiveness
(e.g., names and arguments of ADT variants) and complex-
ity (e.g., number of possible ADT variants).

Relational data extraction. Structural relational knowl-
edge available in free-form textual data can be extracted
by language models. We introduce a foreign attribute
@gpt_extract_relation for this purpose. For instance,
the following declared predicate takes in a context and pro-
duces (subject, object, relation) triplets:
@gpt_extract_relation(

"Extract the implied kinship relations",
examples=[("Alice and her son Bob went to...",

[("alice", "bob", "son"), ...])])
type extract_kinship(bound ctx: String,

sub: String, obj: String, rela: String)

This attribute differs from the text completion attribute in
that it can extract an arbitrary number of facts. The under-
lying implementation prompts LMs to respond with JSON-
formatted strings, allowing structured facts to be parsed.

Language models for textual embedding. Textual em-
beddings are useful in performing tasks such as information
retrieval. The following example declares an FP encapsulat-
ing a cross-encoder (Nogueira and Cho 2019):
@cross_encoder("nli-deberta-v3-xsmall")
type enc(bound input: String, embed: Tensor)
rel sim() = enc("cat", e) and enc("neko", e)

In the last line, we compute the cosine-similarity of the en-
coded embeddings using a soft-join on the variable e. As
a result, we obtain a probabilistic fact like 0.9::sim()
whose probability encodes the cosine-similarity between the
textual embeddings of "cat" and "neko".

Image classification models. Image-text alignment mod-
els, such as CLIP (Radford et al. 2021), can naturally be
used as zero-shot image classification models. Fig. 1b shows
an example usage of the @clip attribute. We also note that
dynamically-generated classification labels can be provided
to CLIP via a bounded argument in the predicate.

Image segmentation models. OWL-ViT (Minderer et al.
2022), Segment Anything Model (SAM) (Kirillov et al.
2023), and DSFD (Li et al. 2018) are included in VIEIRA as
image segmentation (IS) and object localization (LOC)
models. IS and LOC models can provide many outputs, such
as bounding boxes, classified labels, masks, and cropped im-
ages. For instance, the OWL-ViT model can be used and
configured as follows:
@owl_vit(["human face", "rocket"])
type find_obj(bound img: Tensor,
id: u32, label: String, cropped_image: Tensor)

Here, the find_obj predicate takes in an image, and finds
image segments containing “human face” or “rocket”. Ac-
cording to the names of the arguments, the model extracts
3 values per segment: ID, label, and cropped image. Note
that each produced fact will be associated with a probability,
representing the confidence from the model.

Image generation models. Visual generative models such
as Stable Diffusion (Rombach et al. 2022) and DALL-
E (Ramesh et al. 2021) can be regarded as relations as
well. The following example shows the declaration of
the gen_image predicate, which encapsulates a diffusion
model:
@stable_diffusion("stable-diffusion-v1-4")
type gen_image(bound txt: String, img: Tensor)

As can be seen from the signature, it takes in a String text
as input and produces a Tensor image as output. Optional
arguments such as the desired image resolution and the num-
ber of inference steps can be supplied to dictate the granu-
larity of the generated image.

Tasks and Solutions
We apply VIEIRA to solve 9 benchmark tasks depicted in
Fig. 3. Table 1 summarizes the datasets, evaluation metrics,
and the foundation models used in our solutions. We elabo-
rate upon the evaluation settings and our solutions below.

Date reasoning (DR). In this task adapted from BIG-
bench (Srivastava et al. 2023), the model is given a context
and asked to compute a date. The questions test the model’s
temporal and numerical reasoning skills, as well as its grasp
of common knowledge. Unlike BIG-bench where multiple-
choice answers are given, we require the model to directly
produce its answer in MM/DD/YYYY form.

Our solution leverages GPT-4 (5-shot1) for extracting 3
relations: mentioned dates, duration between date labels, and
the target date label. From here, our relational program iter-
ates through durations to compute dates for all date labels.
Lastly, the date of the target label is returned as the output.

Tracking shuffled objects (TSO). In this task from BIG-
bench, a textual description of pairwise object swaps among
people is given, and the model needs to track and derive
which object is in a specified person’s possession at the end.

1In this work, k in “k-shot” means the number of examples pro-
vided to the LM component within the full solution. Each example
is a ground-truth input-output pair for the LM.
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Image Generation and Editing

A bowl full of apples Replace the bowl with
other containers

Replace the apple with
other fruits

A plate full of apples A plate full of oranges

Input
Prompts

Output
Images

Date Reasoning

May 6, 1992 is like yesterday to Jane, but that is
actually ten years ago. What is the date one week
from today in MM/DD/YYYY?

05/13/2002

Question:

Answer:

Tracking Shuffled Objects 

Alice has an orange ball, Bob has a white ball, and
Claire has a blue ball. Alice and Bob swap balls.
Then, Bob and Claire swap balls. Alice has the __.

white ball

Question:

Answer:

Kinship Reasoning 

Rich's daughter Kelly made dinner for her sister
Kim. Dorothy went to her brother Rich's birthday
party. Anne went shopping with her sister Kim. How
is Dorothy related to Anne?

niece

Question:

Answer:

QA

Compositional VQA

Product Search 

Math Reasoning

Image Editing

Documents: Products:

Tag "microsoft ceos.jpg"Instruction:

Answer:

Which team does the player named 2015 Diamond
Head Classic’s MVP play for?

Question:

Sacramento Kings

lawnmower tires without rimsQuery:
Product Ranking: 1st: #2, 2nd: #6, 3rd: #4, ...

Question:
Alice is required to submit a 15-page paper. She finished
writing 1/3 of the paper. How many pages are left to write?

Answer: 10

                       Hide Walter Thurnherr
with smiling_face_with_halo and Alain
Berset with crying_cat.

Is the tray on top of the table
black or light brown?

How many objects are
red in this image?

Obj Tagging

Question:

light brown
Answer:

Question:

Answer:
3

GPT

LostAlone
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British rock
band ...

The 2015
Diamond

Head
Classic was

...

Steven
Battelle,

Alan
Williamson,

and ...
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rock band

....
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Adam
Gardner,

Ryan
Miller,...

Chavano
Rainier Buddy

Hield is a
Bahamian ...

Brian
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Several
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the  ...

David Gene
Parker,

nicknamed
”The Cobra” ...

An American
former player

in Major
League

Baseball...

...

Input Image Edited Image
Instruction:

1

GPT

GPT

GPT GPT-Enc GPT Cross-Enc

GPT

GPT ViLT OWL-ViT CLIP

RamPro 10"
All Purpose

Utility Air
Tires/Wheel

2 3 4 5
(Set of 2)
15x6.00-6
Husqvarna

/Poulan Tire ...

MaxAuto 2-
Pack

13x5.00-6
2PLY Turf

NEIKO
20601A 14.5
inch  Steel

Tire Spoon ...

2PK
13x5.00-6
13x5.00x6

13x5x6
13x5-6 ...

BIG-bench

BIG-bench

CLUTRR

HotpotQA Amazon ESCI

GSM8K

GQA CLEVR

VQAR

Input Image Tagged Image

IGP20OFCP GPT CLIP DSFDOFCP GPT CLIP DSFD GPT Stable-Diffusion

Figure 3: Benchmark tasks. The top of each box lists the dataset(s) and the foundation models used in our solutions.

There are three difficulty levels depending on the number of
objects to track, denoted by n ∈ {3, 5, 7}.

Our solution for tracking shuffled objects relies on GPT-4
(1-shot) to extract 3 relations: initial possessions, swaps, and
the target person whose final possessed object is expected
as the answer. Our reasoning program iterates through all
the swaps starting from the initial state and retrieves the last
possessed object associated with the target.

Kinship reasoning (KR). CLUTRR (Sinha et al. 2019) is
a kinship reasoning dataset of stories which indicate the kin-
ship between characters, and requires the model to infer the
relationship between two specified characters. The questions
have different difficulty levels based on the length of the rea-
soning chain, denoted by k ∈ {2 . . . 10}.

Our solution for kinship reasoning invokes GPT-4 (2-
shot) to extract the kinship graph from the context. We also
provide an external common-sense knowledge base for rules
like “mother’s mother is grandmother”. Our program then
uses the rules to derive other kinship relations. Lastly, we
retrieve the kinship between the specified pair of people.

Math reasoning (MR). This task is drawn from the
GSM8K dataset of arithmetic word problems (Cobbe et al.
2021). The questions involve grade school math word prob-
lems created by human problem writers, and the model is
asked to produce a number as the result. Since the output
can be fractional, we allow a small delta when comparing

the derived result with the ground truth.
Our solution to this task prompts GPT-4 (2-shot) to pro-

duce step-by-step expressions, which can contain constants,
variables, and simple arithmetic operations. We evaluate all
the expressions through a DSL, and the result associated
with the goal variable is returned. By focusing the LM’s re-
sponsibility solely on semantic parsing, our relational pro-
gram can then achieve faithful numerical computation via
DSL evaluation.

Question answering with information retrieval (QA).
We choose HotpotQA (Yang et al. 2018), a Wikipedia-based
question answering (QA) dataset under the “distractor” set-
ting. Here, the model takes in 2 parts of inputs: 1) a question,
and 2) 10 Wikipedia paragraphs as the context for answering
the question. Among the 10 Wikipedia pages, at most 2 are
relevant to the answer, while the others are distractors.

Our solution is an adaptation of FE2H (Li, Lei, and Yang
2022), which is a 2-stage procedure. First, we turn the 10
documents into a vector database by embedding each docu-
ment. We then use the embedding of the question to retrieve
the 2 most related documents, which are then fed to a lan-
guage model to do QA. In this case, the QA model does not
have to process all 10 documents, leading to less distraction.

Product search (PS). We use Amazon’s ESCI Product
Search dataset (Reddy et al. 2022). The model is provided
with a natural language (NL) query and a list of products (23
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Task Dataset #Test
Samples Metric Foundation

Models Used

DR DR 369 EM GPT-4
TSO TSO 150 EM GPT-4
KR CLUTRR 1146 EM GPT-4
MR GSM8K 1319 EM GPT-4

QA Hotpot QA 1000 EM GPT-4
ada-002

PS Amazon
ESCI 1000 nDCG GPT-4

ada-002

VQA
CLEVR 480 Recall@1

Recall@3

GPT-4
OWL-ViT

GQA 500 VilT
CLIP

VOT
VQAR 100

MI

OWL-ViT
VilT

GPT-4

OFCP 50 DSFD
CLIP

IGE
OFCP 50

MI

DFSD
CLIP

IGP20 20 GPT-4
Diffusion

Table 1: Characteristics of benchmark tasks including the
dataset used, its size, and evaluation metrics. Metrics include
exact match (EM), normalized discounted cumulative gain
(nDCG), and manual inspection (MI). We also denote the
foundation models used in our solution for each task.

products on average). The goal is to rank the products that
best match the query. In the dataset, for each pair of query
and product, a label among E (exact match), S (substitute),
C (complementary), and I (irrelevant) is provided. The met-
ric we use to evaluate the performance is nDCG. The gains
are set to be 1.0 for E, 0.1 for S, 0.01 for C, and 0.0 for I .

One challenge of this dataset is that many queries contain
negative statements. For example, in the query “#1 treadmill
without remote”, the “remote” is undesirable. Therefore, in-
stead of computing the embedding of the full query, we de-
compose the query into positive and negative parts. We then
perform semantic search by maximizing the similarity of the
positive part while minimizing that of the negative part.

Compositional visual question answering (VQA). We
choose two compositional VQA datasets, GQA (Hudson
and Manning 2019) and CLEVR (Johnson et al. 2016).
In this task, the model is given an image and a question,
and needs to answer the question. For GQA, the majority
of questions expect yes/no answers, while CLEVR’s ques-
tions demand features like counting and spatial reasoning.
We uniformly sample 500 and 480 examples from GQA
and CLEVR datasets respectively. Following VQA conven-
tions (Kim, Son, and Kim 2021), we use Recall@k where
k ∈ {1, 3} as the evaluation metrics.

Our solution for GQA is an adaptation of VISPROG
(Gupta and Kembhavi 2022). We create a DSL for invok-
ing vision modules such as ViLT and OWL-ViT, and use
GPT-4 for converting questions into programs in this DSL.

Our solution for CLEVR is similar, directly replicating the
DSL provided by the original work. OWL-ViT and CLIP are
used to detect objects and infer attributes, while the spatial
relations are directly computed using the bounding box data.

Visual object tagging (VOT). We evaluate on two
datasets, VQAR (Huang et al. 2021) and OFCP. For VQAR,
the model is given an image and a programmatic query, and
is asked to produce bounding boxes of the queried objects
in the image. Our solution composes a relational knowledge
base, defining entity names and relationships, with object re-
trieval (OWL-ViT) and visual QA (ViLT) models.

Online Faces of Celebrities and Politicians (OFCP) is a
self-curated dataset of images from Wikimedia Commons
among other sources. For this dataset, the model is given
an image with a descriptive NL filename, and needs to de-
tect faces relevant to the description and tag them with their
names. Our solution obtains a set of possible names from
GPT-4 and candidate faces from DSFD. These are provided
to CLIP for object classification, after which probabilistic
reasoning filters the most relevant face-name pairs.

Language-guided image generation and editing (IGE).
We adopt the task of image editing from (Gupta and Kem-
bhavi 2022). In this task, the instruction for image editing
is provided through NL, and can invoke operations such as
blurring background, popping color, and overlaying emojis.
Due to the absence of an existing dataset, we repurpose the
OFCP dataset by introducing 50 NL image editing prompts.
Our solution for this task is centered around a DSL for image
editing. We incorporate GPT-4 for semantic parsing, DSFD
for face detection, and CLIP for entity classification. Mod-
ules for image editing operations are implemented as indi-
vidual foreign functions.

For free-form generation and editing of images, we cu-
rate IGP20, a set of 20 prompts for image generation and
editing. Instead of using the full prompt, we employ an LM
to decompose complex NL instructions into simpler steps.
We define a DSL with high-level operators such as generate,
reweight, refine, replace, and negate. We use a combination
of GPT-4, Prompt-to-Prompt (Hertz et al. 2022), and diffu-
sion model (Rombach et al. 2022) to implement the seman-
tics of our DSL. We highlight our capability of grounding
positive terms from negative phrases, which enables han-
dling prompts like “replace apple with other fruits” (Fig. 3).

Experiments and Analysis
We aim to answer the following research questions:

RQ1. Is VIEIRA programmable enough to be applicable to
a diverse range of applications with minimal effort?

RQ2. How do solutions using VIEIRA compare to other
baseline methods in the no-training setting?

RQ1: Programmability
While a user study for VIEIRA’s programmability is out of
scope in this paper, we qualitatively evaluate its programma-
bility on three aspects. First, we summarize the lines-of-code
(LoC) for each of our solutions in Table 2. The programs
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Dataset LoC Prompt
LoC Dataset LoC Prompt

LoC

DR 69 48 CLEVR 178 45
TSO 34 16 GQA 82 36

CLUTRR 61 45 VQAR 53 11
GSM8K 47 28 OFCP (VOT) 33 2
HotpotQA 47 24 OFCP (IGE) 117 44

ESCI 32 7 IGP20 50 12

Table 2: The lines-of-code (LoC) numbers of our solutions
for each dataset. The LoC includes empty lines, comments,
natural language prompts, and DSL definitions. We note
specifically the LoC of prompts in the table.

Method DR TSO CLUTRR GSM8K

GPT-4 71.00
(0-shot)

30.00
(0-shot)

43.10
(3-shot)

87.10
(0-shot)

GPT-4 (CoT) 87.26
(0-shot)

84.00
(0-shot)

24.17
(3-shot)

92.00
(5-shot)

Ours 92.41 100.00 72.50 90.60

Table 3: The performance on the natural language reasoning
datasets. Numbers are in percentage (%).

HotpotQA Amazon ESCI

Method Fine-tuned EM Method Fine-tuned nDCG

C2FM ✓ 72.07% BERT ✓ 0.830
FE2H ✓ 71.89% CE-MPNet ✓ 0.857

— — — MIPS ✗ 0.797

Ours ✗ 67.3% Ours ✗ 0.798

Table 4: The performance on the HotpotQA and Amazon
ESCI. We also include performance numbers from methods
which are fine-tuned on the corresponding dataset.

are concise, as most are under 100 lines. Notably, natural
language prompts (including few-shot examples) take up a
significant portion of each solution. Secondly, 8 out of 10
solutions are coded by undergraduate students with no back-
ground in logic and relational programming, providing fur-
ther evidence of VIEIRA’s user-friendliness. Last but not
least, our solutions are interpretable and thus offer debug-
gability. Specifically, all the intermediate relations are avail-
able for inspection, allowing systematic error analysis.

RQ2: Baselines and Comparisons
We compare the performance of our solutions to existing
baselines under the no-training setting. In particular, our so-
lutions achieve better performance than comparable base-
lines on 6 out of 8 studied datasets with baselines. Below,
we classify the tasks into 4 categories and discuss the re-
spective performance and comparisons.

Natural language reasoning. For the tasks of DR, TSO,
CLUTRR, and GSM8K, we pick a generic baseline of GPT-

DR (Date Reasoning)

Today's meeting is rescheduled to 11 am tomorrow, 10/16/1924.
What is the date one year ago from today in MM/DD/YYYY?

Question

VIEIRA
Extracted
Relations

VIEIRA
Answer 10/15/1923

GPT-4
Response

GPT-4
Answer

Let's think step by step. First, we need to subtract one year from
the given date, 10/16/1924. When we do this, we get 10/16/1923.

10/16/1923

CLUTRR (Kinship Reasoning)
Myrna and her husband Christopher went on a cruise. They had
a wonderful time. Christopher and his daughter Lucille took a
day off school to go to the zoo. Who is Lucille to Myrna? 

Context &
Question

VIEIRA
Extracted
Relations

VIEIRA
Answer daughter

GPT-4
Response

GPT-4
Answer

Lucille is Myrna's stepdaughter. In the given scenario,
Christopher is Myrna's husband, and Christopher is also the
father of Lucille. This makes Lucille the daughter of Myrna's
husband, which means she is Myrna's stepdaughter.

stepdaughter

GSM8K (Math Reasoning)
It takes 3 kangaroos traveling at the same speed a total of 18
hours to travel across a highway. How many hours will it take 4
turtles,  each traveling at half the speed of a kangaroo, to do so?

Question

VIEIRA
Extracted
Relations

VIEIRA
Answer 48

GPT-4
Response

GPT-4
Answer

Let's think step by step. First, we know that the total time it takes for 3 kangaroos
to travel across the highway is 18 hours. This means that one kangaroo takes 18
hours to travel across the highway. Then, we know that a turtle travels at half the
speed of a kangaroo, which means it takes twice as long for a turtle to travel the
same distance. So, one turtle would take 18 hours * 2 = 36 hours to travel across
the highway. However, we have four turtles traveling together at the same speed,
so they would still take 36 hours to travel across the highway, because they are
traveling simultaneously.

36

Figure 4: Illustrative comparisons between our solution and
GPT-4 (zero-shot CoT) on selected questions from DR,
CLUTRR, and GSM8K datasets. We also include the ex-
tracted relations used for subsequent reasoning.

4 under zero-shot, few-shot, and chain-of-thought (CoT) set-
tings. All our solutions also rely on GPT-4 (few-shot), but
we note that our shots only include extracted facts, and not
the final answer or any reasoning chains. The data in Ta-
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Figure 5: Systematic generalizability comparisons on the
CLUTRR and TSO datasets.

Method GQA CLEVR

Recall@1 Recall@3 Recall@1 Recall@3

ViLT-VQA 0.049 0.462 0.241 0.523
PNP-VQA 0.419 — — —

Ours 0.579 0.665 0.463 0.638

Table 5: Quantitative results on the VQA datasets.

ble 3 indicates that our method can significantly enhance
reasoning performance and reduce hallucination, exempli-
fied by achieving a flawless 100% accuracy on the TSO
dataset. Note that on GSM8K, our method scores slightly
lower than the baseline; we conjecture that our solution de-
mands more from GPT-4 itself to extract structured compu-
tation steps. On CLUTRR, our solution even outperforms
fCoT (Lyu et al. 2023), a special prompting technique with
external tool use, by 0.6%. In Fig. 5 we illustrate the system-
atic generalizability of our methods. The performance of our
solutions remains relatively consistent even when the prob-
lems become harder. We provide illlustrative examples in
Fig. 4 showing comparisons between our method and GPT-
4 (zero-shot CoT).

Retrieval augmentation and semantic search. For the
HotpotQA dataset, our solution is an adaptation of FE2H
(Li, Lei, and Yang 2022), a retrieval-augmented question an-
swering approach. As seen in Table 4, with no fine-tuning,
our method scores only a few percentages lower than fine-
tuned methods C2FM (Yin et al. 2022) and FE2H. For
the Amazon ESCI dataset, our solution performs seman-
tic search for product ranking. While performing slightly
lower than the fine-tuned methods (Reddy et al. 2022; Song
et al. 2020), our solution outperforms maximum inner prod-
uct search (MIPS) based on GPT text encoder (text-
embedding-ada-002).

Compositional multi-modal reasoning. For VQA, we
pick ViLT-VQA (Kim, Son, and Kim 2021), a pre-trained
foundation model ViLT-VQA, and PNP-VQA (Tiong et al.
2022), a zero-shot VQA method as baselines. As shown in
Table 5, our method significantly outperforms the baseline
model on both datasets. Compared to the neural-only base-
line, our approach that combines DSL and logical reasoning
more effectively handles intricate logical operations such as
counting and numerical comparisons. On GQA, out method

Ours InstructPix2PixOriginal

Instruction: Replace the bowl with something
else, and change the apples to other fruits.

Figure 6: Qualitative comparison of image editing. Com-
pared to InstructPix2Pix, our image editing method follows
the instructed edits better, as it successfully changed the
bowl into plate and apples to oranges.

Method Visual Object Tagging Image Editing

VQAR OFCP OFCP

Ours 67.61% 60.82% 74.00%

Table 6: Quantitative results on object tagging and image
editing tasks. We manually evaluate the tagged entities and
the edited images for semantic correctness rates.

outperforms previous zero-shot state-of-the-art, PNP-VQA,
by 0.16 (0.42 to 0.58). For object and face tagging, with-
out training or fine-tuning, our method achieves 67.61% and
60.82% semantic correctness rates (Table 6).

Image generation and editing. For image generation and
editing, we apply our technique to the OFCP and IGP20
datasets. We rely on manual inspection for evaluating our
performance on the OFCP dataset, and we observe 37 cor-
rectly edited images out of the 50 evaluated ones, resulting
in a 74% semantic correctness rate (Table 6). For IGP20, we
choose as the baseline a diffusion model, InstructPix2Pix
(Brooks, Holynski, and Efros 2023), which also combines
GPT-3 with image editing. We show one example baseline
comparison illustrated in Figure 6.

Conclusion
We introduced VIEIRA, a declarative framework designed
for relational programming with foundation models. VIEIRA
brings together foundation models from diverse domains,
providing a unified interface for composition and the abil-
ity to perform probabilistic logical reasoning. This results in
solutions with comparable and often superior performance
than neural-based baselines. In the future, we aim to extend
the capabilities of VIEIRA beyond the current in-context
learning settings to weakly-supervised training and fine-
tuning of foundation models in an end-to-end manner.
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