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Abstract

3D single object tracking remains a challenging problem due
to the sparsity and incompleteness of the point clouds. Ex-
isting algorithms attempt to address the challenges in two
strategies. The first strategy is to learn dense geometric fea-
tures based on the captured sparse point cloud. Nevertheless,
it is quite a formidable task since the learned dense geometric
features are with high uncertainty for depicting the shape of
the target object. The other strategy is to aggregate the sparse
geometric features of multiple templates to enrich the shape
information, which is a routine solution in 2D tracking. How-
ever, aggregating the coarse shape representations can hardly
yield a precise shape representation. Different from 2D pix-
els, 3D points of different frames can be directly fused by co-
ordinate transform, i.e., shape completion. Considering that,
we propose to construct a synthetic target representation com-
posed of dense and complete point clouds depicting the target
shape precisely by shape completion for robust 3D tracking.
Specifically, we design a voxelized 3D tracking framework
with shape completion, in which we propose a quality-aware
shape completion mechanism to alleviate the adverse effect
of noisy historical predictions. It enables us to effectively
construct and leverage the synthetic target representation. Be-
sides, we also develop a voxelized relation modeling module
and box refinement module to improve tracking performance.
Favorable performance against state-of-the-art algorithms on
three benchmarks demonstrates the effectiveness and gener-
alization ability of our method.

Introduction
3D object tracking in LiDAR point clouds aims to predict the
target position and orientation in subsequent frames, given
the initial state of the target object. Existing 3D trackers (Gi-
ancola, Zarzar, and Ghanem 2019; Qi et al. 2020; Hui et al.
2022; Shan et al. 2021; Zhou et al. 2022) predominantly fol-
low the Siamese tracking paradigm (Bertinetto et al. 2016;
Zhou et al. 2021), which has achieved astonishing success in
2D tracking. The pioneering study SC3D (Giancola, Zarzar,
and Ghanem 2019) calculates the feature similarities be-
tween the template and randomly sampled candidates to
track the target. After that, many advanced techniques are
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Figure 1: Different methods for addressing the challenges of
sparsity and incompleteness. (a) Learning dense geometric
features based on sparse points, which is a formidable task
as the learned dense geometric features are with high uncer-
tainty. (b) Aggregating the sparse geometric features of mul-
tiple templates, which is a sub-optimal solution as combin-
ing coarse shape representations can hardly obtain a precise
shape. (c) Our method, which performs shape completion
by adaptively fusing the real points of the target object from
multiple frames to depict its shape precisely.

introduced to improve 3D tracking performance, including
end-to-end tracking framework (Qi et al. 2020), transformer-
based relation modeling (Shan et al. 2021; Zhou et al. 2022),
box-aware feature fusion (Zheng et al. 2021), and contextual
information modeling (Xu et al. 2023a; Guo et al. 2022).

Despite the great progress, many existing trackers (Qi
et al. 2020; Hui et al. 2022; Xu et al. 2023a; Shan et al.
2021; Zhou et al. 2022) pay less attention to the sparsity and
incompleteness of the point clouds, which are usually caused
by limited sensor capabilities and self-occlusion. For exam-
ple, 51% of cars in the KITTI (Geiger, Lenz, and Urtasun
2012) dataset have less than 100 points. A typical challeng-
ing case is that only a few points of the template and the
current target are overlapped due to the sparsity and incom-
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pleteness, in which accurately matching the template with
the real target is quite difficult. As a result, these methods
struggle to discriminate the target in extremely sparse and
incomplete point clouds.

Several methods have been proposed to address the chal-
lenges of sparsity and incompleteness. SC3D (Giancola,
Zarzar, and Ghanem 2019) and V2B (Hui et al. 2021) adopt
a strategy of learning dense geometric features based on
sparse point clouds, as shown in Figure 1 (a). However, such
a learning task is quite formidable since the learned dense
geometric features are with high uncertainty. The trackers
take the risk of misleading by the inaccurate dense features.
TAT (Lan, Jiang, and Xie 2022) chooses to aggregate the
sparse geometric features of multiple templates to obtain
richer target shape information, which is a routine solution
in 2D tracking (Wang et al. 2021; Zhang et al. 2019), as
shown in Figure 1 (b). Although this strategy allows the
tracker to take more target points into account, aggregat-
ing the coarse shape representations extracted from sparse
points can hardly generate a precise shape representation.
Hence, this aggregation strategy is a sub-optimal solution for
addressing the challenges of sparsity and incompleteness.

Unlike the 2D image pixels, sparse 3D point clouds from
different frames can be efficiently fused through coordinate
transform to create a dense point cloud. Therefore, we pro-
pose to perform shape completion by fusing the target points
from historical frames to construct a synthetic target rep-
resentation for 3D tracking, as illustrated in Figure 1 (c).
Herein the synthetic target representation consists of dense
and complete point clouds depicting the shape of the tar-
get object precisely, enabling us to address the challenges of
sparsity and incompleteness in 3D tracking.

In light of this idea, we design a robust 3D tracking frame-
work that maintains a synthetic target representation by
shape completion and performs 3D tracking in a voxelized
manner, termed SCVTrack. The tricky part of SCVTrack is
that the synthetic target representation is sensitive to inaccu-
rate historical predictions, and a noisy synthetic target rep-
resentation can easily lead to tracking collapse. To alleviate
the adverse effect of historical prediction errors, we propose
a quality-aware shape completion module, which selectively
fuses the well-aligned source points into the synthetic target
representation. The shape completion naturally causes the
imbalance between the point clouds of the template and the
search area in terms of point density. It increases the diffi-
culty of learning to model the relation between the two sets
of point clouds. Therefore, we perform tracking based on
the voxelized features instead of the point features to elim-
inate the imbalance. Besides, the voxelized tracking frame-
work enables us to explicitly exploit the neighbor relation
between voxels and is more computationally efficient. We
also introduce a box refinement approach to further exploit
the synthetic target representation to refine the target box,
effectively improving tracking performance.

To conclude, we make the following contributions: (1) we
propose a voxelized 3D tracking framework with shape
completion to effectively leverage the real target points from
historical frames to address the challenges of sparsity and in-
completeness; (2) we design a quality-aware shape comple-

tion mechanism, taking the quality of the points into account
for shape completion to alleviate the adverse effect of his-
torical prediction errors; (3) we achieve favorable 3D track-
ing performance against state-of-the-art algorithms on three
datasets, demonstrating the effectiveness of our method.

Related Work
3D object tracking. Early 3D trackers (Asvadi et al. 2016;
Bibi, Zhang, and Ghanem 2016; Liu et al. 2018) based on
RGB-Depth image pairs are vulnerable to lighting condi-
tions that affect the RGB imaging quality. Recently, 3D
tracking based on point clouds has drawn much more at-
tention, as point clouds are robust to illumination changes.
Most existing 3D trackers (Giancola, Zarzar, and Ghanem
2019; Qi et al. 2020; Fang et al. 2020; Zhou et al. 2022; Hui
et al. 2022; Guo et al. 2022; Xu et al. 2023b) based on point
clouds follow the Siamese tracking pipeline, which formu-
lates 3D tracking as a template-candidate matching problem.
Besides the Siamese tracking pipeline, M2T (Zheng et al.
2022) recently proposes a motion-centric tracking paradigm,
which directly predicts the target motion between two con-
secutive frames and achieves promising tracking perfor-
mance. Despite the astonishing progress, the sparsity and in-
completeness of 3D point clouds still plague these trackers.

An existing typical strategy to address the sparsity and
incompleteness challenges is learning dense geometric fea-
tures based on the given sparse point clouds. SC3D (Gian-
cola, Zarzar, and Ghanem 2019) and V2B (Hui et al. 2021)
are two methods following this strategy. However, such a
learning task is quite challenging since the learned dense
geometric features are with high uncertainty. As a result,
these two methods only achieve limited tracking perfor-
mance. A recently proposed approach, TAT (Lan, Jiang, and
Xie 2022), adopts a multi-frame point feature aggregation
strategy to enrich the shape information. Although it can al-
leviate the effect of sparsity and incompleteness, it is still
a sub-optimal solution since aggregating the coarse shape
representations extracted from sparse points can hardly gen-
erate a precise shape representation. Unlike the above meth-
ods, our method directly fuses the real target points from his-
torical frames to construct a synthetic target representation
for addressing the sparsity and incompleteness challenges.
Voxel-based 3D vision. Most existing 3D trackers (Gian-
cola, Zarzar, and Ghanem 2019; Fang et al. 2020; Shan et al.
2021) follow the point-based deep learning paradigm (Li
et al. 2018; Yang et al. 2020), performing tracking using
the unordered point-based features. The voxel-based (Liu
et al. 2019; Qi et al. 2016; Zhou and Tuzel 2018; Yin, Zhou,
and Krahenbuhl 2021) learning paradigm is another popular
way to process point data, which has been widely applied
in 3D detection (Zhou and Tuzel 2018; Yan, Mao, and Li
2018; Lang et al. 2019; Yin, Zhou, and Krahenbuhl 2021).
However, it has rarely been explored in 3D tracking, except
for V2B (Hui et al. 2021) and MTM (Li et al. 2023). This
paradigm assigns the points into different voxel bins and
extracts structured voxelized features from unordered point
clouds. In this work, we resort to voxelized relation model-
ing to deal with the imbalance issue in terms of point density
due to shape completion.
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Figure 2: Overall framework of our SCVTrack, which mainly consists of a quality-aware shape completion module, a voxelized
relation modeling module, and a box refinement module. It maintains a synthetic target representation T via quality-aware
shape completion and performs 3D tracking in a voxelized manner. The red points in P̂t−1 denote those coming from T .

Method
Problem Definition
Given the initial 3D box of the target object, 3D tracking
aims to estimate the target box in each subsequent frame.
A 3D box is parameterized by its center position (xyz co-
ordinate), orientation (heading angle θ around the up-axis),
and size (width w, length l, and height h). The size of the
target object, even for non-rigid objects like pedestrians and
cyclists, remains approximately unchanged in 3D tracking.
Thus, we only predict the translation (∆x,∆y,∆z) and the
rotation angle (∆θ) of the target object between two consec-
utive frames, and then obtain the 3D box Bt at t-th frame by
transforming Bt−1 with the translation and rotation angle.

Overall Tracking Framework
Figure 2 illustrates the overall framework of our SCVTrack.
It mainly consists of the quality-aware shape completion,
voxelized relation modeling, and box refinement modules.
SCVTrack maintains a synthetic target representation T and
performs tracking with it between two consecutive frames.
Herein, the synthetic target representation is composed of
dense and complete point clouds depicting the target shape
precisely. We construct it by adaptively fusing the points be-
longing to the target from historical frames.

Suppose that the point clouds of the template and search
area from two consecutive frames are denoted as Pt−1 ∈
RNt−1×3 and Pt ∈ RNt×3, where Nt−1 and Nt are the
numbers of points. To localize the target in Pt, our SCV-
Track first completes Pt−1 with the synthetic target repre-
sentation T via quality-aware shape completion, yielding
a completed template P̂t−1 ∈ RN ′

t−1×3 with dense target
points. Note that N ′

t−1 is usually much larger than both
Nt−1 and Nt due to the shape completion. With P̂t−1 and
Pt, SCVTrack adopts a shared backbone to extract their
point features F̂t−1 ∈ RN ′

t−1×C and Ft ∈ RNt×C without
downsample, respectively, whereC is the feature dimension.
Then SCVTrack voxelizes these point features and performs
relation modeling between them to propagate the tracked tar-
get information from the template to the search area, gener-

ating the enhanced feature F̃t. An MLP regression head is
constructed on top of F̃t to predict a coarse box B̂t. SCV-
Track then performs box refinement with the guidance of T
to obtain the refined box Bt. After the tracking process, we
use the new target points in Bt to update the synthetic target
representation T via quality-aware shape completion.

Note that we opt to complete Pt−1 with T to obtain a
dense template instead of directly using T as the template.
The rationale behind this design is that the target state in
Pt−1 is most similar to that in Pt in general, and completing
Pt−1 with T can not only obtain a dense template but also
leverage all target points in Pt−1 for tracking.

Quality-Aware Shape Completion
The quality-aware shape completion module aims to adap-
tively fuse the source point cloud Psrc with the point cloud
Ptgt to be completed. For generating a dense template, T
is treated as the source point cloud, and Pt−1 is treated as
the point cloud to be completed. In turn, for updating T , Pt

is treated as the source point cloud, and T is treated as the
point cloud to be completed. Figure 3 shows the shape com-
pletion process taking the completion for generating a dense
template as an example. In the above two completion pro-
cess, the source point cloud Psrc is always obtained based
on predicted target states, which inevitably contains noisy
points. Directly using all points in Psrc for shape completion
will lead to error accumulation and even tracking collapse.
To address this issue, we propose to evaluate the quality of
the point clouds and perform selectively voxel-wise shape
completion conditioned on the quality score.
Quality evaluator. To evaluate the quality of a point cloud,
we design a quality evaluator consisting of a PointNet (Qi
et al. 2017a) backbone and a three-layer MLP, which takes
as input a point cloud and outputs a quality score. We formu-
late the quality evaluation task as a classification task. To be
specific, we train the evaluator to differentiate the dense and
well-aligned point clouds from the sparse and miss-aligned
point clouds. To generate the required training samples, we
first crop and center the points lying inside the object box
from multiple frames. Then we concatenate these points to
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Figure 3: Illustration of the quality-aware shape completion module. ⊎ denotes the concatenation operation. This module
performs selectively voxel-wise shape completion based on the output of the quality evaluator.

generate a dense and well-aligned point cloud as the positive
sample. The negative sample is obtained by adding random
position disturbance during concatenation or directly select-
ing a sparse point cloud from a certain frame. We use binary
cross-entropy to train the quality evaluator. After training,
the output logit is used as the quality score.
Voxel-wise shape completion. With the quality evaluator,
we design a voxel-wise shape completion strategy to selec-
tively complete different parts of Ptgt to alleviate the ad-
verse effect of the noisy points. To this end, we voxelize the
3D space and assign the points in Ptgt and Psrc into the
corresponding voxel bin, as shown in Figure 3. The points
of Ptgt and Psrc lying inside the i-th voxel bin are denoted
by Vi

tgt and Vi
src. Before shape completion, we first evaluate

the quality of Ptgt, obtaining its quality score Stgt as a ref-
erence. To complete the shape in the i-th voxel, we concate-
nate Vi

src with Vi
tgt, yielding a dense point cloud Vi

tmp in the
i-th voxel. We refer to the point cloud Ptgt whose i-th voxel
is replaced with Vi

tmp as Pi
tmp. Then we evaluate the qual-

ity of Pi
tmp, obtaining a quality score Si

tmp. After that, we
compare Si

tmp with Stgt to judge whether the above comple-
tion in the i-th voxel improves the quality of the point cloud
Ptgt. Only when the quality is improved, we will update the
points in the i-th voxel with Vi

tmp. The above completion
operation can be formulated as:

Vi
tmp = Vi

tgt ⊎ Vi
src;

Si
tmp = ϕquality(Pi

tmp);

Vi
cmp =

{
Vi
tmp, if Si

tmp > Stgt;
Vi
tgt, else.

(1)

Herein, ⊎ denotes the concatenation operation, ϕquality
refers to the quality evaluator, Vi

cmp denotes the points in
the i-th voxel of the final completed point cloud Pcmp. Note
that the voxel-wise shape completion can be done in a single
forward propagation, as the above completion operation for
different voxels can be performed in parallel.

Voxelized Relation Modeling
Taking as input the point features F̂t−1 and Ft, relation
modeling aims to propagate the target information from the
previous frame to the current one, generating the enhanced

feature F̃t for localizing the target. As above-mentioned, the
motivations that we opt for voxelized relation modeling lie
in eliminating the imbalance between F̂t−1 and Ft and ex-
ploiting the neighbor relation explicitly. To this end, we first
voxelize the point feature and then perform relation model-
ing between the voxelized feature, as shown in Figure 4.
Point feature voxelization. We convert the point features
F̂t−1 and Ft into the voxelized representations F̂vxl

t−1 and
Fvxl

t , respectively, by averaging the features of the points
lying inside the same voxel bin. Then we apply shared 3D
convolution layers to aggregate the shape information in
the adjacent feature voxels to enhance the voxelized fea-
ture representations. Similar to (Hui et al. 2021), we per-
form max-pooling on these voxelized features along the z-
axis to obtain the dense bird’s eye view (BEV) features
F̂bev

t−1 ∈ RH×W×C and Fbev
t ∈ RH×W×C to alleviate the

adverse effect the empty voxels.
Relation modeling. Considering that Pt−1 contains both the
target and background points, we introduce a learnable tar-
get mask Mt−1 ∈ RH×W×C to embed the target state in-
formation into F̂bev

t−1 before relation modeling. Technically,
we introduce three learnable vectors indicating the three dif-
ferent positional states of a voxel, which are lying inside the
box, outside the box, and across the box boundary. Then we
generate the mask Mt−1 according to the 2D projection box
(along the z-axis) of the 3D box Bt−1.

Inspired by recent advances (Ye et al. 2022; Zhou et al.
2023) in 2D tracking, we adopt an attention-based method
to propagate the target information from F̂bev

t−1 to Fbev
t . As

shown in Figure 2, a shared self-attention layer is first em-
ployed to model the intra-frame voxel relation. Then a cross-
attention is used to model the cross-frame voxel relation,
where the feature of the current frame is used as query and
the feature of the previous frame is used as key and value.
This process can be formulated as:

F̃t = ψca(ψsa(F̂bev
t−1 ⊕Mt−1 ⊕ E), ψsa(Fbev

t ⊕ E)), (2)

where ψsa and ψca denote the self-attention and cross-
attention, respectively. ⊕ means element-wise summation,
and E refers to the position embedding. Note that we omit
the flatten and reshape operation in Eq. 2, and this attention
architecture is repeated L times.
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Box Refinement
The box refinement module aims to refine the coarse box B̃t

with the guidance of the dense geometric information in T .
To this end, we first fuse the dense points in T into the coarse
box B̃t by coordinate transform, obtaining a new point could
P̂t depicting the target object with dense points. The offset
between the coarse box B̃t and the real target object will
affect the smoothness of P̂t. Based on this principle, we de-
ploy a PointNet backbone following an MLP on top of P̂t to
regress the above-mentioned offset to refine the target box.

End-to-end Modeling Learning
Our framework consists of two learnable parts: the qual-
ity evaluator and the remaining tracking model, which
are trained separately. The quality evaluator is end-to-end
trained as above-mentioned. The tracking model is end-to-
end trained with pairs of consecutive frames. We impose
smooth-l1 loss (Girshick 2015) on both the coarse and re-
fined boxes to supervise the learning of the tracking model.
Note that the synthetic target representation used in tracking
model learning is pre-calculated with grounding truth.

Experiments
Experimental Setup
Implementation details. We use a modified PointNet++ (Qi
et al. 2017b) as our backbone, which is tailored to contain
three set-abstraction (SA) layers and three feature propaga-
tion (FP) layers. In the three SA layers, the sample radiuses
are set to 0.3, 0.5, and 0.7, and the points are randomly
sampled to 512, 256, and 128 points, respectively. Similar
to (Zheng et al. 2022), we enlarge the target box predicted
in the previous frame by 2 meters to obtain the search area
in the current frame. We utilize the targetness prediction op-
eration (Zheng et al. 2022) as a pre-process in our tracking
framework. At the beginning of tracking, we use the target
points lying inside the given box to initialize T .
Benchmarks and metrics. We evaluate our algorithm on
KITTI (Geiger, Lenz, and Urtasun 2012), NuScenes (Cae-
sar et al. 2020), and Waymo Open Dataset (WOD) (Sun
et al. 2020). KITTI consists of 21 training and 29 test se-
quences. We split the training set into train/validation/test

splits as the test labels are inaccessible, following (Giancola,
Zarzar, and Ghanem 2019; Zheng et al. 2022). NuScenes
comprises 1000 scenes, which are divided into train/valida-
tion/test sets. Following (Zheng et al. 2021, 2022), we use
the “train track” split of the train set to train our model and
test it on the validation set. WOD contains 1150 scenes,
of which 798/202/150 scenes are used for training/valida-
tion/testing, respectively. We evaluate our method on WOD
following two protocols: Protocol I (Xu et al. 2023a), where
we directly test the KITTI pre-trained model on the valida-
tion set to evaluate generalization; Protocol II (Zheng et al.
2022), in which the model is trained on the training set and
evaluated on the validation set. We use success and precision
as metrics and report the Area Under Curve (AUC).

Ablation Studies
To analyze the effect of each component in SCVTrack,
we conduct ablation experiments with six variants of SCV-
Track: 1) the baseline (BL) model removing the shape com-
pletion mechanism and box refinement module from SCV-
Track; 2) the variant using a naive shape completion mech-
anism without considering the point cloud quality into BL;
3) the variant performing quality-aware shape completion
based on BL; 4) the variant that adopts the box refinement
module based on the second variant; 5) our intact model; 6)
the variant performing tracking with point features instead of
voxelized features. This variant directly uses the attention-
based method to process the point features and adopts an
MLP head to regress the target box based on the output point
features. Table 1 presents the experimental results.
Effect of the shape completion mechanism. The compar-
isons between the first three variants show that both the
naive shape completion and quality-aware shape completion
mechanisms can boost tracking performance. It manifests
that performing shape completion in the raw point cloud
space is an effective way to address the challenges of spar-
sity and incompleteness.
Effect of the quality evaluator. The performance gaps be-
tween the second and third variants and between the fourth
and fifth variants demonstrate that the quality evaluator can
substantially improve the quality of the synthetic target rep-
resentation and further improve tracking performance.
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Variants Car Cyclist Van

1) BL 63.0 | 78.6 72.5 | 93.3 51.9 | 68.1
2) BL+NSC 65.2 | 78.0 73.6 | 93.5 54.9 | 70.1
3) BL+QASC 66.7 | 79.2 75.1 | 93.8 56.1 | 71.9
4) BL+NSC+BR 67.0 | 79.6 75.3 | 93.9 57.8 | 72.1
5) BL+QASC+BR 68.7 | 81.9 77.4 | 94.4 58.6 | 72.8
6) Ours w/o Vox. 64.5 | 79.6 74.5 | 93.6 55.2 | 71.0

Table 1: Ablation study results on the car, cyclist, and van
categories. BL refers to the baseline model. NSC denotes
naive shape completion. QASC is quality-aware shape com-
pletion. BR refers to box refinement. Vox. means voxeliza-
tion. The best and second-best scores are marked in bold and
underline, respectively. Success | Precision are reported.

Car Pedestrian Van Cyclist

SC3D 41.3 | 57.9 18.2 | 37.8 40.4 | 47.0 41.5 | 70.4
P2B 56.2 | 72.8 28.7 | 49.6 40.8 | 48.4 32.1 | 44.7
LTTR 65.0 | 77.1 33.2 | 56.8 35.8 | 45.6 66.2 | 89.9
BAT 60.5 | 77.7 42.1 | 70.1 52.4 | 67.0 33.7 | 45.4
PTT 67.8 | 81.8 44.9 | 72.0 43.6 | 52.5 37.2 | 47.3
PTTR 65.2 | 77.4 50.9 | 81.6 52.5 | 61.8 65.1 | 90.5
V2B 70.5 | 81.3 48.3 | 73.5 50.1 | 58.0 40.8 | 49.7
CMT 70.5 | 81.9 49.1 | 75.5 54.1 | 64.1 55.1 | 82.4
STNet 72.1 | 84.0 49.9 | 77.2 58.0 | 70.6 73.5 | 93.7
M2T 65.5 | 80.8 61.5 | 88.2 53.8 | 70.7 73.2 | 93.5
TAT 72.2 | 83.3 57.4 | 84.4 58.9 | 69.2 74.2 | 93.9
CXT 69.1 | 81.6 67.0 | 91.5 60.0 | 71.8 74.2 | 94.3
MTM 73.1 | 84.5 70.4 | 95.1 60.8 | 74.2 76.7 | 94.6
MBPT 73.4 | 84.8 68.6 | 93.9 61.3 | 72.7 76.7 | 94.3
Ours 68.7 | 81.9 62.0 | 89.1 58.6 | 72.8 77.4 | 94.4

Table 2: Experimental results on KITTI.

Effect of the box refinement. Compared with the second
and third variants, the fourth and fifth variants obtain large
performance gains in the car and cyclist categories, respec-
tively. It demonstrates the effectiveness of the box refine-
ment guided by the synthetic target representation T .
Effect of the voxelized tracking pipeline. Compared with
our intact model, performing relation modeling and track-
ing with the imbalanced point features instead of the vox-
elized features, i.e., the sixth variant, results in substantial
performance drops on these three categories. It validates that
our voxelized tracking pipeline can deal with the aforemen-
tioned imbalance issue successfully but the point-feature-
based tracking pipeline cannot.

Quantitative Results
The trackers involved in the comparison include SC3D (Gi-
ancola, Zarzar, and Ghanem 2019), P2B (Qi et al. 2020),
LTTR (Cui et al. 2021), PTT (Shan et al. 2021), PTTR (Zhou
et al. 2022) V2B (Hui et al. 2021), BAT (Zheng et al.
2021), STNet (Hui et al. 2022), M2T (Zheng et al. 2022),
CMT (Guo et al. 2022), TAT (Lan, Jiang, and Xie 2022),
CXT (Xu et al. 2023a), MTM (Li et al. 2023), and

Car
≤150

Pedestrian
≤100

Van
≤150

Cyclist
≤100

SC3D 37.9 | 53.0 20.1 | 42.0 36.2 | 48.7 50.2 | 69.2
P2B 56.0 | 70.6 33.1 | 58.2 41.1 | 46.3 24.1 | 28.3
BAT 60.7 | 75.5 48.3 | 77.1 41.5 | 47.4 25.3 | 30.5
V2B 64.7 | 77.4 50.8 | 74.2 46.8 | 55.1 30.4 | 37.2
M2T 61.7 | 75.9 58.3 | 85.4 50.2 | 68.5 68.9 | 91.2
Ours 64.8 | 77.7 60.1 | 88.6 52.8 | 70.5 70.2 | 92.8

Table 3: Experimental results on sparse scenes of KIITI.

Vehicle Pedestrian Mean

BAT† 54.7 | 62.7 18.2 | 30.3 34.1 | 44.4
V2B† 57.6 | 65.9 23.7 | 37.9 38.4 | 50.1
STNet† 59.7 | 68.0 25.5 | 39.9 40.4 | 52.1
TAT† 58.9 | 66.7 26.7 | 42.2 40.7 | 52.8
CXT† 57.1 | 66.1 30.7 | 49.4 42.2 | 56.7
Ours† 61.3 | 69.8 32.2 | 50.0 44.8 | 58.6

Table 4: Experimental results of different methods on WOD
following Protocol I. † denotes the model is pre-trained
on KITTI and directly evaluated on WOD validation split.
These tracking results measure the generalization ability.

MBPT (Xu et al. 2023b). We discuss the results per dataset.
KITTI. Table 2 reports the experimental results on KITTI.
V2B and TAT opt for dense geometric feature learning and
sparse feature aggregation to address the sparsity and incom-
pleteness challenges, respectively. Compared with them, our
algorithm achieves better tracking performance in most cat-
egories. Our SCVTrack also outperforms M2T in all cat-
egories, demonstrating its effectiveness. CXT and MBPT
are two recently proposed trackers with sophisticated trans-
former blocks for relation modeling and target localization
and perform better than our approach.
WOD. We first evaluate our SCVTrack on WOD follow-
ing Protocol I to evaluate its generalization ability. Table 4
reports the experimental results. Compared with TAT and
CXT, our SCVTrack achieves performance gains of 2.6% in
mean success and 1.9% in mean precision. This compari-
son shows that our method obtains stronger generalization
ability. We also evaluate SCVTrack on WOD following Pro-
tocol II. As shown in Table 5, our SCVTrack achieves the
best performance in both vehicle and pedestrian categories.
NuScenes. Table 5 reports the experimental results on
NuScenes. Our SCVTrack achieves the best success and pre-
cision score in the five categories. Compared with M2T, our
SCVTrack achieves performance gains of 2.9% in mean suc-
cess and 2.0% in mean precision, demonstrating the effec-
tiveness of our SCVTrack.
Quantitative results in sparse scenes. To investigate the ef-
fectiveness of our method in sparse scenes, we follow V2B
to evaluate the performance in the sparse scenes (Car ≤ 150,
Pedestrian ≤ 100, Van ≤ 150, and Cyclist ≤ 100) of KITTI,
as shown in Table 3. Our SCVTrack performs favorably
against the other methods in all categories.
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Figure 5: Qualitative comparisons between the variants w/ and w/o shape completion. Blue and red points refer to the raw points
and fused points in each frame. We can observe that the shape completion mechanism helps SCVTrack successfully track the
target in the extremely sparse scene, even though the synthetic target representation is not satisfactorily dense and complete.

NuScenes Waymo Open Dataset
Car Pedestrian Truck Trailer Bus Mean Vehicle Pedestrian Mean

SC3D 22.3 | 21.9 11.3 | 12.7 30.7 | 27.7 35.3 | 28.1 29.4 | 24.1 20.7 | 20.2 – – –
P2B 38.8 | 43.2 28.4 | 52.2 43.0 | 41.6 49.0 | 40.1 33.0 | 27.4 36.5 | 45.1 28.3 | 35.4 15.6 | 29.6 24.2 | 33.5
BAT 40.7 | 43.3 28.8 | 53.3 45.3 | 42.6 52.6 | 44.9 35.4 | 28.0 38.1 | 45.7 35.6 | 44.2 22.1 | 36.8 31.2 | 41.8
M2T 55.9 | 65.1 32.1 | 60.9 57.4 | 59.5 57.6 | 58.3 51.4 | 51.4 49.2 | 62.7 43.6 | 61.6 42.1 | 67.3 43.1 | 63.5
Ours 58.9 | 67.7 34.5 | 61.5 60.6 | 61.4 59.5 | 60.1 54.3 | 53.6 52.1 | 64.7 46.4 | 63.0 44.1 | 68.2 45.7 | 64.7

Table 5: Experimental results of different methods on Nuscenes and WOD. These methods are trained on the training split of
the Nuscenes or WOD benchmark and evaluated on the corresponding validation split.

Pre-process Shape completion Pointnet++
Time 1.3 ms 11.1 ms 10.6 ms

Voxelization Relation modeling Box refinement
Time 1.1 ms 5.6 ms 1.7 ms

Table 6: Inference time of each component of our model.

Tracking speed. We measure the average tracking speed on
Car of KITTI on an RTX3090 GPU, which is about 31 FPS.
The average inference time per frame is 31.4 ms. Table 6
reports the detailed time consumption.

Qualitative Results
To further investigate the effectiveness of the shape com-
pletion mechanism, we visualize the tracking results of our
SCVTrack and baseline model and the synthetic target repre-
sentation in an extremely sparse scene, as shown in Figure 5.
Although the synthetic target representation is not satisfacto-
rily dense due to the extremely sparse point clouds, our SCV-
Track keeps tracking the target successfully. By contrast, the
baseline model loses the target then the point clouds be-
come extremely sparse and incomplete. Figure 6 compares
the tracking results of our method and M2T (Zheng et al.
2022) in a sparse scene. They can both track the target at the
beginning. M2T loses the target at about the 20th frame (the

0
50
100

0.00
0.50
1.00

1 10 19 28 37 Po
in

t N
um

Io
U

Temporal progress (in frame)
Ours M2T Point number

Figure 6: Results of M2T and ours on a sparse scene.

target point cloud becomes quite sparse), while our method
keeps tracking the target accurately.

Conclusion
In this work, we have presented a robust voxelized tracking
framework with shape completion, named SCVTrack. Our
SCVTrack constructs a dense and complete point cloud de-
picting the shape of the target precisely, i.e., the synthetic
target representation, through shape completion and per-
forms tracking with it in a voxelized manner. Specifically,
we design a quality-aware shape completion mechanism,
which can effectively alleviate the adverse effect of noisy
historical predictions in shape completion. We also develop
a voxelized relation modeling module and box refinement
module to improve tracking performance. The proposed
SCVTrack achieves favorable performance against state-of-
the-art algorithms on three popular 3D tracking benchmarks.
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