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Abstract

Quantization has emerged as a promising direction for
model compression. Recently, data-free quantization has
been widely studied as a promising method to avoid privacy
concerns, which synthesizes images as an alternative to real
training data. Existing methods use classification loss to en-
sure the reliability of the synthesized images. Unfortunately,
even if these images are well-classified by the pre-trained
model, they still suffer from low semantics and homogeniza-
tion issues. Intuitively, these low-semantic images are sensi-
tive to perturbations, and the pre-trained model tends to have
inconsistent output when the generator synthesizes an image
with poor semantics. To this end, we propose Robustness-
Guided Image Synthesis (RIS), a simple but effective method
to enrich the semantics of synthetic images and improve
image diversity, further boosting the performance of down-
stream data-free compression tasks. Concretely, we first in-
troduce perturbations on input and model weight, then de-
fine the inconsistency metrics at feature and prediction levels
before and after perturbations. On the basis of inconsistency
on two levels, we design a robustness optimization objective
to enhance the semantics of synthetic images. Moreover, we
also make our approach diversity-aware by forcing the gener-
ator to synthesize images with small correlations in the label
space. With RIS, we achieve state-of-the-art performance for
various settings on data-free quantization and can be extended
to other data-free compression tasks.

Introduction
Recently, deep neural networks have achieved great accom-
plishment in many areas, including computer vision (He
et al. 2016; Girshick 2015; Sandler et al. 2018) and natu-
ral language processing (Zia and Zahid 2019; Mikolov et al.
2010; Devlin et al. 2018). Despite their satisfactory per-
formance, the huge number of parameters and high com-
putational cost prevent them from being deployed to edge
computing devices. Quantization, which converts param-
eters from full-precision to low-precision, has become a
promising method for model compression. A large number
of methods (Liu et al. 2020, 2018; Fan et al. 2020; Zhuang
et al. 2018) minimize the quantization error through training
data and achieve great performance in low-bit quantization.

*Corresponding author.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: Visualization of the loss landscape. Note that we
reverse the y-axis for visual convenience.

However, accessibility to the original training data during
the quantization process is not always possible due to pri-
vacy and security reasons, especially in medical and indus-
trial scenarios. Data-driven methods would fail in this case.

Therefore, data-free quantization has been proposed for
compression under privacy protection. Among some excel-
lent works (Nagel et al. 2019; Banner et al. 2018; Cai et al.
2020; Nagel et al. 2019), generative methods (Choi et al.
2021; Xu et al. 2020; Zhu et al. 2021; Choi et al. 2022; Qian
et al. 2023b,a; Li et al. 2023; Shang et al. 2023; Choi et al.
2020) have drawn much attention due to their great perfor-
mance. These methods synthesize fake data through gener-
ators and use them to calibrate or fine-tune the quantified
model. Hence, the quality of synthesized images influences
the quantization performance greatly.

Beyond various image priors (e.g., match BN statis-
tics (Cai et al. 2020)) being used during image synthesis,
most of the existing methods feed the synthesized images
to the pre-trained model, then minimize the cross-entropy
loss to guarantee the semantics of images (Xu et al. 2020;
Zhang et al. 2021). Nevertheless, even if the images are well-
classified, they still suffer from low semantics, limiting the
performance of downstream model compression tasks. The
phenomenon can be explained in two aspects. On one hand,
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studies (Goodfellow, Shlens, and Szegedy 2014a; Moosavi-
Dezfooli, Fawzi, and Frossard 2016) in model attack show
that deep neural networks can be easily misled by adding
adversarial perturbations. Therefore, it is unsurprising that
the pre-trained model has high confidence in these noise-
like data. On the other, the lack of a discriminator in data-
free scenarios greatly limits the performance of the genera-
tor, and it only needs to match the image and class priors,
but ignores the semantics of synthesized images. As a re-
sult, classification loss is insufficient to guide the generator
in synthesizing samples with high semantics.

To this end, we manage to enrich the semantics of syn-
thetic images in our work. Our intuition is that the low-
quality images synthesized by existing methods are easily
hampered, while real-world data are more robust towards
perturbations due to their rich semantic information. In other
words, the pre-trained model tends to have consistent rep-
resentation and prediction which may not be easily dis-
turbed for semantically abundant images (e.g., real-world
data). To verify our hypothesis, we conduct a motivational
experiment, as shown in Fig. 1. Concretely, we visualize the
loss landscape of GDFQ (Xu et al. 2020), one of the SOTA
methods in data-free quantization, and we plot the training
data (real-world image) and synthesized image on the loss
landscape as x1 and x2 respectively. Then, we apply input
and weight perturbations to both images and denote the dis-
turbed images as x̃1 and x̃2. It’s observed that the real-world
image has a relatively smooth neighborhood in the loss land-
scape, while the loss of synthetic image changes dramati-
cally nearby, implying the representation or prediction could
have a large discrepancy before and after perturbations.

Based on the above observation, we propose a simple but
effective method called Robustness-Guided Image Synthesis
(RIS) to enrich the semantics of synthesized images, and fur-
ther boost downstream data-free model compression tasks.

Concretely, we first conduct motivational experiments to
verify that these low semantic images synthesized by ex-
isting methods are sensitive toward perturbations, which
is different from real data with rich semantic information.
Then, we explicitly model the inconsistency at feature and
prediction levels before and after different kinds of pertur-
bations as image robustness, and further design a robust-
ness optimization objective for training the generator. The
proposed robustness loss significantly improves the seman-
tics of the synthetic images by forcing a smooth neighbor-
hood in the loss landscape, as visualized in Fig. 1. On the
other, we also alleviate the image homogenization problem
(Zhang et al. 2021) via formulating an optimization prob-
lem and replacing the ont-hot label set with multiple soft
labels with minimal correlation. With RIS, the Fréchet In-
ception Distance (FID) (Heusel et al. 2017) and Inception
Score (IS) (Salimans et al. 2016) of synthetic images outper-
form the baseline with an improvement of 80.13 and 22.44
on ImageNet (Krizhevsky, Sutskever, and Hinton 2012).

Experiments on a variety of pre-trained models and
datasets show RIS consistently achieves significant perfor-
mance improvement. Moreover, our method is not limited to
quantization, which can be extended to other data-free sce-
narios such as data-free knowledge distillation (Hinton et al.

2015).
We make the following major contributions. 1) We iden-

tify that the images synthesized by existing methods are
more sensitive toward perturbations than natural images,
leading to the low-semantic and limiting the performance
of downstream tasks. 2) We propose the Robustness-Guided
Image Synthesis (RIS) scheme, a simple but effective
method to enrich the semantics and improve the diversity
of synthetic images. 3) We conduct extensive experiments,
showing that the proposed RIS outperforms various existing
data-free quantization methods by a large margin, and can
be further extended to data-free knowledge distillation.

Related Work
Data-Free Model Compression
Knowledge Distillation Early works in data-free scenarios
focus on knowledge distillation (Hinton et al. 2015), which
devise different regularizations for learning image priors
(Lopes, Fenu, and Starner 2017; Nayak et al. 2019; Zhu,
Hong, and Zhou 2021; Yu et al. 2023; Binici et al. 2022;
Hao et al. 2022). They can be roughly divided into three
categories: 1) synthesis from noise. Lopes et al. (Lopes,
Fenu, and Starner 2017) utilize the activation records (i.e.,
means and covariance), which are restored as metadata for
reconstructing training data. Nayak et al. (Nayak et al. 2019)
model the softmax space of the teacher as a Dirichlet dis-
tribution and craft data from the parameters of the teacher.
DeepInversion (Yin et al. 2020) combines the image prior
presented by (Mordvintsev, Olah, and Tyka 2015) and aligns
the BN statistics of the real ones. Although these methods
can obtain high semantic images, it has the drawback of
huge computational costs because each batch of synthetic
images has to optimize from the beginning. 2) reconstruc-
tion with a generator. Represented by DAFL (Chen et al.
2019), these methods synthesize images from a generator.
DAFL exploits cross-entropy loss as the class prior and max-
imum activation as the semantic prior. Luo et al. (Luo et al.
2020) use multi-generators and further extend to the large-
scale dataset i.e. ImageNet (Krizhevsky, Sutskever, and Hin-
ton 2012). 3) adversarial exploration. ZSKT (Micaelli and
Storkey 2019) and DFAD (Fang et al. 2019) train an adver-
sarial generator to search for images where the prediction
of the student poorly matches the teacher’s prediction. How-
ever, these methods are sensitive to hyperparameters.

Quantization Most data-free quantization methods share
a similar pipeline with data-free knowledge distillation: first
synthesize images, then utilize them as surrogates for the
original training data. ZeroQ (Cai et al. 2020), as the pi-
oneer of the generative method for quantization, synthe-
sizes data that match the statistics of BN (Ioffe and Szegedy
2015) layers. GDFQ (Xu et al. 2020) further uses the cross-
entropy loss to ensure the synthesized images can be clas-
sified by the pre-trained network correctly. Based on the
GDFQ framework, DSG (Zhang et al. 2021) optimizes the
diversity of synthesized images by relaxing BN statistics
constraint, while Qimera (Choi et al. 2021) focuses on gen-
erating samples nearing the classification boundary by us-
ing superposed latent embeddings. AutoReCon (Zhu et al.
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2021) first searches for an optimized neural architecture to
reconstruct the generator. AIT (Choi et al. 2022) argues that
the classification loss and KL divergence have gradient con-
fliction thus excluding the cross-entropy loss and proposes
gradient inundation to solve infrequent updates of the quan-
tized model. IntraQ (Zhong et al. 2022) imitates real data by
generating heterogeneous synthetic images. HAST (Li et al.
2023) solves real data degradation by synthesizing hard sam-
ples and further promoting sample difficulty while training
models. AdaSG (Qian et al. 2023b) enhances image adapt-
ability while ensuring model accuracy by rethinking data-
free quantization as a zero-sum game between the generator
and the quantized network. AdaDFQ (Qian et al. 2023a) fur-
ther improves it by optimizing the margin between the lower
and upper boundaries defined by disagreement and agree-
ment samples. These approaches consider the distribution of
synthesized data at the statistical level but ignore the critical
issue of generation quality. All these methods suffer from
synthesizing unrealistic images with low semantics.

Image Robustness
Robustness (Box 1979) is defined as the property of a pro-
cedure that renders the answers it gives insensitivity to de-
partures, which is used to describe systems, models, or im-
ages. Image robustness (Meer 2004; Vacavant 2016) is a
concept in signal processing that means the image still has
a certain degree of fidelity after various signal processing
or attacks. In the field of watermarking, a group of meth-
ods design robust watermarks to resist the transformations
of images (Cox et al. 1996). Image steganography commu-
nicates secret data by adding undetectability and robustness
signal to the original image (Cheddad et al. 2010). In model
defense (Papernot et al. 2016), a few methods exploit the
prediction inconsistency to detect adversarial examples (Xu,
Evans, and Qi 2017; Meng and Chen 2017; Feinman et al.
2017), which share the same spirits with our work. Xu et al.
(Xu, Evans, and Qi 2017) introduce pre-processing the input
images, then calculating the prediction shift score to sepa-
rate adversarial samples from the natural ones. In this paper,
we also transform the images and make use of the inconsis-
tency. The biggest difference is that we explicitly model the
robustness at feature and prediction levels, and use it as a
guidance for image synthesis.

Method
Generative Data-Free Quantization
Generative data-free quantization methods, pioneered by
(Xu et al. 2020), have drawn great attention due to their ex-
cellent performance and efficiency, which employ a genera-
tor G to fit real training data distribution. With synthesized
data, the quantized model is fine-tuned by mimicking the be-
havior of the pre-trained model M through knowledge dis-
tillation. Take GDFQ (Xu et al. 2020) as an example, the
generator synthesize fake data x from the Gaussian noise z,
conditional on the one-hot label y:

x = G(z | y), z ∼ N (0, 1) (1)
The generated image is then classified by the pre-trained

model M, which is composed of a feature extractor f and

a classifier g, and update the generator by the classification
loss:

LCE(G) = Ez,y [CE(g(f(x)), y)] , (2)
Meanwhile, mean square error (MSE) loss is used to align

the mean and variance at BN layers:

LBNS(G) =
L∑

l=1

∥µr
l − µl∥22 + ∥σr

l − σl∥22, (3)

where µr
l and σr

l refer to the mean and variance of the syn-
thesized images at the l-th BN layer, µl and σl is the mean
and variance stored in the pre-trained model. The overall ob-
jective for generator G is:

LGDFQ(G) = LCE(G) + αLBNS(G). (4)

Based on the GDFQ framework, a few methods attempt
to improve the quality of generated data from different as-
pects. DSG (Zhang et al. 2021), which aims to improve the
diversity of synthesized images, modifies LBNS(G) term by
adding slack variables and designing layerwise sample en-
hancement. While Qimera (Choi et al. 2021) considers im-
ages near the decision boundary to be more helpful for data-
free quantization. These approaches improve the samples at
the distribution level, but ignore the critical point —the se-
mantic and quality of synthesized images.

Semantic Enhancement with Input and Weight
Perturbations
In this section, we delve into enhancing the semantic infor-
mation of the synthetic images and further boosting the per-
formance of data-free model compression tasks (e.g., quan-
tization). Concretely, we first propose to involve perturba-
tions on both input and weight levels, then explicitly define
a robustness metric via the model inconsistency on feature
representation and predicted distribution after perturbations.
Finally, we design an additional optimization objective for
supervising the generator based on the robustness metric.

Perturbations on Input and Model Weight Recall in
Fig. 1, we verify that low semantic images are more sen-
sitive towards perturbations. Hence, our core idea is to ex-
plicitly optimize the generator to synthesize images that the
teacher model has consistent outputs before or after the per-
turbations. To this end, the first step of our method is to
introduce perturbations from input and model weight. For
input perturbation, we implement it with several data aug-
mentation strategies. As shown in Figure 2, the original im-
ages x as well as the augmented ones A(x) are fed into the
full-precision (teacher) model and we optimize the generator
with a consistency loss which will introduce in the follow-
ing sections. It’s worth noting that input perturbations can be
instantiated as any differentiable data augmentation method
(see Appendix for details). 1

On the other, we further introduce perturbation on weight
as complementary. Given the teacher model (g ◦ f) with pa-
rameters w, we add a perturbation term v to the original

1Since we need to back-propagate the gradient to update the
generator, the augmentation strategy must be differentiable.
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Figure 2: The pipeline of RIS. The solid line boxes refer to the teacher (pre-trained) model and losses for updating the generator
G, while the dashed line boxes are the quantized model and its loss function. Proposed components are denoted as orange.

weight, i.e., w′ = w+ v. As shown in Figure 2, we explore
three different weight perturbation strategies: a), we instanti-
ate the perturbation term as the Gaussian noise with mean µ
and deviation σ: v ∼ N (µ, σ2); b), we conduct experiments
with adversarial weight perturbation (similar with several
studies in model defense (Goodfellow, Shlens, and Szegedy
2014b; Madry et al. 2018; Wu, Xia, and Wang 2020)), i.e.,
v = γ ∇wCE[(g◦f)w(xi),y]

∇w∥CE[(g◦f)w(xi),y]∥ ∥w∥, which is also shown as ef-
fective in experiments; c), Dropout (Srivastava et al. 2014)
as a widely-used technique to enhance model generalization
and reducing overfitting, can also regard as a weight pertur-
bation strategy where v is −w for discarded neurons and
zero for others.

Robustness Modeling via Inconsistency In this section,
we explicitly model image robustness by the maximum
value of inconsistency at the level of feature and prediction
after n perturbations. At the feature level, we exploit the co-
sine distance to measure the variation of features:

Rf (x) = max
1≤i≤n

⟨f(x),Ai(f(x))⟩
∥f(x)∥ · ∥Ai(f(x))∥

, (5)

where x refers to the synthesized image, Ai is the i-th differ-
ent perturbation strategy, f(·) denotes the operation of ex-
tracting the features in the pre-training model, and Rf (x)
denotes the inconsistency of the synthetic image x on fea-
ture level. Since the details or textures of the synthetic image
may not be held after perturbations, we utilize the feature
embedding of the last layer which indicates the high-level
semantics (should be consistent towards perturbations).

At the prediction level, we use the L1 distance to quantify
the variation:

Rp(x) = max
1≤i≤n

∥g(f(x))−Ai(g(f(x)))∥1, (6)

where g(·) refers to extracting the prediction vector from
the pre-trained model, which is commonly a single fully-
connected layer. Note that We choose the max operator
based on the observation that real images are consistently
stable under a variety of perturbations (detailed in Appendix
B), while the synthesized ones fluctuate greatly. Hence, min-
imizing the max value of inconsistency can provide strong
regularization to the generator.

Robustness-guided Image Synthesis Finally, we formu-
late the optimization objective based on the two levels of
inconsistency Rf and Rp introduced above:

Lrobust(G) = Ex[max(Rf (x)− θf , 0) + βmax(Rp(x)− θp, 0)︸ ︷︷ ︸
R(x)

],

(7)
where θf and θp denote the threshold for the distance of
model output before and after perturbations at feature and
prediction levels, respectively. β is the weighting coefficient
to balance the consideration of feature and prediction. R(x)
represents the robustness of image x. We regard the image
as robust towards augmentations only when the variation of
feature and prediction is lower than the threshold simulta-
neously. Note that a lower value of R(x) indicates high ro-
bustness towards data augmentation. Thus, it can be directly
integrated into the existing loss of the generator as Lrobust.

A significant challenge is determining the values of θf
and θp without any real data access. Fortunately, the noise
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data has a similar performance to the synthesized images
(detailed in Appendix B), it can be used as a representa-
tion of low-semantic images. Therefore, we initialize 1000
samples xnoise from N (0, 1), which are further fed into the
teacher model to compute Rf (xnoise) and Rp(xnoise). We set
the thresholds to the ϵ percentile of these values:

θf =| Rf (xnoise) |ϵ, θp =| Rp(xnoise) |ϵ . (8)

When the ϵ becomes larger, the loss function in Eq. 7 has
less tolerance for non-robustness samples. The default value
of ϵ is set as 0.1. As a result, The low semantic images are
eliminated by optimizing their robustness towards both input
and weight perturbations, enabling the generator to synthe-
size images with high semantics (detailed in Appendix C).

Diversity-aware Image Synthesis
In the above section, we force the generator to synthesize
images with rich semantic information via the robustness
constraint in Eq. 7. While another important indicator for
evaluating generative models is the diversity of synthesized
images. A recent work (Wang et al. 2022) suggests that train-
ing images with small correlation results in better perfor-
mance on knowledge distillation scenarios. Hence, we pro-
pose explicitly improving diversity by replacing C one-hot
labels in ACGAN with N (N > C) soft labels with the
smallest correlation.

Concretely, the original labels in GDFQ (Xu et al. 2020)
can be viewed as an identity matrix I ∈ RC×C , and we re-
place it with soft labels T ∈ RN×C . The intuition behind
this is that there are always multiple prototypes within one
semantic class, e.g., the class ‘cat’ could contain different
breeds of cats or cats with different backgrounds. On the
other, we should avoid any two label vectors being too simi-
lar since it leads to the issue of homogenization for synthetic
images. To this end, we formulate it as an optimization prob-
lem:

Minimize:
N∑
i=1

N∑
j=1

1 / dis(Ti, Tj).

Subject to:{∑N
j=1 Tij = 1 ∀j = 1, · · · , N

Tij ≥ 0 ∀i, j = 1, · · · , N

(9)

where T is the modified target matrix for training the gen-
erator, dis(·) refers to a distance metric in Euclidean space.
Since each row of T represents a probability distribution,
the sum of each row should be 1, and each term greater
than 0. We solve the defined optimization problem in Eq.
9 with SGD before training, and supervised the generator
with the calculated soft labels in T . In this way, the generator
is forced to synthesize diverse samples with multiple proto-
types within a semantic class, and those prototypes are ex-
plicitly having minimum correlations with each other, which
is empirically effective in experiments. The whole process of
the RIS scheme is summarized in Algorithm 1.

Algorithm 1: The synthesis process of our RIS scheme.
Input: Pre-trained model M, training epochs Te, label ma-
trix T , hyper-parameters α, β.

1: Initialize xnoise from Gaussian distribution N (0, 1).
2: Feed xnoise into M to compute Rf (xnoise) and

Rp(xnoise) based on Eq. 5 and Eq. 6.
3: Compute θf and θp according to ϵ.
4: for epoch = 1 : Te do
5: Sample random noise z ∼ N (0, 1) and soft label ỹ in

T .
6: Generate fake image x using Eq. 1.
7: Input perturbations: Obtain the perturbed images

{Ai(x)}ni=1 through n data augmentations.
8: Weight perturbations: Obtain the perturbed teacher

model {M′
j}mj=1 through m different weight pertur-

bation strategies introduced in Section .
9: Feed the original image and the perturbed ones {x ∪

{Ai(x)}ni=1} into {M∪ {M′
j}mj=1}.

10: Calculate Df (I) and Dp(I) with Eq. 5 and Eq. 6.
11: Calculate the cross-entropy loss LCE with the corre-

sponding sampled label ỹ and BN statistic loss LBNS
via Eq. 2 and Eq. 3 respectively.

12: Calculate the proposed Lrobust through Eq. 7.
13: Update the generator G by minimizing LRIS = LCE+

αLBNS + βLrobust.
14: end for

Experimental Results
Experiment Implementation
Following previous work, we evaluated the proposed RIS
on CIFAR-10/100 (Krizhevsky, Hinton et al. 2009) and Im-
ageNet (Krizhevsky, Sutskever, and Hinton 2012). In order
to facilitate comparison with existing methods, we choose
ResNet-20 (He et al. 2016) for CIFAR-10/100, and ResNet-
18, ResNet-50, and MobileNetV2 (Sandler et al. 2018) for
ImageNet. In addition, due to the low semantic images being
little helpful to the quantized model, we set several epochs
to warm up the generator, i.e., only updating the generator G
at the beginning and the quantized model Q is not updated.
More training details can be found in Appendix D.

Quantization Results on Various Baselines
To verify the effectiveness and versatility of RIS, we em-
ploy our method on various widely-used network architec-
tures based on the four advanced generative methods: GDFQ
(Xu et al. 2020), DSG (Zhang et al. 2021), AutoRecon (Zhu
et al. 2021), AIT (Choi et al. 2022). The results are displayed
in Table 1. Note that WnAm means n-bit quantization for
weights and m-bit quantization for activations. We report
top-1 accuracy for each experiment. Note that AIT is a plug-
in approach, AIT in the table refers to ARC-based AIT. The
observations can be summarized as 1) RIS outperforms the
baselines in almost all settings, especially on low bit-width.
The only slight degradation occurs in DSG with the CIFAR-
10 dataset which is already close to the teacher accuracy thus
leaving little room for improvement. 2) RIS leads to extraor-
dinary improvements in the quantized ResNet-50 model, in-
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creasing the accuracy of the 4-bit quantized GDFQ model by
10.04% and the DSG model by 8.72%. In particular, while
the AIT + ARC original accuracy rate had reached 68.27%,
RIS still brought an increase of 3.27%, making the predic-
tion accuracy reach an astonishing 71.54%.

Ablation Studies
Study on Different Input/Weight Perturbation Strate-
gies Recall in RIS, We introduce perturbations on model
input and weight for robustness modeling. Now, we inves-
tigate the impact of different perturbation strategies on per-
formance. The results are summarized in Tab. 1(a) and 1(b).
For input perturbations, we perform various data augmen-
tation approaches on synthetic images, it’s observed in Tab.
1(a) that all strategies outperform the baseline, which im-
plies the versatility of RIS. In practice, we randomly choose
input perturbation for each training batch to prevent overfit-
ting. For weight perturbations, we evaluate the effectiveness
of adding Gaussian noise, adversarial disturb, and Dropout
in Tab. 1(b), which indicates that different methods can
bring noticeable performance gains. In subsequent experi-
ments, we add Gaussian noise to the model parameters as the
weight perturbation because it has low computational over-
head and the best performance.

A Closer Look at Diversity-aware Synthesis To verify
that the proposed RIS can generate more diverse images, we
first generate 1000 images using the original generator and
the generator driven by soft labels, respectively. Then, we
put these two sets of images into the teacher model and doc-
ument their predicted labels and max probabilities, as visu-
alized in Fig.3. It is evident that the generator using labels
with minimal correlations can synthesize a wider variety of
images with more distinct differences between them, while
the baseline method is prone to produce similar images.

Effectiveness of Each Component In RIS, we design the
robustness objective for the generator via the inconsistency
before and after input/weight perturbations and propose the
diversity-aware scheme which involved soft labels with min-
imal correlations to avoid homogenization. Table. 1(c) doc-
uments the top-1 accuracy when adding different parts of the
RIS method, from which it can be observed that every sin-
gle strategy is able to boost the model precision individually.
By applying input perturbation to the images generated by
the generator and weight perturbation to the full-precision
model, both types of disturbance can improve the accuracy
of the quantized model. And applying the pre-computed soft
labels also contributes to improving the performance of the
quantized model by instructing the generator to synthesize
images with small correlations. When combining all compo-
nents together, RIS achieves the largest performance gain.

Changing of Hyperparameters We also show the effect
of hyper-parameters involved in RIS. Tab. 1(e) shows the
empirical results of changing soft label number N . We ob-
serve similar accuracy gains when scaling N . Tab. 1(d)
shows the classification accuracy when changing the thresh-
old percentile ϵ in Eq. 8. The limited fluctuations in per-
formance prove that RIS is robust to hyper-parameters. Fig.

4 further presents the correlation between various hyperpa-
rameters. From Fig. 4(a) it can be observed that the perfor-
mance improves with the increase of N and remains stable
after N ≥ 3 meanwhile small weight perturbation strength
is most beneficial to the model. Fig. 4(b) shows the perfor-
mance of warmup epochs and combination strategy demon-
strating that suitable warmup epochs and combination strat-
egy can effectively improve model performance.

(a) GDFQ (baseline) (b) RIS (ours)

Figure 3: Visualization of teacher predictions on synthetic
images.

(a) Study on Perturbations (b) Training Strategies

Figure 4: Comparison of different hyper-parameters.

Study on Combination Strategy of Perturbations Since
there are two types of different perturbations in our method,
they can be calculated in three combinations which are pre-
sented in Tab. 1(f). Serial means putting the perturbed im-
ages to the perturbed model for computing Lrobust, which
increases the accuracy by 0.37%. While parallel refers to
feeding the augmented images to the original model mean-
while giving the original image to the perturbed model, and
then the losses of the two parts are added as Lrobust. This
strategy can boost the performance by 1.57% but less than
random pick which increases the accuracy significantly by
2.11% that selects a perturbation method between input per-
turbation and weight perturbation with equal probability.

Quality Analysis on Synthetic Images
We use FID (Heusel et al. 2017) and IS (Salimans et al.
2016) to evaluate the quality of the synthesized images at the
statistical level. Both are well-known criteria in the field of
GAN. As shown in Table 3, our method outperforms GDFQ
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Method

CIFAR-10 CIFAR-100 ImageNet

ResNet-20 ResNet-20 ResNet-18 ResNet-50
(93.89) (70.33) (71.47) (77.73)

W4A4 W5A5 W4A4 W5A5 W4A4 W5A5 W4A4 W5A5

GDFQ 90.25 93.38 63.39 66.12 60.60 68.40 52.12 71.89
+RIS 91.04+0.79 93.59+0.21 65.50+2.11 69.06+2.96 62.81+2.21 69.77+1.37 62.16+10.04 75.24+3.35

DSG 91.05 93.56 63.42 67.25 61.58 69.53 54.68 72.25
+RIS 92.59+1.54 93.50-0.06 65.99+2.57 69.55+2.30 64.59+3.01 69.84+0.31 63.40+8.72 75.18+2.93

ARC 88.55 92.88 62.76 68.40 61.32 68.88 64.37 74.13
+RIS 91.44+2.89 93.49+0.61 63.82+1.06 69.15+0.75 63.58+2.26 69.26+0.38 68.40+4.03 75.40+1.27

AIT 87.93∗ 92.89 61.05 68.40 65.73 70.28 68.27 76.00
+RIS 89.84+1.91 93.23+0.34 63.51+2.46 68.94+0.54 67.55+1.82 70.59+0.31 71.54+3.27 76.36+0.36

Table 1: Results on CIFAR-10/100 and ImageNet with various baseline methods. “∗” denotes our re-implementation.

(a) Input Perturbation.

Augmentation
Strategy

Top-1
Accuracy

Top-5
Accuracy

Baseline 63.39 87.59
Noise 64.38 87.87
Translation 64.42 87.91
Resize 64.40 88.08
Random Select 64.88 88.21

(b) Weight Perturbation.

Weight
Perturbation

Top-1
Accuracy

Top-5
Accuracy

Baseline 63.39 87.59
Gaussian Noise 64.48 87.63
Adversarial 63.65 86.79
Dropout 64.14 87.57

(c) Components of RIS

Strategy Top-1
Accuracy

Top-5
Accuracy

Baseline 63.39 87.59
Input Perturb 64.38 88.21
Weight Perturb 64.48 87.63
Soft Label 63.99 87.61
All 65.50 88.44

(d) Hyper-parameter ε

ε Top-1
Accuracy

Top-5
Accuracy

0 64.95 87.79
0.05 65.05 88.21
0.1 65.50 88.44
0.2 64.89 88.03
0.5 64.08 87.34

(e) Hyper-parameter N

N Top-1
Accuracy

Top-5
Accuracy

5 63.75 86.93
10 63.99 87.61
20 63.74 87.45
50 63.79 87.20
100 63.88 87.52

(f) Combination of Perturbations

Strategy Top-1
Accuracy

Top-5
Accuracy

Baseline 63.39 87.59
Serial 64.54 86.92
Parallel 65.16 88.35
Random Pick 65.50 88.44

Table 2: RIS ablation experiments on CIFAR-100 with ResNet20. Our default settings are marked in gray.

by 54.94 in FID and 9.86 in IS on ResNet-20, CIFAR-100.
Our method results in synthesizing images with higher vi-
sual fidelity and more distinctive category-related features.

Method CIFAR-10 CIFAR-100

IS FID IS FID

GDFQ 3.96 120.91 1.95 142.42
DSG 3.96 324.84 2.48 184.27
Qimera 2.02 145.89 2.19 130.87
RIS 10.4 97.45 11.81 87.48

Table 3: The FID (Heusel et al. 2017) and IS (Salimans et al.
2016) of the synthetic images.

Conclusions and Limitations
In this paper, we propose Robustness-Guided Image Synthe-
sis (RIS) to improve the quality of synthetic images in data-
free scenarios. Specifically, we propose to explicitly model
image robustness on the basis of inconsistency at feature and
prediction levels, and design a robustness-guided scheme
that enables the generator to synthesize images with both
rich semantics and diversity-aware. We conduct an extensive
set of experiments, showing that RIS outperforms various
existing data-free quantization methods, and can be further
extended to data-free knowledge distillation. Nevertheless,
there are some limitations. Firstly, how to generalize our ap-
proach to methods without a generator is worth exploring.
Secondly, how to explicit numerous OOD data in the wild is
needed to investigate in future work.
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danpur, S. 2010. Recurrent neural network based language
model. In Interspeech, volume 2, 1045–1048.
Moosavi-Dezfooli, S.-M.; Fawzi, A.; and Frossard, P. 2016.
Deepfool: a simple and accurate method to fool deep neural
networks. In CVPR, 2574–2582.
Mordvintsev, A.; Olah, C.; and Tyka, M. 2015. Inception-
ism: Going deeper into neural networks.
Nagel, M.; Baalen, M. v.; Blankevoort, T.; and Welling, M.
2019. Data-free quantization through weight equalization
and bias correction. In ICCV, 1325–1334.
Nayak, G. K.; Mopuri, K. R.; Shaj, V.; Radhakrishnan, V. B.;
and Chakraborty, A. 2019. Zero-shot knowledge distillation
in deep networks. In ICML, 4743–4751.
Papernot, N.; McDaniel, P.; Sinha, A.; and Wellman, M.
2016. Towards the science of security and privacy in ma-
chine learning. arXiv preprint arXiv:1611.03814.
Qian, B.; Wang, Y.; Hong, R.; and Wang, M. 2023a.
Adaptive Data-Free Quantization. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern
Recognition, 7960–7968.
Qian, B.; Wang, Y.; Hong, R.; and Wang, M. 2023b. Re-
thinking data-free quantization as a zero-sum game. arXiv
preprint arXiv:2302.09572.
Salimans, T.; Goodfellow, I.; Zaremba, W.; Cheung, V.; Rad-
ford, A.; and Chen, X. 2016. Improved techniques for train-
ing gans. Advances in neural information processing sys-
tems.
Sandler, M.; Howard, A.; Zhu, M.; Zhmoginov, A.; and
Chen, L.-C. 2018. Mobilenetv2: Inverted residuals and lin-
ear bottlenecks. In CVPR, 4510–4520.
Shang, Y.; Xu, B.; Liu, G.; Kompella, R. R.; and Yan, Y.
2023. Causal-DFQ: Causality Guided Data-free Network
Quantization. In ICCV, 17437–17446.
Srivastava, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; and
Salakhutdinov, R. 2014. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine
learning research, 15(1): 1929–1958.
Vacavant, A. 2016. A novel definition of robustness for
image processing algorithms. In International Workshop
on Reproducible Research in Pattern Recognition, 75–87.
Springer.
Wang, H.; Lohit, S.; Jones, M. N.; and Fu, Y. 2022.
What makes a” good” data augmentation in knowledge
distillation-a statistical perspective. Advances in Neural In-
formation Processing Systems, 35: 13456–13469.

Wu, D.; Xia, S.-T.; and Wang, Y. 2020. Adversarial weight
perturbation helps robust generalization. Advances in Neu-
ral Information Processing Systems, 33: 2958–2969.
Xu, S.; Li, H.; Zhuang, B.; Liu, J.; Cao, J.; Liang, C.; and
Tan, M. 2020. Generative low-bitwidth data free quantiza-
tion. In ECCV, 1–17. Springer.
Xu, W.; Evans, D.; and Qi, Y. 2017. Feature squeezing: De-
tecting adversarial examples in deep neural networks. arXiv
preprint arXiv:1704.01155.
Yin, H.; Molchanov, P.; Alvarez, J. M.; Li, Z.; Mallya, A.;
Hoiem, D.; Jha, N. K.; and Kautz, J. 2020. Dreaming to
distill: Data-free knowledge transfer via deepinversion. In
CVPR, 8715–8724.
Yu, S.; Chen, J.; Han, H.; and Jiang, S. 2023. Data-Free
Knowledge Distillation via Feature Exchange and Activa-
tion Region Constraint. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
24266–24275.
Zhang, X.; Qin, H.; Ding, Y.; Gong, R.; Yan, Q.; Tao, R.; Li,
Y.; Yu, F.; and Liu, X. 2021. Diversifying sample generation
for accurate data-free quantization. In CVPR, 15658–15667.
Zhong, Y.; Lin, M.; Nan, G.; Liu, J.; Zhang, B.; Tian, Y.; and
Ji, R. 2022. Intraq: Learning synthetic images with intra-
class heterogeneity for zero-shot network quantization. In
Proceedings of the IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition, 12339–12348.
Zhu, B.; Hofstee, P.; Peltenburg, J.; Lee, J.; and Alars, Z.
2021. AutoReCon: Neural Architecture Search-based Re-
construction for Data-free Compression.
Zhu, Z.; Hong, J.; and Zhou, J. 2021. Data-free knowl-
edge distillation for heterogeneous federated learning. In In-
ternational conference on machine learning, 12878–12889.
PMLR.
Zhuang, B.; Shen, C.; Tan, M.; Liu, L.; and Reid, I. 2018.
Towards effective low-bitwidth convolutional neural net-
works. In CVPR, 7920–7928.
Zia, T.; and Zahid, U. 2019. Long short-term memory recur-
rent neural network architectures for Urdu acoustic model-
ing. International Journal of Speech Technology, (1): 21–30.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

10979


