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Abstract

Standard approaches for global optimization of non-convex
functions, such as branch-and-bound, maintain partition trees
to systematically prune the domain. The tree size grows ex-
ponentially in the number of dimensions. We propose new
sampling-based methods for non-convex optimization that
adapts Monte Carlo Tree Search (MCTS) to improve effi-
ciency. Instead of the standard use of visitation count in Up-
per Confidence Bounds, we utilize numerical overapproxi-
mations of the objective as an uncertainty metric, and also
take into account of sampled estimates of first-order and
second-order information. The Monte Carlo tree in our ap-
proach avoids the usual fixed combinatorial patterns in grow-
ing the tree, and aggressively zooms into the promising re-
gions, while still balancing exploration and exploitation. We
evaluate the proposed algorithms on high-dimensional non-
convex optimization benchmarks against competitive base-
lines and analyze the effects of the hyper parameters.

Introduction
Non-convex global optimization problems are pervasive
in engineering (Mistakidis and Stavroulakis 2013; Campi,
Garatti, and Ramponi 2015), computer science (Liu and Lu
2014; Jain, Kar et al. 2017), and economics (Bao and Mor-
dukhovich 2010). The problem is well-known to be NP-
hard, and the practical challenge lies in distinguishing the
global optimum from exponentially many potential local op-
tima (Jain, Kar et al. 2017; Yang 2019).

Existing approaches to non-convex optimization can be
largely categorized into sampling-based methods and tree-
search methods. Sampling-based approaches, such as sim-
ulated annealing (SA) (Henderson, Jacobson, and John-
son 2003) and cross-entropy (CE) (De Boer et al. 2005),
explore the solution space through random sampling and
guided search strategies with the minimal assumptions
about the objective function. Sampling methods can be de-
signed to asymptotically converge towards the global opti-
mum, but suffer from the curse-of-dimensionality in prac-
tice. Tree search and interval-based optimization methods
(Gurobi Optimization 2023; Ninin 2016) leverage various
branch-and-bound techniques that maintain a partition tree
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over the domain to systematically prune the space towards
global optima. Such algorithms typically employ rigorous
techniques (e.g., linear relaxation (Yanover et al. 2006) and
interval arithmetic (Hickey, Ju, and Van Emden 2001; Araya
and Reyes 2016)) for bounding the functions and systemat-
ically explore the solution space. The size of the search tree
can quickly become exponential in the number of dimen-
sions and is the major bottleneck for scaling up.

We propose an approach that combines the benefits of
sampling-based and tree-based approaches as well as inter-
val bounding and local optimization techniques, by taking
advantage of the recent progress in Monte Carlo Tree Search
(MCTS) methods. We assume that the analytic form of the
objective function is known over a compact domain, so that
we can use interval bounding (Araya and Reyes 2016) on the
function value and its local first-order and second-order in-
formation in different parts of the MCTS design. A key fea-
ture of the Monte Carlo trees is that the growth of the tree is
driven by samples rather than partitions, and hence the name
Sample-and-Bound. By associating the analytic and esti-
mated properties of adjustable neighborhoods around each
sample, we design the MCTS algorithm to best balance ex-
ploration and exploitation based on the important numerical
properties of the objective function. We evaluate the pro-
posed algorithms against a wide range of existing algorithms
and analyze the importance of various hyper parameters.

Related Work
Some classical approaches to global optimization explore
the search space by sampling without explicitly building
models of the objective function. Common techniques in this
category include stochastic methods such as SA (Hender-
son, Jacobson, and Johnson 2003) and CE (De Boer et al.
2005), as well as deterministic schemes like Nelder-Mead
(NM) (Gao and Han 2012). SA (Henderson, Jacobson, and
Johnson 2003) uses a probability-driven search process to
escape local minima. CE (De Boer et al. 2005), on the other
hand, is a technique that iteratively updates the probabil-
ity distribution on the search space to look for optimal re-
gions. NM method (Gao and Han 2012) is a deterministic
sampling approach, which maintains a simplex within the
search space and updates its vertexes based on evaluations
at selected points.

Sampling-based approaches have recently been combined
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with tree search by building a search tree for the state space
and pick only the most promising subspace to sample. Exist-
ing algorithms include Deterministic Optimistic Optimiza-
tion (DOO) (Munos 2011), Latent Action Monte Carlo Tree
Search (LaMCTS) (Wang, Fonseca, and Tian 2020a), and
Monte Carlo Tree Descent (MCTD) (Zhai and Gao 2022).
DOO segments the search domain into sections, each repre-
sented by a point; and the new sample is carefully selected
by choosing the most suitable section. LaMCTS method em-
ploys MCTS to manage search space partitioning. It learns
latent actions to distinguish good and bad regions in the
search space, and samples in the good partitions during its
tree’s expansion. MCTD assumes the objective function as
black-box, utilizes a combination of sampling based ap-
proach and learning based approach for local optimization,
and employes MCTS to select the best local optimization
processes. Although these methods have adeptly laid out a
comprehensive framework for navigating the search space,
the task of identifying the most promising subspace from
the sample data remains a challenge.

Another category of global optimization methods require
the access to the formulation and rely on precise anticipation
of objective function values within predefined regions. They
employ the branch-and-bound algorithms in which they con-
stitutes a robust framework that systematically partitions the
solution space into more accessible sub-regions referred to
as branches. The evaluation of each branch is made accord-
ing to its potential to outperform the current optimal solution
based on the bounding of objective function intervals spe-
cific to that branch. As the algorithm advances, it tactically
prunes branches that can be definitively identified as inca-
pable of providing a superior solution. The typical solvers
for this category are BARON (Tawarmalani and Sahinidis
2005; Sahinidis 2023) and Gurobi (Gurobi Optimization
2023). BARON (Tawarmalani and Sahinidis 2005; Sahinidis
2023) is explicitly tailored to address non-convex global op-
timization problems by strategically exploring the solution
space. Its purpose is to either uncover globally optimal so-
lutions or provide verified lower bounds for the optimal ob-
jective value. It achieves this through accurate bounding of
non-linear terms with several exceptions such as trigonomet-
ric functions and min/max functions. Gurobi (Gurobi Opti-
mization 2023) is a widely used commercial optimization
solver famous for its proficiency in handling quadratic pro-
gramming problems and various optimization scenarios.

Preliminary
Problem Formulation. We consider the problem of min-
imizing an objective function f(x) : Ω → R, where the
domain Ω ⊆ Rn is compact. In our approach, we assume
that we have access to the analytical form of the function
f(x), enabling us to query its first-order derivative vector
G(x) = f ′(x), the second-order partial derivative Hessian
matrix H(x) = f ′′(x), and evaluate the function value in-
terval f(B) over a specified input box B ⊆ Ω.

Interval Arithmetic. Interval computation is a mathemat-
ical and computational approach that operates on quan-
tities and variables represented as intervals (Alefeld and
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Figure 1: Steps in each iteration of the MCIR algorithm

Herzberger 2012). In this context, for a function f defined
on an input box domain B, the value of f(B) is expressed
as an interval [lb, ub], where for every x within B, the func-
tion value satisfies the inequality lb ≤ f(x) ≤ ub.

Monte Carlo Tree Search. MCTS effectively balances
exploration and exploitation based on the theory of multi-
armed bandits. The MCTS framework consists of four main
steps: Selection, Expansion, Simulation, and Backpropaga-
tion. During the Selection step, the search tree is traversed
from the root node to a leaf node. The Upper Confidence
Bound for Trees (UCT) value, defined as Eq. 1, is used to
select the best child of a parent node:

ν(ni) =
Ri

Ni
+ C ·

√
2 · ln(Np)

Ni
(1)

Here, Ri represents the rewards obtained on child node ni,
Ni is the number of visits to ni, Np is the number of vis-
its to ni’s parent node np, and C is a constant that balances
exploration and exploitation. From the root node, the algo-
rithm recursively select the child node with the highest UCT
value, until a leaf node is reached. During the Expansion
step, a new child node is added to the selected leaf node.
In the Simulation step, a random simulation is performed
from the newly added child node until a terminal node is
reached, and the simulation reward is estimated. Finally, in
the Backpropagation step, the simulation reward is propa-
gated backward from the expanded node to the root node,
whose statistics are updated accordingly.

Monte Carlo Tree Search with Interval
Bounds and Regional Estimation

Overview. The pseudocode of MCIR is provided in
Alg. 1, and a high-level visualization is depicted in Fig. 1.
Our MCIR algorithm employs a search tree structure con-
structed based on collected samples of the objective function
and follows a systematic searching approach in each itera-
tion. Each node in the tree contains a batch of samples en-
compassed within a box domain associated with that node.
In every iteration, we select a leaf node np using a modi-
fied UCT formula with function evaluation on the box, and
we expand the selected node by adding new child nodes nci
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generated from random sampling (Fig. 1 (a)). We also iden-
tify another new child node n∗ by leveraging the regional
estimation based on gradient and Hessian within the neigh-
borhood of the selected node np (Fig. 1 (b)). The node n∗

represents a node superior to the selected np, and we attach
it with the root node. This attachment allows us to prioritize
the search on this node, thereby accelerating the search pro-
cess (Fig. 1 (c)). For each newly created node we run local
optimization with limited steps to enhance the quality of the
best-found sample on it.

Note that despite the special design of different parts
of MCTS for the optimization context, the proposed algo-
rithm ensures non-zero probability of sampling any neigh-
borhood with positive measure in the input space. Conse-
quently, MCIR is complete in the sense that it will eventu-
ally find an ε-neighborhood around the optimal value of any
continuous function with arbitrarily small positive ε.

Sub-domain Marking. Samples are the primary informa-
tion in each node of the search tree that our algorithm build.
Around each sample, we mark up the subdomain around it
that is considered at the node. The subdomain, typically a
hyperbox, will be the focus of local search and optimiza-
tion at the node, for determining the value of a node. We
use the notation Bi to denote the box subdomain associ-
ated with the node ni. In the first iteration, the root node
nroot encompasses the entire search space, Broot = Ω, with
the function’s lower bound on Broot denoted as lbroot =
lb(f(Broot)), and its box volume Vroot represented in loga-
rithmic scale. For subsequent iterations, box Bi is assigned
to a node ni, while lbi and Vi will be updated according to
formulas to be described below. To compute the lower bound
of the objective function within a specified input box domain
efficiently using global interval bounding (Ninin 2016).

Path Selection. The key to our design is a modified UCT
formula that considers both exploration and exploitation.
The pseudocode of this procedure can be found in the SE-
LECT function in Alg. 1. For each child node nci with
i = 1, ..., and its parent node np, the UCT value u(nci)
is determined by the following equation:

u(nci) = −y∗ci −Clb · lbci −Cv · Vci +Cx ·
√

logNp

Nci
(2)

In this formula, Clb, Cv and Cx are weights for the func-
tion’s lower bound, the volume of the box, and visitation-
based exploration, respectively. The variables Np and Nci

denote the number of visits to the parent node np and the
child node nci. y∗ci indicates the current best function value
discovered on the node nci, and lbci corresponds to the lower
bound of the function’s interval value on the node nci. The
term Vci is the volume (in logarithmic scale) of the box
where the lower bound is identified. It is worth noting that
after the creation of new child nodes, the function lower
bound lbp and the box volume Vp on the parent node np

can be updated, as detailed in the subsequent section.
This formulation takes into account the following factors

to balance exploration and exploitation: (1) the best func-
tion value observed within the box domain, (2) the lower
bound of the function value within the domain from interval

computation, which reflects the potential best function value
upon further exploitation, (3) the volume of the box where
the lower bound is determined, related to the reliability of
the function lower bound prediction, and (4) the frequency
of node visitation. While we considered other ingredients -
such as upper function value bound, or values from leverag-
ing the function’s analytical form - to put into the formula,
the design in Eq. 2 turns out to be the most effective.

Utilizing Eq. 2, our algorithm tends to redirect its atten-
tion to probe alternative sub-domains when a local optimum
is identified. When a box is tight enough, the variance of the
objective function in the box is low, so the identified local
optimum within the box lbci is relatively accurate.

If this lbci is close to the minimum of all other lbci′ , it
indicates a near-optimal solution has been identified. Con-
versely, if an lbci′ exists that is substantially lower than the
current lbci, the search scheme leans towards selecting the
node with the lower lbci′ value in the subsequent iteration
due to the path selection criterion Eq. 2. In summary, Eq. 2
within our algorithm helps strike a balance between exploit-
ing the neighbor region around the current best-found point
and exploring other domains that might contain lower func-
tion values.

Tree Expansion. In our algorithm, we utilize two steps to
expand the tree effectively. The first step involves sampling
within the box of the parent node and generating new child
nodes based on these chosen samples. The second step em-
phasizes learning a high-quality sample point by leveraging
both global Hessian and local gradients.

After selecting the leaf node, we proceed to exploit the
function space by sampling and creating a cluster of child
nodes within the corresponding box (EXPAND in Alg. 1).
To ensure comprehensive coverage, we divide the box Bp

into distinct subsets Bci for each child node nci, satisfying
∪{Bci} = Bp and Bci ∩ Bcj = ∅, i ̸= j. Additionally,
local optimization may be applied to each individual child
node nci to improve sample quality. When a child node nci

is created, we ascertain its function lower bound lbci through
interval propagation of the corresponding box Bci: lbci =
lb(f(Bci)). Once the cluster of child nodes is created and
their boxes fully cover the parent box Bp, we update the
lower bound on the parent node lbp = min(lbci) = lbcj
and the volume of the associated box Vp = Vcj , where i =
1, .., j, .... This update will be propagated to the root node.

Next, we learn a representative node n∗ using the current
set of samples nci from the selected node np, as outlined in
Alg. 1 LEARN. This step is performed by computing the di-
agonal of the Hessian matrix, diag(H), for each child node
nci, and estimating the expected value. Furthermore, we col-
lect the gradient information G around the best sample of
nci, i = 1, ... and perform a step of Newton’s method (or
gradient decent when Newton’s method is not conductive to
minimization), starting from the best sample. The average
Hessian, derived from the broad region within the box, rep-
resents the overall curvature characteristics of the box. By
integrating locally-averaged gradient information, we can
identify a sub-region within the box that is more likely to
encompass a minimum. The learned representative node, de-
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Algorithm 1: Monte Carlo Tree Search with Interval Bounds and Regional Estimation (MCIR)
1: function MCIR(objective: f , domain: Ω)
2: n0 ← None ▷ root without sample
3: B0 ← Ω, lb0 ← f(Ω), V0 ← V (B0)
4: for step = 1, ..., t do
5: np ← Select(n0)
6: EXPAND(np)
7: LEARN(np)
8: BACKUP(np)
9: end for

10: return y∗0
11: end function
12:
13: function SELECT(node: n)
14: np ← n
15: while np has children do
16: for nci ∈ np.children do
17: u(nci)← u(y∗ci, lbci, Vci) by Eq. 2
18: end for
19: j ← argmaxi u(nbi)
20: np ← ncj

21: end while
22: return np

23: end function
24:
25: function BACKUP(node: np)
26: if np has children then
27: {nci} ← np.children
28: y∗p = mini y

∗
ci

29: j = argmini lbci
30: lbp = lbcj
31: Vp = Vcj

32: end if
33: BACKUP(np.parent)
34: end function

1: function EXPAND(node: np)
2: B = Bp

3: while B ̸= ∅ do
4: xci ← x ∈ B
5: xci ← LocalOpt (xci, Bci)
6: nci ← xci ∈ B
7: Bci ← b ∈ B, xci ∈ b
8: lbci ← f(Bci)
9: Vci ← V (Bci)

10: B ← B\Bci

11: np.children.append(nci)
12: end while
13: end function
14:
15: function LEARN(node: np)
16: nci ← np.children
17: H ← Hessian(xci), i = 1, ...
18: j ← argmini (ybi)
19: {x′} ← x, for |x− xcj | < δ

20: G = grad(x′)
21: for d = 1, ..., dims do
22: if Hdd > 0 then
23: x∗

d = xcj,d −Gd/Hdd

24: else
25: x∗

d = xcj,d −Gd

26: end if
27: end for
28: n∗ ← x∗

29: B∗ ← Bcj , centered at x∗

30: lb∗ ← f(B∗), V ∗ ← V (B∗)
31: x∗ ← LocalOpt (x∗, B∗)
32: n0.children.append(n∗)
33: end function

noted as n∗, is attached to the root node. Note that this at-
tachment means the root node can have children nodes nci

and ncj where Bci∩Bcj ̸= ∅. This step grants n∗ higher pri-
ority in subsequent iterations. Such prioritization promises
to guide the search toward a favorable region, thereby re-
ducing unnecessary tree expansion and preserving tree man-
ageability. Considering that this step may expand the tree’s
first level of children in every iteration, an extra step may be
taken to evaluate the quality of the newly learned node and
prune unnecessary ones.

Local Optimization. Upon creating a child node, we have
the option to conduct local optimization steps to improve
the quality of the samples on the node. While this step is
not obligatory, it offers a beneficial opportunity to refine
the samples on each node. To ensure efficient execution, the
number of optimization steps is typically kept at a low value,
preventing over-exploitation of the immediate local neigh-
borhood. Local optimization can utilize a variety of numer-
ical optimization algorithms. Since the representative node
has already been learned using second-order information,
we make quasi-Newton methods such as L-BFGS-B (Byrd

et al. 1995; Zhu et al. 1997) the default choice for local op-
timization. To ensure computational efficiency, we limit the
number of function evaluations during the local optimiza-
tion. In most cases we cap the number of iterations at fewer
than 50, as we do not want to overemphasize the choice of
the local optimizer. It is worth mentioning that alternative lo-
cal optimization algorithms can be employed based on spe-
cific requirements and preferences.

Backward Propagation. After creating and locally opti-
mizing children nodes nci and n∗, we back propagate three
important values upwards as in Alg. 1 BACKUP, to enhance
efficient exploration and decision-making in the subsequent
steps.

Firstly, we update the best function value y∗ci found on
the child node nci, to the parent node np with y∗p . This en-
sures that the parent node retains the most optimal func-
tion value discovered within its subtree. Secondly, we up-
date the lower bound of the function interval value lbp on
the parent node np with lbp = min(lbci). Given that the
newly created child nodes comprehensively cover the box of
the parent node, this update provides more precise informa-
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tion guiding the search towards the global minimum. Lastly,
we propagate the size of the box Vci from which the lower
bound of the function value originates: Vp = Vcj , where
j = argmini lbci. This box size represents the uncertainty
in the input search space concerning the approximated func-
tion interval value. The same propagation is applied to the
node n∗, even though its parent is the root node.

Experiments

Benchmarks. To evaluate the performance of our algo-
rithms, our benchmark sets include three distinct categories:
synthetic functions designed for nonlinear optimization,
bound-constrained non-convex global optimization prob-
lems derived from real-world scenarios, and neural networks
fitted for single valued functions. It is important to note that
our approach relies on having access to the symbolic expres-
sion of the objective function and do not consider other rela-
tional constraints to the variables (e.g., ”<=”). As a result,
benchmark sets that are commonly used for black-box opti-
mization problems and constraint optimization problems are
not applicable in our case.

Synthetic functions are widely-used in nonlinear opti-
mization benchmarks (Lavezzi, Guye, and Ciarcià 2022).
These functions usually have numerous local minima, val-
leys, and ridges in their landscapes which is hard for normal
optimization algorithms. In our tests, we choose three func-
tions: Levy, Ackley, and Michalewicz, and examine our al-
gorithm’s performances on the functions in 50d, 100d, and
200d. For our evaluation of non-convex global optimiza-
tion problems in various fields, we select bound-constrained
problems from the collection presented in (The Optimiza-
tion Firm 2023; Puranik and Sahinidis 2017) that do not in-
volve any additional inequality or equality constraints. To
strike a balance between computational resources and the
complexity of the function landscapes, we specifically select
functions with input dimensions between 30 and 1000, and
ensure that the functions could be evaluated within a reason-
able time, considering the computational cost of computing
the gradient and Hessian. The chosen functions for our eval-
uation include Biggsbi1 (1000d), Harkerp (100d), and Wat-
son (31d). It is worth noting that this set of test functions is
also utilized in the development of BARON (Tawarmalani
and Sahinidis 2005) and continues to be used in the latest
version (Sahinidis 2023). In addition to the aforementioned
problems, we also explore the application of one-layer neu-
ral networks with ReLU activation functions fitted for spe-
cific objective functions. The nonlinearity introduced by ac-
tivation functions and the partitioning of the input space
pose challenges in finding the global minimum of neural
networks. To assess the performance of our algorithm, we
train neural networks with varying numbers of input dimen-
sions and one layer of 16 hidden unite. We translate the en-
tire network into an analytic expression form, enabling us
to evaluate the algorithm’s effectiveness in optimizing neu-
ral network models. We conduct our experiments on a local
machine with Intel(R) Core(TM) i7-8700 CPU @ 3.20GHz,
16G RAM, and NVIDIA GeForce GTX 1080 graphic card.

Baselines. We select various sampling-based global op-
timization algorithms as baselines for our experiments, in-
cluding: basinhopping (Olson et al. 2012), differential evo-
lution (Storn and Price 1997; Pant et al. 2020), dual anneal-
ing (Xiang et al. 2013), direct (Gablonsky and Kelley 2000),
CMA (Hansen et al. 2023), TuRBO (Eriksson et al. 2019),
LaMCTS (Wang, Fonseca, and Tian 2020b), and Gurobi
(Gurobi Optimization 2023). It should be pointed out that
some algorithms, including TuRBO and LaMCTS, are GPU-
ready. However, due to the limitations of our computational
resources, we refrain from using GPUs for the optimization
process, except for tasks related to training and evaluating
the neural network model. To compensate for the reduced
performance from utilizing the CPU, we extend the timeout
for TuRBO and LaMCTS to be five times of other baselines.

It is important to mention that we do not incorporate
BARON (Sahinidis 2023) as one of our baseline methods,
despite its renowned ability to efficiently bound boxes. The
reason behind this decision lies in the fact that BARON
can manage the functions present in their test sets during
pre-processing, entirely eliminating the need to execute the
optimization algorithm. For instances like Biggsbi1, Hark-
erp, and Watson, BARON can solve them instantly, requir-
ing zero seconds and iterations. Moreover, BARON encoun-
ters challenges with certain function types, including but not
limited to trigonometric functions and min/max functions
(Sahinidis 2023). These types of functions are prevalent in
synthetic test function sets as well as function sets based on
neural networks.

Another consideration is that Gurobi requires expertise
and extra effort to achieve peak performance. While Gurobi
stands out as an exceptionally efficient and versatile opti-
mization solver, especially in the context of non-convex op-
timization problems, it comes with certain prerequisites. Its
handling of non-linear terms, for instance, treats them as
General Constraints, which necessitates extra manual mod-
ification to the objective function expression, as outlined in
(Gurobi Optimization 2023). This specific trait might limit
our ability to deploy it on entire test sets.

Metrics. For each benchmark function, we conduct ex-
periments using baseline algorithms and our proposed algo-
rithm with five different random seeds. The time limits for
the baselines are set to 2 hour. Due to CPU utilization, the
limits for TuRBO and LaMCTS are extended to 10 hours.
Throughout the experiments, we track the best-found func-
tion value until each step and compute the mean and stan-
dard deviation across all runs. This allows us to compare the
final best-found values as well as the speed at which each
algorithm converges to the optimal result.

Overall Performance. Fig. 2 presents performance com-
parisons between the MCIR algorithm and baseline algo-
rithms on the synthetic function benchmark set. For the Ack-
ley function (Fig. 2 first row) and Levy function (Fig. 2 sec-
ond row), CMA emerges as the top-performing algorithm,
followed by MCIR and dual annealing. For the Michalewicz
function (Fig. 2 third row), dual annealing and MCIR de-
livers similar best performance in terms of final optimiza-
tion result, while CMA fails to optimize efficiently. Notably,
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Figure 2: Overall performance of the baselines and MCIR on tested synthetic functions.

Gurobi consistently completes its optimization with just one
function evaluation call. It attains a best function value of
2.02 on Ackley (for three dimensions), 0.0 for Levy in both
50d and 100d, and −0.00016 for Levy-200d (an anomalous
value, because Levy function is greater or equal to 0.0). It
also attains the lowest value amongst all algorithms on the
Michalewicz function.

Fig. 3 offers an in-depth comparison between the MCIR
algorithm and the baseline algorithms across benchmarks
such as Biggsbi1, Harkerp, Watson, and Neural Networks. In
the bound-constrained optimization problems (BCP) of Big-
gsbi1, Harkerp, and Watson (Fig. 3 first row), MCIR exhibits
exemplary performance. It adeptly strikes a balance between
exploring the search space and executing local optimization,
culminating in the precise pinpointing of the global mini-
mum from many suboptimal local minima derived from lo-
cal optimization. CMA shows a performance comparable to
MCIR on Harkerp and Watson, and direct algorithm mir-
rors MCIR’s efficacy on Biggsbi1. Turning our attention to
trained neural networks (Fig. 3 second row), CMA shines on
Ackley-50d, yet MCIR continues to deliver impressive re-
sults. Notably, for Michalewicz-50d and Michalewicz-100d,
MCIR outperforms all other baseline algorithms.

Upon a closer examination of the result curves, it be-
comes evident that the MCIR algorithm’s optimization per-
formance is both commendable and in line with our initial
expectations.

Ablation Study. We conducted ablation studies to ana-
lyze the individual contributions of different components in
our algorithm. Specifically, we investigated the influence of

the number of random samples placed under each selected
node on the Michalewicz-50d function (Fig. 4a), assessed
the effectiveness of local optimization on Michalewicz-50d
(Fig. 4b), and examined the effectiveness of local optimiza-
tion on the Watson-31d (Fig. 4c). Furthermore, we tested the
hyper parameters used in the UCT formula (Eq. 2) using the
Ackley-50d function as depicted in Fig. 4d, 4e, and 4f. From
Fig. 4a, we observed that the number of new nodes placed
after selecting a leaf node should be kept at a moderate level.
Overpopulating the same local region with new nodes does
not significantly enhance performance due to the closeness
of local optima. The significance of local optimization can
be found in Fig. 4b and Fig. 4c. It can be concluded that
local optimization can both improve and hinder the perfor-
mance of the algorithm, as shown Fig. 4c and Fig. 4b, re-
spectively. Therefore, setting a reasonable budget for the
local optimizer is important. A local optimizer with stop-
ping criterion such as improvement threshold could be more
preferable over one with fixed number of iterations. Fig. 4d,
Fig. 4e, and Fig. 4f demonstrate the importance of the lower
bound of the function value in determining the best node
for searching the global minimum. Additionally, the balance
between exploiting nodes excessively and leaving nodes un-
explored becomes evident. The size of the box where the
lower bound originates is the least sensitive hyper parame-
ter, as a smaller box increases the certainty of the function’s
lower bound but has less impact compared to the value of
the function’s lower bound itself.

We have noticed that sometimes the effectiveness of Cv

is limited, but as Cv represents the confidence of the pre-
dicted objective function interval, the choice of Cv highly
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(d), Cv (e), and Cx (f).

depends on the landscape of the objective function. For func-
tions where the bounds are evaluated through rough approx-
imation, Cv becomes important. In our benchmark tests, we
select our hyper parameters Clb, Cv , and Cx that perform
consistently well over multiple tests without requiring too
much fine-tuning. Most of the parameters are shared across
all problems based on the dimension and the type of prob-
lems. In practice, one can start with the setup that provides
the best performance in this paper, and fine tune to specific
tasks based on observed function complexity and landscape.

Conclusion

We introduced a new approach to non-convex optimiza-
tions problems by leveraging analytic and sampling-based
information in an MCTS framework, enabling efficient ex-
ploration and exploitation of the state space. Experiments
results on standard benchmark problem sets demonstrated
clear benefits of the proposed approach. Future work can
focus on reducing the overhead of various numerical com-
putation involved in the proposed algorithm and further op-
timizing the search tree.
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