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Abstract

This work presents an effective depth-consistency Self-
Prompt Transformer, terms as SelfPromer, for image dehaz-
ing. It is motivated by an observation that the estimated
depths of an image with haze residuals and its clear counter-
part vary. Enforcing the depth consistency of dehazed images
with clear ones, therefore, is essential for dehazing. For this
purpose, we develop a prompt based on the features of depth
differences between the hazy input images and correspond-
ing clear counterparts that can guide dehazing models for
better restoration. Specifically, we first apply deep features
extracted from the input images to the depth difference fea-
tures for generating the prompt that contains the haze resid-
ual information in the input. Then we propose a prompt em-
bedding module that is designed to perceive the haze residu-
als, by linearly adding the prompt to the deep features. Fur-
ther, we develop an effective prompt attention module to pay
more attention to haze residuals for better removal. By in-
corporating the prompt, prompt embedding, and prompt at-
tention into an encoder-decoder network based on VQGAN,
we can achieve better perception quality. As the depths of
clear images are not available at inference, and the dehazed
images with one-time feed-forward execution may still con-
tain a portion of haze residuals, we propose a new continuous
self-prompt inference that can iteratively correct the dehazing
model towards better haze-free image generation. Extensive
experiments show that our SelfPromer performs favorably
against the state-of-the-art approaches on both synthetic and
real-world datasets in terms of perception metrics including
NIQE, PI, and PIQE. The source codes will be made avail-
able at https://github.com/supersupercong/SelfPromer.

Introduction

Recent years have witnessed advanced progress in image
dehazing due to the development of deep dehazing models.
Mathematically, the haze process is usually modeled by an
atmospheric light scattering model (He, Sun, and Tang 2011)
formulated as:

I(z) = J(2)T(2) + (1 — T(x))A, )
where I and J denote a hazy and haze-free image, respec-
tively, and A denotes the global atmospheric light, « denotes
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the pixel index, and the transmission map T is usually mod-
eled as T(x) = e~A4=) with the scene depth d(z), and the
scattering coefficient 5 reflects the haze density.

Most existing works develop various variations of deep
Convolutional Neural Networks (CNNs) for image dehaz-
ing (Liu et al. 2019a; Dong et al. 2020; Dong and Pan 2020;
Chen et al. 2021; Jin et al. 2022, 2023; Wang et al. 2023).
They typically compute a sequence of features from the hazy
input images and directly reconstruct the clear ones based on
the features, which have achieved state-of-the-art results on
benchmarks (Li et al. 2019) in terms of PSNRs and SSIMs.
However, as dehazing is ill-posed, very small errors in the
estimated features may degrade the performance. Existing
works propose to use deep CNNs as image priors and then
restore the clear images iteratively. However, they cannot
effectively correct the errors or remove the haze residuals
in the dehazed images as these models are fixed in the it-
erative process (Liu et al. 2019b). It is noteworthy that the
human visual system generally possesses an intrinsic cor-
rection mechanism that aids in ensuring optimal results for
a task. This phenomenon has been a key inspiration behind
the development of a novel dehazing approach incorporat-
ing a correction mechanism that guides deep models toward
better haze-free results generation.

Specifically, if a dehazed result exists haze residuals, a
correction mechanism can localize these regions and guide
the relevant task toward removing them. Notably, NLP-
based text prompt learning has shown promise in guiding the
models by correcting the predictions (Liu et al. 2023). How-
ever, text-based prompts may not be appropriate for tasks
that require solely visual inputs without accompanying text.
Recent works (Herzig et al. 2022; Gan et al. 2023) attempted
to address this issue by introducing text-free prompts into
vision tasks. For instance, PromptonomyViT (Herzig et al.
2022) evaluates the adaptation of multi-task prompts such
as depth, normal, and segmentation to improve the per-
formance of the video Transformers. Nevertheless, these
prompts may not be suitable for image dehazing tasks, as
they could not capture the haze-related content.

To better guide the deep model for better image dehaz-
ing, this work develops an effective self-prompt dehazing
Transformer. Specifically, it explores the depth consistency
of hazy images and their corresponding clear ones as a
prompt. In particular, our study is motivated by the substan-



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

LN

(a) Hazy

(b) Clear

(c) Hazy depth map

(d) Clear depth map (e) Difference map

Figure 1: Haze residuals pose a significant challenge to accurately estimating the depth of clear images, creating inconsistencies
compared to hazy images. A difference map (e) is utilized to locate haze residuals on the estimated depth, while minimal haze
residuals will result in consistent estimates. By analyzing the difference map, we can identify the impact of haze residuals,
leading to the development of improved dehazing models to mitigate this effect and enhance the quality of dehazed images.
The difference map (e) is derived by |hazy depth — clear depth| with equalization for better visualization.

tial difference between the estimated depths of hazy images
and their clear counterparts, i.e., the same scene captured
in the same location should be consistent regarding depth.
Depth is typically related to the transmission map in the at-
mospheric light scattering model as shown in Eq. (1). Thus,
if the dehazed images can be reconstructed accurately, their
estimated depths should be close to those of their clear coun-
terparts at large. However, haze residuals often degrade the
accuracy of depth estimation, resulting in significant dif-
ferences between hazy and clear images, as illustrated in
Fig. 1(e). Yet, the difference map of estimated depths from
images with haze residuals and clear images often points to
the regions affected by haze residuals.

Based on the above observation, we design a prompt to
guide the deep models for perceiving and paying more atten-
tion to haze residuals. Our prompt is built upon the estimated
feature-level depth differences, of which the inconsistent re-
gions can reveal haze residual locations for deep model cor-
rection. On top of the prompt, we introduce a prompt embed-
ding module that linearly combines input features with the
prompt to better perceive haze residuals. Further, we pro-
pose a prompt attention module that employs self-attention
guided by the prompt to pay more attention to haze residuals
for better haze removal. Our encoder-decoder architecture
combines these modules using VQGAN (Esser, Rombach,
and Ommer 2021) to enhance the perception quality of the
results, as opposed to relying solely on PSNRs and SSIMs
metrics for evaluation.

As the depths of clear images suffer from unavailabil-
ity at inference and dehazed images obtained via one-time
feed-forward execution may have haze residuals, we intro-
duce a continuous self-prompt inference to address these
challenges. Specifically, our proposed approach feeds the
hazy input image to the model and sets the depth differ-
ence as zero to generate clearer images that serve as the
clear counterpart. The clear image participates in construct-
ing the prompt to conduct prompt dehazing. The inference
operation is continuously conducted as the depth differences
can keep correcting the deep dehazing models toward better
clean image generation.

This paper makes the following contributions:

* We make the first attempt to formulate the prompt by
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considering the cues of the estimated depth differences
between the image with haze residuals and its clear coun-
terpart in the image dehazing task.

* We propose a prompt embedding module and a prompt
attention module to respectively perceive and pay more
attention to haze residuals for better removal.

* We propose a new continuous self-prompt inference ap-
proach to iteratively correct the deep models toward bet-
ter haze-free image generation.

The Proposed SelfPromer

Our SelfPromer comprises two branches: the prompt branch
and the self-prompt dehazing Transformer branch. The
prompt branch generates a prompt by using the deep depth
difference and deep feature extracted from the hazy input.
The other branch exploits the generated prompt to guide the
deep model for image dehazing. We incorporate a prompt
embedding module and prompt attention module to per-
ceive and pay more attention to the haze residuals for bet-
ter removal. The proposed modules are formulated into an
encoder-decoder architecture based on VQGAN for better
perception quality (Zhou et al. 2022; Chen et al. 2022).

Overall Framework

Fig. 2 illustrates our method at the training stage. Given a
hazy images I, we first utilize trainable encoder Enc(-) to
extract features:

Fene = Enc(1). 2)

Then, we compute the depth difference of the hazy image
I and its corresponding clear image J in feature space:

D; = DE(I); Dy = DE(J), (3a)
F, = Encye ™ (D1); Fo, = Encye (D), (3b)
Fp,, = [Fp, — Fp,|, (3¢)

where DE(-) denotes the depth estimator! (Ranftl et al.
2022). Encf™%"(.) denotes the pre-trained VQGAN encoder

L pre . . .
which is frozen when training our dehazing models.

"We chose DPT_Next_ViT_L_384 to balance accuracy, speed,
and model size: https://github.com/isl-org/MiDaS.
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Figure 2: SelfPromer at training stage. Our method comprises two branches: prompt branch and self-prompt dehazing Trans-
former branch. The prompt branch generates a prompt by using the deep depth difference and deep feature extracted from the
hazy input. The other branch exploits the generated prompt to guide the deep model for image dehazing. We incorporate a
prompt embedding module and prompt attention module to perceive and pay more attention to the haze residuals for better
removal. The proposed modules are formulated into an encoder-decoder architecture based on VQGAN for better perception
quality. MDFM is detailed in Eq. (11). The inference is illustrated in Fig. 3.

Next, we exploit Fp,, to build the Prompt, and develop
a prompt embedding module and a prompt attention mod-
ule in Transformers, i.e., PTB to better generate haze-aware
features:

Prompt = Fp; - FEnc, # Prompt (4a)
# Prompt Embedding  (4b)

Fprg = PTB(Prompt, Fprokmbed), # Prompt Transformer (4c)

FproEmbed = PrOmpt + FEnC7

where Fpopmbeq means the features of prompt embedding.

The generated feature Fprp is further matched with the
learned haze-free Codebook at the pre-trained VQGAN
stage by the Lookup method (Esser, Rombach, and Ommer
2021; Zhou et al. 2022):

Fua = Lookup(Fprp, Codebook). 5)
Finally, we reconstruct the dehazing images J from the
matched features F,,; by decoder of pre-trained VQGAN

Dec™%"(.) with residual learning (Chen et al. 2022) by mu-

pre

tual deformable fusion module MDFM:

J = Dec® (Fu) + MDFM (Fioe, it ). ©6)
where Ff,,. means the encoder features at s scale, while Fprg
denotes the sx upsampling features of PTB. We conduct the
residual learning with MDFM in {1,1/2,1/4,1/8} scales
between the encoder and decoder like FeMaSR (Chen et al.

2022). Here, FL.8. denotes the Fgy in Eq. (2).
Loss Functions. We use pixel reconstruction loss L., code-

book loss Lcoge, perception loss Ly, and adversarial loss

L.qv to measure the error between the dehazed images J and
the corresponding ground truth J:

L = l:rec + )\codeﬁcode + )\per['per + Aadwca\dv, (7)

5329

"""""" Step 1: Obtain clearer images via the trained models /0 prompt |
by setting feature-level depth difference as zero .

set Fp,, =0

Depth
Estimator

M=

Encoder I

B

Encoder

Self-Prompt
Dehazing Transformers

Step 3: Conduct self-prompt dehazing

Figure 3: Continuous Self-Prompt Inference. i prompt in-
ference contains four steps: Sequential execution from top
to bottom. The magenta line describes the ‘self” process that
builds the prompt from the hazy image itself.

where
Lree = [T = I[|1 + Aasim (1 — SSIM(1, 1)), (8a)
Loode = ||Zq — 2q||5, (8b)
Lyer = [|@(T) — ()]]3, (8¢)
Laav = Ey[log D(J)] + E5[1 — log D(J)], (8d)
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where SSIM(-) denotes the structural similarity (Wang et al.

2004) for better structure generation. zq is the haze-free
codebook features by feeding haze-free images J to pre-
trained VQGAN while Zq is the reconstructed codebook
features. ®(-) denotes the feature extractor of VGG19 (Si-
monyan and Zisserman 2015). D is the discriminator (Zhu
et al. 2017). Acode, Apers Aadv, and Agsim are weights.

For inference, we propose a new self-prompt inference
approach as our training stage involves the depth of clear
images to participate in forming the prompt while clear im-
ages are not available at testing.

Self-Prompt Transformers

The self-prompt Transformer contains the prompt generated
by the prompt branch, a prompt embedding module, and a
prompt attention module which is contained in the prompt
Transformer block. In the following, we introduce the defini-
tion of the prompt, prompt embedding module, and prompt
attention module, and prompt Transformer block in detail.
Prompt (Definition). The prompt is based on the estimated
depth difference between the input image and its clear coun-
terpart. It is defined in Eq. (4a) which can better contain haze
residual features as Fp,; with higher response value reveals
inconsistent parts which potentially correspond to the haze
residuals in the input hazy image.

Prompt Embedding. Existing Transformers (Zheng et al.
2022) usually use the position embedding method (Fig. 4(a))
to represent the positional correlation, which does not con-
tain haze-related information so that it may not effectively
perceive the haze residual information well. Moreover, im-
age restoration requires processing different input sizes at
inference while the position embedding is defined with fixed
parameters at training (Zheng et al. 2022). Hence, position
embedding may be not a good choice for image dehazing.
To overcome these problems, we propose prompt embed-
ding which is defined in Eq. (4b). By linearly adding the
extracted features Fg,. with Prompt, the embedded feature
Fproembed perceives the haze residual features as Prompt ex-
tracts the haze residual features. Note that as Fp.ogmpea has
the same size as Fg,, it does not require fixed sizes like po-
sition embedding.

Prompt Attention. Existing Transformers usually extract
Query Q, Key K, and Value V from input features to es-
timate scaled-dot-product attention shown in Fig. 4(c). Al-
though Transformers are effective for feature representation,
the standard operation may be not suitable for image dehaz-
ing. To ensure the Transformers pay more attention to haze
residuals for better removal, we propose prompt attention
ProAtt(+) by linearly adding the query with Prompt:

Q = Q + Prompt, (9a)
T
ProAt(Q, K, V) = Ssz;nax(%) v, (9b)
head

where dpeaq means the number of the head. We set dpeaq as 8
in this paper. Fig. 4(d) illustrates the proposed prompt atten-
tion. Note that as Q in attention is to achieve the similarity
relation for expected inputs (Ding et al. 2021), our prompt
attention by linearly adding the prompt Prompt with the
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Figure 4: (a)-(b) Existing position embedding vs. Prompt
embedding (Ours). Our prompt embedding can better per-
ceive haze information. (c)-(d) Existing regular attention vs.
Prompt attention (Ours). Our prompt attention can pay more
attention to haze residuals.

Query Q can pay more attention to haze residuals for bet-
ter removal.

Prompt Transformer Block. According to the above atten-
tion design, our prompt Transformer block (PTB) can be se-
quentially computed as:

Q,K,V=LNX"), (10a)
X' = ProAnn(Q,K, V) + X', (10b)
X! = MLP (LN(XI)) nda (10¢)

where X!~! and X! mean the input and output of the I
prompt Transformer block. Specially, X0 is the FproEmbed-
LN and MLP denote the layer normalization and multilayer
perceptron. The PTB is shown in the right part of Fig. 2.

It is worth noting that our prompt embedding and prompt
attention are flexible as we can manually set Fp,, = O,
the network thus automatically degrade to the model with-
out prompt, which will be exploited to form our continuous
self-prompt inference.

Mutual Deformable Fusion Module

As VQGAN is less effective for preserving details (Gu et al.
2022; Chen et al. 2022), motivated by the deformable mod-
els (Dai et al. 2017; Zhu et al. 2019) that can better fuse
features, we propose a mutual deformable fusion module
(MDFM) by fusing features mutually to adaptively learn
more suitable offsets for better feature representation:

Offl = Conv (C [FEnca F;’;B]) ) 0ff2 = Conv (C [Fls’,}ll"Bv Fiinc}) ’ (1 la)
Y1 = DMC(Fy, off1); Yo = DMC(Fyig, offy), (11b)

Fuvprm = Conv(C[YhYzD7 (11c)

where Conv(+), C|-], and DMC(-) respectively denote the 1 x
1 convolution, concatenation, and deformable convolution.
offy, (k = 1,2.) denotes the estimated offset.
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Figure 5: Continuous self-prompt inference vs. GT guidance
(Baseline) on the SOTS-indoor dataset. GT guidance means
we use the GT image to participate in forming the prompt at
inference like the process of the training stage, which serves
as the baseline.

Continuous Self-Prompt Inference

Our model requires the depth of clear images during train-
ing, but these images are unavailable at inference. Addition-
ally, dehazed images generated by a one-time feed-forward
execution may still contain some haze residuals. To address
these issues, we propose a continuous self-prompt infer-
ence approach that leverages prompt embedding and prompt
attention through linear addition. By setting feature-level
depth difference Fp; to zero, we can feed hazy images to
our trained network and obtain clearer dehazed results which
participate in building the prompt to conduct prompt dehaz-
ing. The iterative inference is conducted to correct the deep
models to ensure the deep models toward better haze-free
image generation:

j\;«/o prompt _ Nwlo prompt (j\iwf)lpmmpt)7 set Fde- _ 07 # Step 1 ( 12a)
PTOHlPt = FDdiﬂ' . FEnc; FEnc = Enc(j;vflpmmpl), # Step 2 (12b)
jsrompl — Npmmpt (jw/() prompt # Step 3 (12C)

i—1 ) Prompt),
#Step4  (12d)

")7

where N YePompt  denotes our trained network with-
out prompt by setting Fp, as zero, while AP

means our trained network with prompt. Fp,, =
[Encp " (DEIT™)) = Ency (DE(T;"*™™))|.

TWw/o prompt .. . .1 . yW/o prompt
Jo O P denotes the original hazy images, while T, " "

TW/o prompt __ Fprompt .
Jz’ *Jz ’ (Z*172a'

Tw/o prompt .
promp! in

Ji
Eq. (12a) is regarded as the clear counterpart of j;wo prompt.

jl;mmp " means the i prompt dehazing results.

According to Eq. (12), the inference is a continuous self-
prompt scheme, i.e., we get the clear images from the hazy
image itself by feeding it to A/V/°PO™Pt to participate in pro-
ducing the prompt and the inference is continuously con-
ducted. Fig. 3 better illustrates the inference process.

Fig. 5 shows our continuous self-prompt at 2"¢ and 3
prompts outperforms the baseline which uses ground-truth
(GT) to participate in forming the prompt like the process of
the training stage.

is regarded as the image with haze residuals and
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Experiments

In this section, we evaluate the effectiveness of our method
against state-of-the-art ones (SOTAs) on commonly used
benchmarks and illustrate the effectiveness of the key com-
ponents in the proposed method.

Implementation Details. We use 10 PTBs, i.e., I = 10,
in our model. The details about the VQGAN are pre-
sented in the supplementary materials. We crop an image
patch of 256 x 256 pixels. The batch size is 10. We use
ADAM (Kingma and Ba 2015) with default parameters as
the optimizer. The initial learning rate is 0.0001 and is di-
vided by 2 at 160K, 320K, and 400K iterations. The model
training terminates after 500K iterations. The weight param-
eters Acode, Aper, Aadv> and Agsim are empirically set as 1, 1,
0.1, and 0.5. Our implementation is based on the PyTorch.
Synthetic Datasets. Following the protocol of (Yang et al.
2022), we use the RESIDE ITS (Li et al. 2019) as our train-
ing dataset and the SOTS-indoor (Li et al. 2019) and SOTS-
outdoor (Li et al. 2019) as the testing datasets.

Real-world Datasets. Li et al. (2019) collect large-scale
real-world hazy images, called UnannotatedHazylmages.
We use these images as a real-world hazy dataset.
Evaluation Metrics. As we mainly aim to recover im-
ages with better perception quality, we use widely-used
NIQE (Mittal, Soundararajan, and Bovik 2013), PI (Ma
et al. 2017), and PIQE (N. et al. 2015) to measure
restoration quality. Since the distortion metrics PSNR
and SSIM (Wang et al. 2004) cannot model the percep-
tion quality well, we use them for reference only. No-
tice that all metrics are re-computed for fairness. We use
the grayscale image to compute the PSNR and SSIM.
We compute NIQE and PI by the provided metrics at
https://pypi.org/project/pyiqa/. The PIQE is computed via
https://github.com/buyizhiyou/NRVQA.

Main Results

Results on Synthetic Datasets. Tab. 1 and Tab. 2 respec-
tively report the comparison results with SOTAs on the
SOTS-indoor and SOTS-outdoor datasets (Li et al. 2019).
Our method achieves better performance in terms of NIQE,
PI, and PIQE, indicating the generated results by our method
possess higher perception quality. Fig. 6 and Fig. 7 show that
our method restores much clearer images while the evalu-
ated approaches generate the results with haze residual or
artifacts. As we train the network with a one-time feed-
forward process, PSNRs and SSIMs are naturally decreased
(SelfPromer; vs. SelfPromers in Tabs. 1 and 2) when in-
ference is conducted iteratively. We argue distortion metrics
including PSNRs and SSIMs are not good measures for im-
age dehazing as Figs. 6 and 7 have shown methods with
higher PSNR and SSIMs cannot recover perceptual results,
e.g., Dehamer (Guo et al. 2022) and D4 (Yang et al. 2022),
while our method with better perception metrics can gener-
ate more realistic results.

Results on Real-World Datasets. Tab. 3 summarises the
comparison results on the real-world datasets (Li et al.
2019), where our method performs better than the evaluated
methods. Fig. 8 illustrates that our method generates an im-
age with vivid color and finer details.
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Methods GridNet PFDN UHD PSD  Uformer Restormer D4 Dehamer ‘ SelfPromer; SelfPromers
NIQE | | 4.239 4412 4743  4.828 4.378 4.321 4.326 4.529 4.252 4.054
Perception | PI ] 3.889 4.143 4962 4.567 3.967 3.936 3.866 4.035 3.926 3.857
PIQE | | 28.924 32.157 39.204 35.174 29.806 29.384 30.480 32.446 30.596 27.927
Distortion PSNR 1 | 32.306 33.243 16.920 13.934 33.947 36.979 19.142  36.600 35.960 34.467
SSIM 1 | 0.9840 0.9827 0.7831 0.7160 0.9846 0.9900 0.8520  0.9865 0.9877 0.9852

Table 1: Comparisons on SOTS-indoor dataset. Our method achieves better performance in terms of NIQE, PI, and PIQE. The
best results are marked in bold. | (1) denotes lower (higher) is better. SelfPromer; means the ith prompt results.

-

(b) GT (c) UHD (d) PSD

(a) Input (h) Dehamer (i) SelfPromer

(f) Restormer

(e) Uformer (g) D4

Figure 6: Visual comparisons on SOTS-indoor. SelfPromer generates clearer results, even than the GT image.

Methods GridNet PFDN UHD PSD  Uformer Restormer D4 Dehamer [ SelfPromer; SelfPromers
NIQE | | 2.844 2.843 37756 2.884 2.903 2.956 2917 3.164 2.646 2.685
Perception | PI | 2.070 2.326 3381 2392 2.241 2.254 2.137 2.251 2.003 2.027
PIQE | 6.547 6.732 10.891 8.937 6.748 6.904 7.567 6.458 6.577 6.151
Distortion PSNR 1| 16.327 16.872 11.758 15.514 19.618 18.337 26.138  21.389 18.471 16.954
SSIM 1 | 0.8016 0.8532 0.6074 0.7488 0.8798 0.8634 0.9540 0.8926 0.8771 0.8288

Table 2: Comparisons on SOTS-outdoor. SelfPromer achieves better perception metrics including NIQE, PI, and PIQE, sug-
gesting that the proposed method has a better generalization ability to unseen images for more natural results generation.

(h) Dehamer (i) SelfPromer

(g) D4

(a) Input (b) GT (©) UHD (d) PSD (e) Uformer (f) Restormer
Figure 7: Visual comparisons on SOTS-outdoor. SelfPromer is able to generate more natural results. Note that our method
produces more consistent colors in the sky region, while the others generate inconsistent colors and the D4 (Yang et al. 2022)

leaves extensive haze.

nation between deep features extracted from the input and
depth features as the input of the Transformers. Our pro-
posed prompt is compared with these candidates, as illus-
trated in Tab. 4(b) and 4(c), demonstrating that none of these
candidates outperforms our proposed prompt.

Analysis and Discussion

We further analyze the effectiveness of the proposed method
and understand how it works on image dehazing. The results
in this section are obtained from the SOTS-indoor dataset if
not further mentioned. Our results are from the 1% prompt
inference for fair comparisons, i.e., ¢ = 1 in Eq. (12) if not
further specifically mentioned.

Effectiveness of prompt. Initially, we assess the effect of
the prompt on image dehazing. Notably, various prospec-
tive prompt candidates exist, such as image-level depth dif-
ference as the input of the VQGAN encoder or concate-

Note that our method without prompt leads to a similar
model with CodeFormer (Zhou et al. 2022) which directly
inserts regular Transformers into VQGAN. Tab. 4 shows
prompt help yield superior perception quality than the model
without prompt (Tab. 4(a)). The efficacy of our model with
the prompt is further affirmed by Fig. 9, indicating that the
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Methods GridNet PFDN UHD PSD  Uformer Restormer D4 Dehamer [ SelfPromer; SelfPromers;
NIQE | | 4.341 4917 4515 4.199 4214 4213 4.257 4.248 4.161 4.062
Perception | PI'| 3.685 3.736 3.858 3.521 3.429 3.436 3414 3.495 3.477 3.391
PIQE | | 14.699 17.874 23.168 15.851 16.787 17.176 18.678  15.909 16.252 14.026

Table 3: Comparisons on real-world dataset. SelfPromer achieves better performance, indicating that our method is more robust
to real-world scenarios for realistic results generation.

e

(a) Input (b) UHD I (c) PS

(d) Uformer (e) Restormer (f) D4 (g) Dehamer  (h) SelfPromer

Figure 8: Visual comparisons on real-world dataset. Our SelfPromer is able to generate much clearer results.

Experiments NIQE | PI] PIQE |

(a) Without the prompt 4.258 3.937 31.904 . I Recur.

(b) Image-level depth difference 4901 4.343 32.141 4.257 E= Ours w/o prompt
(c) Concat of image and depth features | 4.362 4.077 34.107 P P
(d) Feature-level depth difference (Ours)| 4.252 3.926 30.596 1.0 Bl Ours

Table 4: Effect of the proposed prompt. Feature-level depth
difference is a better prompt formalization. while the con-
catenation in image-level and feature-level between the in-
put image and its depth is not as well as ours.

NIQE (lower is better)
i - ;

=

o

1 2 3 4
The Number of Prompt/Recurrence

Figure 10: Effectiveness of continuous self-prompt (Ours)
vs. recurrent dehazing (Recur.). ‘Ours w/o prompt’ means
the results of Eq. (12a).

(b) w/o prompt  (c) w/ prompt (Ours)

tion. One might ponder the relative efficacy of our prompt
Figure 9: Visual comparisons of the model without prompt embedding and attention in contrast to the prevalent tech-
(b) and with prompt (c) on real-world scenarios. nique of position embedding and regular attention. In this re-
gard, we assess the effect of these embedding approaches in
Tab. 5. The table reveals that our prompt embedding proves

Experiments NIQE | Pl PIQE | more advantageous over the position embedding since the
(a) Without embedding 4.410 4.113 32.193 former is associated with haze residual information. Tab. 5
(b) Position embedding 4.267 3992 31877 indicates that our prompt attention yields better results as
(c) Regular attention 4300  4.102 31486 compared to commonly used attention methods. These find-
(d) Proposed (Ours) 4252 3.926 30.596 ings signify that incorporating prompts in enhancing Query

estimation accounts for the haze information, thereby culmi-
nating in more effective image dehazing results.

Effect of the number of steps in continuous self-prompt.
The inference stage involves several steps to generate the

Table 5: Effectiveness of prompt embedding and attention.

model with the prompt generates better results, while the prompt for better image dehazing. We thus examine the ef-
model without prompt fails to remove haze effectively. fect of the number of steps in the continuous self-prompt.
Effectiveness of prompt embedding and prompt atten- Fig. 10 reveals that the optimal performance is achieved with
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Figure 11: Visual improvement of continuous self-prompt
inference on a real-world example.

a number of steps equal to 3 in the continuous self-prompts
(i.e., 2 = 3 in Eq. (12)), in terms of NIQE. Notably, ad-
ditional prompts do not improve the dehazing performance
any further. One real-world example in Fig. 11 demonstrates
that our continuous self-prompt method can gradually en-
hance dehazing quality.

Continuous self-prompt vs. recurrent dehazing. We use
the continuous self-prompt approach to restore clear images
progressively at inference. To determine whether a recurrent
method that is training our model without prompt achieves
similar or better results, we compare our proposed method
with it in Fig. 10, demonstrating that the recurrent method is
not as good as our continuous self-prompt.

Continuous self-prompt vs. GT guidance. Fig. 5 compares
the NIQE performance of ground truth (GT) guidance with
that of the continuous self-prompt algorithm. Results show
that while GT guidance performs better than the 1% prompt,
it falls short of the effectiveness of the 2"! and 3™ prompts.
This is likely due to GT guidance’s limited ability to handle
haze residuals which may still exist in the dehazed images,
which are addressed by the self-prompt’s ability to exploit
residual haze information to progressively improve dehaz-
ing quality over time. Moreover, as GT is not available in
the real world, these findings may further support the use of
self-prompt as a more practical alternative.
Depth-consistency. Fig. 12 shows heat maps of depth differ-
ences obtained by the continuous self-prompt inference with
different prompt steps. The results demonstrate both image-
level and feature-level depth differences decrease as the
number of prompt steps increases, indicating the depths ob-
tained with the prompt, i.e., Eq. (12c), become increasingly
consistent with those obtained without it, i.e., Eq. (12a).

Applications to Low-Light Image Enhancement

Furthermore, we extend the application of our method, Self-
Promer, to the domain of low-light image enhancement. To
assess its performance, we conduct a comparative analy-
sis with current state-of-the-art methods, SNR (Xu et al.
2022) and LLFlow (Wang et al. 2022). All these methods
are trained using the widely adopted LOL dataset (Wei et al.
2018). Fig. 13 shows several visual examples sourced from
real-world benchmarks (Lee, Lee, and Kim 2013; Guo, Li,
and Ling 2017). These illustrative results effectively under-
score our approach is capable of generating results that are
notably more true-to-life, with colors that appear more nat-
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Figure 12: Illustration of continuous depth-consistency. Ref-
erence means the depth difference between the input hazy
image and GT. The input haze image is Fig. 1(a).

ural. On the contrary, existing state-of-the-art methods tend
to yield results that suffer from under-/over-exposure issues.

(b) SNR

(¢) LLFlow (d) SelfPromer

(a) Input

Figure 13: Applications to low-light image enhancement on
challenging real-world examples.

Conclusion

We have proposed a simple yet effective self-prompt Trans-
former for image dehazing by exploring the prompt built on
the estimated depth difference between the image with haze
residuals and its clear counterpart. We have shown that the
proposed prompt can guide the deep model for better image
dehazing. To generate better dehazing images at the infer-
ence stage, we have proposed continuous self-prompt infer-
ence, where the proposed prompt strategy can remove haze
progressively. We have shown that our method generates re-
sults with better perception quality in terms of NIQE, PI, and
PIQE.
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