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Abstract

Few-shot learning poses a formidable challenge as it ne-
cessitates effective recognition of novel classes based on a
limited set of examples. Recent studies have sought to ad-
dress the challenge of rare samples by tuning visual fea-
tures through the utilization of external text prompts. How-
ever, the performance of these methods is constrained due
to the inherent modality gap between the prompt text and
image features. Instead of naively utilizing the external se-
mantic information generated from text to guide the train-
ing of the image encoder, we propose a novel self-prompt
mechanism (SPM) to adaptively adjust the neural network
according to unseen data. Specifically, SPM involves a sys-
tematic selection of intrinsic semantic features generated by
the image encoder across spatial and channel dimensions,
thereby engendering self-prompt information. Subsequently,
upon backpropagation of this self-prompt information to the
deeper layers of the neural network, it effectively steers the
network toward the learning and adaptation of new sam-
ples. Meanwhile, we propose a novel parameter-efficient tun-
ing method that exclusively fine-tunes the parameters rele-
vant to self-prompt (prompts are no more than 2% of the
total parameters), and the incorporation of additional learn-
able parameters as self-prompt ensures the retention of prior
knowledge through frozen encoder weights. Therefore, our
method is highly suited for few-shot recognition tasks that
require both information retention and adaptive adjustment
of network parameters with limited labeling data constraints.
Extensive experiments demonstrate the effectiveness of the
proposed SPM in both 5-way 1-shot and 5-way 5-shot set-
tings for standard single-domain and cross-domain few-shot
recognition datasets, respectively. Our code is available at
https://github.com/codeshop715/SPM.

Introduction

Despite the significant advancements achieved by deep
learning in computer vision, it typically relies on a vast
number of labeled samples, which deviates from the hu-
man learning process. Few-shot learning (Finn, Abbeel, and
Levine 2017; Munkhdalai et al. 2018; Antoniou, Edwards,
and Storkey 2018) aims to bridge the gap between human
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Figure 1: Semantic prompt and self-prompt mechanism for
few-shot image recognition. (a): The semantic prompt meth-
ods require additional text information and text encoder
to generate the external prompts. (b): Our proposed self-
prompt mechanism does not necessitate additional informa-
tion, and only a tiny amount of parameters need to be fine-
tuned to generate prompts derived from the intrinsic seman-
tic information of the image encoder.

intelligence and learning machines by addressing the chal-
lenge of learning from a limited amount of labeled train-
ing data and generalizing to unseen data. Few-shot image
recognition is indeed an extensive research task in the field
of few-shot learning algorithms. The objective of few-shot
image recognition is to develop models that can effectively
adapt to recognize and classify unseen classes with limited
sample data. This task is particularly challenging as it re-
quires learning discriminative features from a few labeled
data (Zhang et al. 2022; Afrasiyabi et al. 2022).

Due to the scarcity of labeled samples in new classes, a
simple method is to utilize information from other modal-
ities as auxiliary guidance. Recently, with the introduction
of the CLIP model (Radford et al. 2021), a series of text-



The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

based semantic prompt methods (Chen et al. 2023; Zhu et al.
2023; Jeong et al. 2023) have emerged to guide the training
of the visual modules. As shown in Figure 1 (a), these meth-
ods typically follow the training paradigm of CLIP, where
separate text encoder and image encoder are employed to
generate discriminative image features based on text embed-
dings. Despite the significant success of text-based seman-
tic prompt methods in the field of few-shot learning, most
of the mentioned methods suffer from the following issues.
Firstly, semantic prompts rely on generated or manually au-
thored textual information. Although large language models
such as BERT (Devlin et al. 2019) and GPT (Radford et al.
2018) can extract rich textual information from class names,
the diversity in textual descriptions for the same class re-
sults in inaccurately generated semantic prompts. Secondly,
text-based prompt methods require additional text encoders
to extract features from textual information, leading to addi-
tional computational overhead. Thirdly, the information gap
resulting from distinct modalities of text and images restricts
the effectiveness of text features in providing optimal exter-
nal semantic prompts for visual feature learning, due to mis-
alignment between text and visual features generated by the
network.

To address the aforementioned three issues, inspired by
the human cognitive process (LEE 2002; Yu and Dayan
2004; Baifeng, Trevor, and Xin 2023) and human metacog-
nitive ability (Salles et al. 2016), we propose a novel self-
prompt mechanism to guide the training of visual networks.
Intuitively, humans have the metacognitive ability to sum-
marize based on past experiences and provide self-prompt
when encountering similar problems or tasks (Fleming and
Dolan 2012), allowing them to modify their strategies or di-
rections of action in order to align explicitly with the goal
of the tasks. We propose a novel scheme that leverages this
human mechanism by applying the self-prompt mechanism
into the few-shot learning process, as illustrated in Figure
1 (b). Specifically, the guidance of the learning process is
achieved through a top-down approach. We perform spatial
and channel selection on the deep layer features of the im-
age encoder to generate intrinsic self-prompt information for
unseen classes or domains, and then transmit the generated
prompt information back to the deep layers of the network
to adaptive adjustment of the feature extraction process. By
prompting the calculation process of self-attention, our pro-
posed self-prompt mechanism can guide the training of the
image encoder to extract discriminative features from un-
seen data.

Furthermore, since different unseen classes or domains
present distinctive feature requirements (Li, Liu, and Bilen
2022), it is imperative for the network to possess a versatile
and efficient adaptation mechanism capable of effectively
handling the significantly diverse semantic characteristics
of unseen classes or domains. Simultaneously, the network
should be parameter-efficient to adjust adaptive parameters
when confronting unseen classes or domains that have only a
limited number of labeled data. To address these challenges,
we propose a novel parameter-efficient tuning method that
exclusively fine-tunes the parameters relevant to self-prompt
according to unseen data, requiring adjustments of no more
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than 2% of the total network parameters. Therefore, this
method also ensures the retention of prior knowledge in the
form of frozen encoder weights, which is particularly suit-
able in the context of limited data availability. Meanwhile,
our proposed method offers a unified adaptive method de-
signed for few-shot image recognition tasks in both single-
domain and cross-domain scenarios. Our main contributions
can be summarized as follows:

* We propose a novel self-prompt mechanism for few-shot
image recognition. This mechanism is inspired by the hu-
man cognitive process and aims to adaptively tune the
network to learn discriminative features according to the
self-prompts.

* We have devised a feature selection strategy across spa-
tial and channel dimensions to proficiently generate in-
trinsic self-prompt information, which is harnessed to
guide self-attention computation.

* We propose a novel parameter-efficient tuning method
that exclusively fine-tunes the parameters relevant to self-
prompt (prompts are no more than 2% of the total pa-
rameters), and the incorporation of additional learnable
parameters as self-prompt ensures the retention of prior
knowledge through frozen encoder weights.

* We have evaluated our proposed self-prompt mecha-
nism for few-shot image recognition (for short, SPM)
on both the single-domain and cross-domain bench-
mark datasets, including Mini-ImageNet, CIFAIR-FS,
and CDFSL. SPM achieves promising results, improving
the state-of-the-art 1-shot and 5-shot recognition accu-
racy by 1.97% and 1.45% on average, respectively. Ad-
ditionally, ablation experiments demonstrate the effec-
tiveness of the proposed feature selection strategy and
parameter-efficient tuning scheme.

Related Works

Few-shot image recognition. Few-shot image recognition
is a significant subarea within the field of few-shot learning.
Unlike common recognition tasks, few-shot image recogni-
tion tasks involve a task distribution shift between the train-
ing and test sets. Typically, few-shot recognition tasks can
be categorized into two different scenarios. The first type
is in a single-domain scenario, where a category shift ex-
ists between the training and test sets. There are two main
streams of learning methods in this scenario, optimization-
based and metric-based. For example, as a representative
of optimization-based methods, MAML (Finn, Abbeel, and
Levine 2017) and its variants (Sun et al. 2019) aim to learn
a proficient model initialization capable of swift adaptation
to novel classes within a limited number of optimization
steps. Alternatively, metric-based methods aim to represent
the samples in an appropriate feature space and then calcu-
late the distance between a query and the centroid of a set
of support examples (Vinyals et al. 2016; Hu et al. 2022;
Afrasiyabi et al. 2022). The second type involves a cross-
domain scenario, which is more challenging compared to
the single-domain scenario. In addition to the category shift,
there is also a domain shift between the training and test
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Figure 2: Our proposed self-prompt mechanism generates self-prompt information by selecting deep layer features of the
network in spatial and channel dimensions and then transmits this self-prompt information to the deeper layers of the network,
thereby modifying the calculation process of self-attention to guide network training.

sets. This kind of task is mainly dealt with through adaptive
adjustment of network parameters (Luo, Xu, and Xu 2022;
Zhao, Zhang, and Tian 2023; Yi et al. 2023). In contrast
to the aforementioned methods, we propose a self-prompt
mechanism to adaptively generate features suitable for un-
seen classes or domains. Our method is applicable not only
to few-shot image recognition tasks in single-domain sce-
narios but also to those in cross-domain scenarios.

Prompt learning. Prompt learning (Liu et al. 2023) has
emerged as a highly efficient technique for adapting the
Transformer models in the field of computer vision. By in-
corporating a set of learnable parameters into the input and
intermediate representations of a pre-trained model, Trans-
former can be adapted to specific tasks and domains. Re-
cent works (Lester, Al-Rfou, and Constant 2021; Li and
Liang 2021; Liu et al. 2021) propose to treat the prompts
as class-specific continuous vectors and directly optimize
them via gradients during fine-tuning. These studies un-
derscore the potential of harnessing the intrinsic capabili-
ties of Transformer to enhance adaptation methods across
a broad spectrum of computer vision tasks. Simultaneously,
VPT (Jia et al. 2022) introduces learnable tokens at each
layer of Transformer, enabling interaction with patch and
class tokens. These learnable tokens and the classifier head
are jointly optimized to achieve effective adaptation. Addi-
tionally, (Chen et al. 2023) employs large language mod-
els and leverages new text information to guide the train-
ing of visual models for few-shot image recognition. How-
ever, these methods often rely on information from other
modalities or need to generate additional external prompts
to participate in self-attention calculations, leading to in-
creased computational costs due to the quadratic complex-
ity of the self-attention layer. In contrast, our proposed self-
prompt mechanism generates intrinsic self-prompt informa-
tion that is transmitted to the deep layers of Transformer
and is parameter-efficient, which only needs to fine-tune a
tiny amount of parameters to be suitable for few-shot image
recognition tasks in different scenarios.
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Method
Overview

The core of the proposed self-prompt mechanism is to adap-
tively adjust the model parameters according to unseen
classes or domains. The complete pipeline of our proposed
method is illustrated in Figure 2. First of all, we input sup-
port set images and query set images into the model and
extract features by Vision Transformer (ViT) (Dosovitskiy
et al. 2020). Simultaneously, we perform feature selection
on the semantic features from the deep layers of the network,
generating self-prompt information. Meanwhile, we prop-
agate the generated self-prompt information to guide the
training process of the calculation process of self-attention
in the deep layers of the network. It is worth noting that
during meta-training, we train the parameters of the image
encoder, while during meta-testing, we utilize the proposed
parameter-efficient tuning method to fine-tune only a tiny
amount of parameters.

The Self-Prompt Mechanism

Self-Prompt Generation and Projection. Humans can
be capable of summarizing experiences and lessons learned
from previous tasks, enabling them to adjust strategies and
correct directions based on past experiences when encoun-
tering similar or related tasks (LEE 2002; Yu and Dayan
2004). The proposed self-prompt mechanism simulates this
human process by extracting and refining deep layer fea-
tures of the network and fine-tuning the network in a top-
down manner to adapt to different unseen classes. Specif-
ically, we employ a standard ViT model as our backbone
and apply the self-prompt mechanism to the last three layers
of the Transformer structure. To ensure the accuracy of the
self-prompt information extracted, we perform feature selec-
tion on both the spatial and channel dimensions of the net-
work. Specifically, we first apply spatial dimension selection
to the feature F € RV*P where N represents the number
of tokens and D represents the dimension of the feature to
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which each token is mapped. Subsequently, a learnable spa-
tial prompt vector s € R is trained and normalized, which
is then element-wise multiplied with the same normalized
deep-layer features F € RY*P | resulting in vector m:

m = Norm(F) x Norm(s). (1

And then, we can obtain the mask vector m € RY of the
spatial dimension through rounding operation according to
the following formula:

m= 0

=1

where the value of i ranges from 1 to N. Finally, m € RN
is used to perform mask operation on the deep feature F €

RN*P thus realizing the feature selection of the spatial di-
mension. The specific calculation process is as follows:

m; S 0.5;

2
m; > 0.5, 2)

F,=FO&om, 3)

where © is the broadcasted element-wise product and F; is
the feature obtained after spatial selection. Meanwhile, we
also define a learnable matrix C € RN*P which is multi-
plied with the matrix after spatial mask processing to select
the channel-wise features, thereby generating features ob-
tained after channel selection F.. The specific calculation
process is as follows:

F.=F, xC. 4

It is noteworthy that both the spatial prompt vector s € R
and the channel prompt matrix C € R”>*P mentioned above
are trainable. Moreover, our network is capable of adap-
tively adjusting the features of different classes or domains,
in order to adapt to the few-shot recognition tasks in single-
domain or cross-domain scenarios. Furthermore, the varying
depths of the network demonstrate specialization in captur-
ing and emphasizing distinct sets of features. The shallow
layers primarily emphasize the texture and details of the im-
age, while the deeper layers focus more on semantic infor-
mation. Meanwhile, for classification tasks, the semantic in-
formation contained in the images is of vital importance. As
a result, during the training process of the network, we gen-
erate self-prompt information for the last three layers of the
backbone network.

Self-Prompt Projection. We employ three optional pro-
jection methods: identity, linear, and MLP mapping, re-
spectively. Taking MLP projection as an example, the self-
prompt projection process is as follows:

P=MLP(F,), 5)

where P € RN*XP is the ultimate self-prompt matrix we
generate. By further projection of the self-prompt informa-
tion, the information guiding the network training process
can be adjusted to adapt to unseen classes or domains. It is
worth noting that different mapping methods correspond to
different amounts of adjustable parameters, we will further
introduce the selection of projection methods in the experi-
mental section. In this paper, the identity mapping method is
adopted by default.
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Self-Prompt Attention. Inspired by the cognitive process
of humans, where individuals can adapt their strategies ac-
cording to different task requirements, we similarly guide
the initialization of the query vectors in the self-attention
calculation process at deeper network layers. Specifically,
we require the network to have knowledge of ‘what to
query’. Therefore, we reshape the generated self-prompt in-
formation P € RNV*P to match the dimensions of the query
vectors, and then add them together. This modification aims
to guide the learning process of the network. Concretely, the
self-attention calculation (Vaswani et al. 2017) is modified
as follows:

0.K,V=W,(X+P), WX, WyX, (6)

: 9(K)"
Attention(Q,K, V) = Softmax
(Q7 ) ) f ( m
where X € RV*P is the input to the original self-attention
calculation process, P € RV XD represents the self-prompt
matrix generated in the previous section, and Vdy, is the
scaling factor. By employing self-prompt information as
guidance in the training process of self-attention, the net-
work can adaptively adjust its learning process based on the
varying feature requirements for new classes or domains.
This enables the network to learn purposefully and adapt to
few-shot recognition tasks in different scenarios during the
learning process.

W, o (D

Training Procedure

Meta-training. We employ the unsupervised pre-training
model as the initial weights of the model training. In the
meta-training stage, we employ the strategy of episodic
training (Snell, Swersky, and Zemel 2017), which simulates
the few-shot scenario on the base training dataset. Specifi-
cally, we randomly sample K-way-N-shot and Q-queries,
for a K-way-N-shot task. Generally, we define

()

where f is a backbone network, N =3, _, is the size of
class k in the support set, and ¢y, is the prototype of class k in
the support set. Whereafter, we leverage a softmax function
to compute the probability of a query image x, belonging to
class k:

exp(—d(f(xq),€r))

K 9
i exp(—d(f(xg),ci))
where K is defined as the number of categories in the sup-
port set. Note that, the prototypes can be computed regard-
less of the value of K. This enables our model to be trained
under various-way-various-shot settings. Finally, we update
the parameters of the network after computing the cross-
entropy loss:

ply = klx,) = )

> log(ply = yilxi)),

xi€Xbatch

(10)

Zpre = -

where y; is the target output corresponding to the instance
z; of the query set.
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Method backbone 1-shot  5-shot Method backbone 1-shot 5-shot
DeepEMD (Zhang et al. 2022) ResNet-12 65.9 82.4 Relation Networks (Sung et al. 2018)  CNN-4-64 55.0 69.3
RS-FSL (Aftham et al. 2021) ResNet-12 65.3 - R2D2 (Bertinetto et al. 2018) CNN-4-64 65.3 79.4
PLCM (Huang et al. 2021) ResNet-12 70.1 83.7 SIB (Hu et al. 2020) CNN-4-64 68.7 77.1
SetFeat12 (Afrasiyabi et al. 2022) ResNet-12 68.3 82.7 MetaOpt-SVM (Lee et al. 2019) ResNet-12 72.0 84.3
GEL (Wang et al. 2023) ResNet-12 68.3 83.1 PLCM (Huang et al. 2021) ResNet-12 77.6 86.1
DeepEMD-BERT (Yan et al. 2021) ResNet-12 67.0 83.7 GEL (Wang et al. 2023) ResNet-12 76.7 87.6
CNAPS + FETI (Bateni et al. 2022) ResNet-18 79.9 91.5 SIB (Hu et al. 2020) WRN-28-10  80.0 85.3
EPNet + SSL (Rodriguez et al. 2020) WRN-28-10  79.2 88.1 Fine-tuning (Dhillon et al. 2019) WRN-28-10 76.6 85.8
SIB (Hu et al. 2020) WRN-28-10  70.0 79.2 CC+rot (Gidaris et al. 2019) WRN-28-10  76.1 87.8
SCR (Wu, Tian, and Zhong 2022) Swin-T 66.8 83.2 SCR (Wu, Tian, and Zhong 2022) Swin-T 76.4 88.1
SP-CLIP (Chen et al. 2023) Visformer-T ~ 72.3 83.4 SP-CLIP (Chen et al. 2023) Visformer-T ~ 82.2 88.3
SUN (Dong et al. 2022) Visformer-S  67.8 83.3 SUN (Dong et al. 2022) Visformer-S ~ 78.4 88.8
SP-CLIP" (Chen et al. 2023) ViT-small 934 98.1 SP-CLIP" (Chen et al. 2023) ViT-small 81.9 92.8
PMF (Hu et al. 2022) ViT-small 93.1 98.0 PMF (Hu et al. 2022) ViT-small 81.1 92.5
SPM (Ours) ViT-small 93.7 98.3 SPM (Ours) ViT-small 82.4 93.1

Table 1: Accuracy (%) of 5-way 1-shot/5-shot setting trained
on the Mini-ImageNet dataset. Marked in bold are the best
results, * denotes results are reported by us.

Parameter-efficient tuning. After meta-training on a
training set Dy,.q;,, our SPM model is evaluated on unseen
data T'.s:, with a provided support set St _,. Here, we pro-
pose a parameter-efficient tuning method by fine-tuning the
self-prompt parameters and the corresponding biases of the
deeper layers leveraging the support set Sr,__,. For this, we
simulate episodic meta-learning by randomly partitioning
the support set into a sub-support set $* and a sub-query set
Q", such that St,_,, =S* U Q". The process of parameter-
efficient tuning in Sr,,., can be expressed as the following
formula:

1
0
where 61 denotes self-prompt parameters and the corre-
sponding biases of the deeper layers, and the calculation
process of loss L is consistent with the process described
in the meta-training phase as shown in Equations 8, 9, and
10. Meanwhile, the portion of parameters to be fine-tuned
is negligible (no more than 2% of the total parameters), so
that SPM can quickly and adaptively adjust on the small
support set St,,.,. After fine-tuning, SPM is evaluated by
predicting the label of unseen query images using the sup-
port set S, .,. Furthermore, the incorporation of additional
learnable parameters as self-prompt ensures the retention of
prior knowledge through frozen encoder weights and learn
discriminative features according to unseen data. Therefore,
our method is highly suited for few-shot recognition tasks
that require both information retention and adaptive adjust-
ment of network parameters within limited labeling data
constraints.

> LYy, f(Xg: 87|, (D)

I’I911n s QST [
T X, Y €0"

Experiments
Experimental Settings

Single-domain datasets. We employ two standard bench-
marks to evaluate our proposed SPM method, includ-
ing Mini-ImageNet (Vinyals et al. 2016) and CIFAR-
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Table 2: Accuracy (%) of 5-way 1-shot/5-shot setting trained
on the CFAIR-FS dataset. Marked in bold are the best re-
sults, * denotes results are reported by us.

FS (Bertinetto et al. 2018). Mini-ImageNet contains 100
classes, which is divided into 64 classes for training, 16 for
validation, and 20 for testing. CIFAR-FS is a few-shot image
recognition dataset built on CIFAR100. We follow the split
division proposed by (Hu et al. 2022), where the dataset is
divided into 64 classes for training, 16 for validation, and 20
for testing. Each class comprises 100 images.

Cross-domain datasets. We conduct extensive experi-
ments under cross-domain settings, using four few-shot im-
age recognition datasets: CropDiseases, EuroSAT, ISIC, and
ChestX, which are introduced by (Guo et al. 2020). Each
dataset consists of train/val/test splits. We employ the Mini-
ImageNet domain as the single source domain, and select
the model parameters with the best accuracy on the valida-
tion set of the Mini-ImageNet for model evaluation, where
4 out-of-domain datasets are considered. The results are re-
ported under 5-way 1/5/20-shot settings.

Training details. We employ ViT as our backbone net-
work, and the backbone is trained for 20 epochs using ViT-
small and 80 epochs using ViT-base, each epoch consisting
of 2000 episodes. Our learning rate schedule incorporates
warm-up and cosine annealing, with the learning rate com-
mencing at 1076, surging to 5 x 10~ in 5 epochs, and grad-
ually tapering off to 10~ via cosine annealing. In order to
attain the finest test outcomes, we utilize the early stop strat-
egy to train our model. We use a single Nvidia GeForce 4090
for all the experiments.

Comparison With the State-of-the-Art

Table 1 and Table 2 present a comparison between our pro-
posed SPM and other state-of-the-art methods on single-
domain datasets. Our method surpasses the current state-
of-the-art methods both on 1-shot and 5-shot settings.
Specifically, we not only outperform the traditional CNN-
based methods but also outperform recent Transformer-
based methods. In particular, we modify the backbone of the
method that utilized text prompts for guidance (Chen et al.
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ChextX ISIC EuroSAT CropDisease
1-shot 5-shot 20-shot 1-shot 5-shot 20-shot 1-shot 5-shot 20-shot 1-shot 5-shot 20-shot

ProtoNet+FWT (Tseng et al. 2020) (RN10) - 23.77  26.87 - 38.87 43.78 - 67.34 7574 - 7272 85.82
RelationNet (Sung et al. 2018) (RN10) 2195 2296 26.63 30.53 3941 41.77 49.08 61.31 7443 5358 6899 80.45
MetaOptNet (Lee et al. 2019) (RN10) - 2253 2553 - 36.28 4942 - 64.44  79.19 - 68.41 82.89
STARTUP (Phoo and Hariharan 2021) (RN10) - 2694 33.19 - 4722 58.63 - 82.29  89.26 - 93.02 9751
FT-All (Guo et al. 2020) (RN10) - 2597 31.32 - 48.11  59.31 - 79.08 87.64 - 89.25 9551
TPN+ATA (Wang and Deng 2021) (RN10) 2245 2474 - 35.55 49.83 - 70.84 85.47 - 82.47 93.56 -

DeepCluster2 (Caron et al. 2020) (RN50) - 26.51  31.51 40.73 4991 - 88.39  92.02 - 93.63 96.63
PMF (Hu et al. 2022) (RN50) - 27.13  31.57 - 4378  54.06 - 89.18  93.08 - 95.06 97.25
PMF (Hu et al. 2022) (ViT-small) 2173 27.27 3533 30.63 50.12 63.78 70.74 8598 9132 80.79 9296 98.12
StyleAdv-FT (Fu et al. 2023) (ViT-small) 2292 26.97 - 33.99 51.23 - 7493  90.12 - 84.11 95.99 -

SPM (ViT-small) 2296 2735 3571 3145 5095 6391 7497 89.72 9430 84.43 96.11 98.32

Table 3: Comparison on cross-domain few-shot image recognition. We train the models on Mini-ImageNet, and evaluate them
on CDFSL. Marked in bold are the best results in each block.

single-domain cross-domain

5§ CS PT SPA Mini CIFAR-FS EuroSAT CropDisease
X X X X 9309 81.10 70.74 80.79
v X v / 9326 81.95 71.31 81.39
X v v v 9335 82.02 73.87 83.66
v o/ X 7/ 9322 81.54 71.17 81.22
v /7 v v/ 9372 82.42 74.97 84.43

Table 4: Ablation study on four datasets under the 5-way 1-
shot setting. SS means spatial selection, CS means channel
interaction, PT means parameter-efficient tuning, and SPA
means self-prompt attention.

Lo Mini-Imagenet CFAIR-FS
Projection method . .
meta-train  meta-test meta-train meta-test
MLP 92.45 93.25 76.17 81.22
Linear 92.10 93.35 75.47 81.31
Identity 91.98 93.72 75.29 82.42

Table 5: Different projection methods correspond to train
and test results. We report 5-way 1-shot accuracy (%) on the
validation set and test set of Mini-ImageNet and CIFAR-FS
during the meta-training process and meta-testing process.

2023) to conduct a fair comparison. Experimental results in-
dicate that utilizing text information as prompts brings cer-
tain performance improvements. However, due to the modal-
ity gap between textual and visual information, its effective-
ness is suboptimal compared to our proposed SPM model(as
shown in Tables 1, 2). SPM can selectively harness the in-
trinsic information within the pre-trained visual model, en-
abling performance enhancement of the network without in-
troducing extra modality information.

In addition, we conduct experiments on four cross-
domain datasets. The results are shown in Table 3, where we
achieve an average performance improvement of 3.65% and
2.33% on the EuroSAT and CropDisease datasets, demon-
strating the ability of our proposed method that can adapt to
the task in different scenarios. Furthermore, we only obtain
an average performance improvement of 0.56% and 0.59%
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Model Params FLOPs  Fine-tuning EuroSAT CropDisease
PMF (ViT-small) 21.66M 1x  21.6M (100%) 70.74 80.79
PMF (ViT-base) 85.80M 4x  21.6M (100%) 72.83 82.15
SPM (ViT-small) 21.96M 1.2x 0.30M(1.34%) 74.97 84.43

Table 6: Compared with the number of parameters and com-
putation of PMF, the proposed SPM method improves the
performance of the model.

on the Chext and ISIC datasets. This is because that both the
Chext and ISIC datasets belong to the medical field, which
significantly differs from the source domain. Therefore, due
to the constraints of inherent information within the pre-
trained visual model, our proposed SPM, while harnessing
the inherent information from both the source domain and
the pre-trained visual model, still results in marginal per-
formance improvements. In general, these findings provide
substantial evidence supporting the effectiveness of our pro-
posed SPM method.

Model Analysis

Ablation study. The results of the ablation study are pre-
sented in Table 4. We conduct ablation experiments on SS
(spatial selection), CS (channel selection), PT (parameter-
efficient tuning), and SPA (self-prompt attention) in both
single-domain and cross-domain scenarios. As shown in Ta-
ble 4, the SS and CS components of the self-prompt gener-
ation module demonstrate certain effects, leading to an in-
crease of 0.55% and 1.80% in accuracy under the 1-shot set-
ting, respectively. It is worth noting that CS improves by an
average of 3% in cross-domain scenarios, which is consis-
tent with the results obtained in (Luo, Xu, and Xu 2022).
Meanwhile, PT also provides a performance boost compared
to fine tuning all parameters. Furthermore, the combination
of SPA with SS, SC, and PT leads to a further improvement
in the model performance, thereby indicating the efficacy of
our proposed SPM in the task of few-shot recognition.

Layer selection. Theoretically, self-prompt information
can guide the model to learn more discriminative features.
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Figure 3: Accuracy vs. different layers to apply SPM. We re-
port the results of two single-domain datasets and two cross-
domain datasets respectively under 5-way 1-shot settings.

Our proposed self-prompt mechanism can be flexibly ap-
plied into various layers of Transformer. However, we ob-
serve that the depth at which the self-prompt mechanism
is applied significantly impacts the model performance. As
shown in Figure 3, we apply the self-prompt mechanism to
different layers of Transformer and found that applying it
to deeper layers achieves better results, with slight variation
in the optimal layers for different datasets. We attribute this
result to the crucial role of high-level semantic information
in few-shot recognition tasks, whereas shallow layers lack
such semantic information. Consequently, incorporating the
self-prompt mechanism into deeper layers of the network
improves the model performance. To simplify architecture
design, we default to inserting the self-prompt mechanism
into the last three layers of the model.

Self-prompt projection selection. We attempt three dif-
ferent ways to map the generated self-prompt informa-
tion: identity, linear, and MLP. The experimental results
are shown in Table 5. When employing MLP as the map-
ping method, it achieves higher accuracy during the meta-
training process, but results in suboptimal performance dur-
ing the fine-tuning (meta-testing) process. However, despite
exhibiting lower accuracy on the validation set during the
meta-training process compared to MLP, the identity map-
ping method yields superior accuracy during the fine-tuning
process. We argue that in the testing process of the few-shot
learning tasks, there is limited labeled data available for fine-
tuning, and MLP mapping would increase the number of pa-
rameters that require adjustment during the fine-tuning pro-
cess, resulting in the model inability to adapt effectively to
unseen data. Therefore, controlling the number of param-
eters during the fine-tuning phase is of paramount impor-
tance, which also indirectly underscores the significance of
the parameter efficiency of our proposed SPM.

Computation cost analysis. We analyze the complexity
of our model. As shown in Table 6, due to the fact that our
proposed SPM method solely entails learning self-prompt
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Input Pre-train

Self-prompt

Figure 4: Visualization of attention maps for different do-
mains/tasks: the first two rows depict images from the
single-domain dataset, while the third row showcases visu-
alizations from the cross-domain dataset.

information, it results in a tiny parameter overhead. Ad-
ditionally, there is a slight computational cost associated
with the secondary self-prompt forward process. However,
the PMF (Hu et al. 2022) method requires fine-tuning of
all model parameters, whereas our proposed self-prompt
mechanism and parameter-efficient tuning method only re-
quires adjustment of self-prompt related parameters and cor-
responding bias parameters in deep layers, resulting in a sig-
nificantly smaller number of parameters that need to be fine-
tuned. Consequently, our proposed SPM method reduces the
computational overhead of the fine-tuning process, and it
still outperforms fine-tuned PMF (ViT-base) which has four
times as many Params and FLOPs as SPM. Hence, our pro-
posed self-prompt mechanism not only maintains parameter
efficiency but also enhances model performance, making it
more suitable for few-shot recognition tasks.

Visualization To demonstrate the adaptive adjustment of
our proposed method for different few-shot recognition
tasks, in this section, we visualize the attention maps by
computing the dot product between the output feature and
the feature vector at each location. As shown in Figure 4, the
pre-trained models are cluttered with background informa-
tion. However, our method can focus on intrinsic semantic
features according to the self-prompt mechanism.

Conclusion

In this paper, we propose a novel method called the self-
prompt mechanism (SPM) for few-shot learning, which gen-
erates and utilizes the intrinsic semantic features to steer the
network toward the adaptation of unseen data. Meanwhile,
we propose a novel parameter-efficient tuning method en-
hancing the model ability to extract discriminative features
through fine-tuning a tiny amount of parameters. The effec-
tiveness of the proposed scheme is evaluated on both single-
domain and cross-domain datasets. Moreover, we hope that
our proposed self-prompt mechanism could inspire and fa-
cilitate follow-up works with potential. We will further in-
vestigate efficient self-prompt methods in our future work.
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