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Abstract

Self-Supervised Learning (SSL) methods harness the concept
of semantic invariance by utilizing data augmentation strate-
gies to produce similar representations for different defor-
mations of the same input. Essentially, the model captures
the shared information among multiple augmented views of
samples, while disregarding the non-shared information that
may be beneficial for downstream tasks. To address this issue,
we introduce a module called CompMod with Meta Compre-
hensive Regularization (MCR), embedded into existing self-
supervised frameworks, to make the learned representations
more comprehensive. Specifically, we update our proposed
model through a bi-level optimization mechanism, enabling
it to capture comprehensive features. Additionally, guided by
the constrained extraction of features using maximum en-
tropy coding, the self-supervised learning model learns more
comprehensive features on top of learning consistent fea-
tures. In addition, we provide theoretical support for our pro-
posed method from information theory and causal counterfac-
tual perspective. Experimental results show that our method
achieves significant improvement in classification, object de-
tection and instance segmentation tasks on multiple bench-
mark datasets.

Introduction

Deep learning models have exhibited remarkable capabili-
ties, leading to the widespread adoption of machine learning
across diverse fields. Despite the impressive performance
of supervised learning methods, their heavy reliance on la-
beled data for model training poses limitations on their gen-
eralization ability and scalability. To address this challenge,
Self-Supervised Learning (SSL) has emerged as a promising
paradigm that bridges the gap between supervised and unsu-
pervised learning by generating supervised signals directly
from the samples without the need for manual annotation.
Currently, SSL has achieved remarkable results in computer
vision (Tian, Krishnan, and Isola 2020; Chen, Xie, and He
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Figure 1: Loss of task-related information caused by data
augmentation in SSL methods. (a), the positive sample pair
(24, xp) can be obtained from the input 2z by Random Crop-
ping and Cutout. (b) formally presents the semantics related
to label in different augmented views, where h(-) represents
the amount of attributes related to the label in sample.

2021; Caron et al. 2020) and natural language processing
(Baevski et al. 2020; Akbari et al. 2021; Zhou et al. 2020).
The general framework of self-supervised representation
learning consists of two key components: data augmentation
and loss function, which try to learn invariance to the trans-
formation generated by data augmentation on the same sam-
ple while maintain discrimination to different samples. In
practice, data augmentation generates two augmented views
of the same image by applying random strategies, such as
Cutout (DeVries and Taylor 2017), Coloring (Zhang, Isola,
and Efros 2016), Random Cropping (Takahashi, Matsubara,
and Uehara 2019), etc. Several studies (Zheng et al. 2021;
Shorten and Khoshgoftaar 2019; Zhang and Ma 2022; Tian
et al. 2020) also have suggested that not all data augmenta-
tions are beneficial for downstream tasks. For instance, ro-
tation invariance may help some flower categories but harm
animal recognition (Xiao et al. 2020). Similarly, color in-
variance may have opposite effects on animal and flower
classification tasks. Therefore, recent works have proposed
adaptive augmentation strategies to adapt to different data
and task environments (Li et al. 2022a; Yang et al. 2022).
Data augmentation strategies are widely used in SSL to
create positive pairs of images that share the same label.
However, these strategies may not preserve all the seman-
tic information that is relevant to the label in the augmented
views. For example, suppose an image’s label is “bird” and
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it only refers to the foreground object, not the background.
Figure 1(a) shows two views of the same image x created by
Random Cropping and Cutout, denoted as x; and z. Note
that x1 contains the bird’s beak while x5 does not, and xo
contains the bird’s wings while x1 does not. A common as-
sumption in SSL is that the semantic content of an image
should be invariant to the applied transformations. How-
ever, this assumption can be broken by the transformation
methods and may not hold for all label-related attributes,
such as the bird’s beak and wings. Figure 1(b) illustrates a
function A(-) that measures the amount of label-related at-
tributes in an image. The representations learned by SSL
methods are based on the shared information between dif-
ferent augmented views, such as the Intersection over Union
(IoU). However, this shared information may not capture the
entire foreground of the input, and some label-related at-
tributes may be dropped in the model training process. The
more label-related information is preserved in the training
process, the better the model can learn. Therefore, models
trained using traditional SSL methods may exhibit subpar
performance in downstream tasks due to the loss of label-
related information during the training process.

To address the aforementioned issue, we propose utilizing
a more comprehensive representation to guide the training of
SSL model, enabling the model to focus on non-shared se-
mantic information that might be beneficial for downstream
tasks, thereby enhancing model’s generalization capability.
We propose a plug-and-play module called CompMod with
Meta Comprehensive Regularization to guide the learning of
SSL methods by obtaining comprehensive features. Specif-
ically, we employ semantic complementarity to fuse aug-
mented features in a low-dimensional space, utilizing a bi-
level optimization mechanism to obtain comprehensive rep-
resentation that guide the learning of SSL methods. Our con-
tributions are the following:

e From the information theory, we analyze that data aug-
mentation in SSL may lead to the lack of task-related in-
formation, which in turn reduces the generalization abil-
ity of the model.

* We design a plug-and-play module, called CompMod, to
induce existing SSL methods to learn comprehensive fea-
ture representations. CompMod ensures comprehensive
feature exploration through a bi-level optimization mech-
anism and constrained extraction of features with maxi-
mum entropy coding, guaranteeing complete mining of
feature completeness.

e A causal counterfactual analysis provides theoretical
support for our proposed method. Empirical evaluations
of the proposed method substantiate its superior per-
formance in classification, object detection and instance
segmentation tasks.

Related Work

Recently, various frameworks have emerged for self-
supervised representation learning, which can be broadly
classified into two types (Garrido et al. 2022; Balestriero
and LeCun 2022): sample-based and dimension-based con-
trastive learning methods.
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Sample-based contrastive methods learn visual represen-
tations by constructing pairs of samples and applying con-
trastive loss function. These methods encourage the embed-
dings of augmented views of the same image to be close
to each other, while simultaneously pushing away the em-
beddings of different images. Some notable methods, such
as SImCLR (Chen et al. 2020), utilize InfoNCE as the loss
function and rely on the quality and quantity of negative
samples. However, these methods also necessitate greater
computational resources. MoCo (He et al. 2020) tackles this
issue by constructing a dynamic dictionary bank that ex-
pands the pool of available negative samples. On the other
hand, some studies have investigated whether SSL can still
work without negative samples. BYOL (Grill et al. 2020)
and SimSiam (Chen and He 2021) utilize a distillation-like
mechanism to learn representations by computing the simi-
larity between positives, without the need for negative sam-
ples. Dimension-based contrastive methods learn visual rep-
resentations by optimizing the information content of the
learned representations and reducing feature redundancy.
Barlow Twins (Zbontar et al. 2021) endeavors to make the
normalized cross-correlation matrix of the augmented em-
beddings close to the identity matrix. The loss function of
VICReg (Bardes, Ponce, and Lecun 2022) consists of three
items: invariance, variance and covariance regularization
item. TCR (Li et al. 2022b) employs the Maximum Cod-
ing Rate Reduction (MCR?) objective to learn feature sub-
spaces that are both informative and discriminative. Liu (Liu
et al. 2022) proposed using maximum entropy coding for
contrastive learning, based on the principle of maximum en-
tropy in information theory, and established a connection be-
tween sample-based and dimension-based SSL.

These works mentioned above are based on the invariance
of semantic among augmented views, while ignoring the
partial loss of label-related information in each view after
augmentation, leading to imperfect consistency in semantic
information across views. By leveraging the comprehensive
information between views, our work allows the feature ex-
tractor to gather more abundant information, thereby induc-
ing the learned sample representations to be more generaliz-
able. Our proposed Meta Comprehensive Regularization can
be integrated into existing SSL framework.

Methodology

Figure 2 shows the overview of our proposed method. We
design a new module, CompMod, to improve existing self-
supervised method. Next, we first theoretically analyze the
lack of partial semantic information caused by data augmen-
tation is not conducive to downstream tasks in SSL from
an information-theoretic perspective, and then introduce our
proposed method and the training process of the model.

Contrastive Learning

Let D = {;}!_; denote the unlabeled training set, where
x; is an input image. Two augmented views z} and z?
of the sample x; are generated by different augmentation
strategies ¢! and t? sampled from a augmentation distri-
bution A. The augmented views are fed into a shared en-
coder fy to obtain their representations h; = fy(z}) and
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Figure 2: Illustration of self-supervised representation learning framework with Meta Comprehensive Regularization.

h? = fp(x?), which are then mapped via a projector g,
onto the embedding space, z; = g,(h}) and 22 = g4(h?).
We denote the embedding matrix of augmentation view 1 as
Zy = [z}, . 2h, o, 28T € R d where d is the dimension
of the embedding space, so does matrix Z,. Represented by
SimCLR, the objective function of the Contrastive Learn-
ing (CL) employs the Noise Contrastive Estimation (NCE)
loss (Gutmann and Hyvérinen 2010):

es(z}g?)/T
s(z},22)/, s(z1,2:) /7
e i°%4 / + sz e %7 /

where s(-,-) denotes the cosine similarity and 7 represents
the temperature hyper-parameter, z; is the negative sample,
zj € Z1 U Z5/{z},2?}, Z1 and Z, represent the sets of
augmented views in the embedding space, respectively.
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Analysis Based on Information Theory

We assume that the original input images inherently encom-
pass all relevant task-related information, e.g., I(z;T)
H(T), where x ~ D is a random variable, I denotes the
mutual information, H represents the information entropy,
and T refers to a random variable for the downstream task.

As evident from Figure 1, data augmentation on the in-
put sample results in loss of task-relevant information within
the data. Consequently, we deduce: I(z1;7),1(z2;T) <
H(T), where (z1,22) ~ {(z},27)}™ . Also, we can ob-
tain: I(x1;20;T) < H(T). A general explanation for CL
is to maximize the mutual information between two aug-
mented views(Wang et al. 2022):

I(Zl; 2’2)

(@)

max

fi9
where z; and z5 are random variables, (21, z2) ~ (Z1, Z2).
Applying Data Processing Inequality (Klir and Wierman
1999) to the Markov chain x — x1(x3) — 21(22), we have:

H(z) > I(x1;20) > I(21;22) 3)

I(z;T) > I(z1;29;T) > 1(21;22;T)

Based on Eq. 2 and Eq. 3, we can draw the conclusion
that due to the disruption caused by data augmentation to the
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semantic information of input samples, contrastive learning
is constrained to extract only a subset of task-related infor-
mation. In order to elucidate this conclusion, we begin by
providing a definition for comprehensive representation, fol-
lowed by deriving the following theorem.

Definition 1. (Comprehensive representation) For a random
variable z defined in encoder space. z is a comprehensive
representation if and only if I(z;T) = H(T).

Theorem 1. (Task-Relevant information in representations)
In contrastive learning, given a random variable x repre-
senting the original sample space, two random variables x1
and x4 characterizing the sample space after augmentation,
and two random variable z1 and z5 denoting the augmented
samples within the feature space, we have:

H(T) > {I(z;T),[(x2;T)} > I(w1;22;T)

H(T) > {I(z1:T), I(20: T)} > I(21; 20: T) )

From Theorem 1, we deduce the following: (1) Data aug-
mentation leads to a reduction in the amount of task-related
information present within the data. (2) The task-related in-
formation contained in the commonalities between z; and 2o
is individually less than the task-related information within
z1 and z5. Obviously, if the representation of the augmented
view is close to the comprehensive representation, it is more
beneficial to the downstream tasks. Next, we propose to use
Meta Comprehensive Regularization to force the augmented
representation to be a comprehensive representation.

Meta Comprehensive Regularization

To address the issue of semantic loss resulting from data
augmentation, we propose a new module called CompMod,
which learns a more comprehensive representation and helps
facilitate model learning, as shown in Figure 2. This module
can be directly incorporated into the traditional SSL frame-
work and can complement existing SSL methods. Then, we
introduce the module CompMod.

Different augmentations of the same sample are typically
derived through various data augmentation techniques, em-
pirically implying that each augmentation results in distinct
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semantic information loss. As a result, a method that yields
a comprehensive feature representation without semantic in-
formation loss, distinct from the original input data represen-
tation, involves integrating features from different perspec-
tives of the same sample. Thus, a more comprehensive rep-
resentation of z; can be obtained by the following formula:

&)

where & represents the fusion strategy, such as the concate-
nation of vectors: h; = [h} h?] € R?*, where d' is the
output dimension of a backbone network. BZ fuses the se-
mantic information from all augmented views, so as to solve
the problem of partial semantic missing. Next, a projection
head g¢ parameterized by { maps h; onto the same embed-
ding space as 2} and z2. And then, we obtain the so-called
more comprehensive embedding of sample z;, denoted as
Z = gg(ﬁi) € R?. The comprehensive embedding matrix is
defined as Z = [%1, ..., %, ..., n]T € R"X4,

Simple fusion alone does not guarantee that the learned
features encompass all semantics. Inspired by the maximum
entropy principle in information theory, a generalizable rep-
resentation should be the one with the maximum entropy
among all possible representations, corresponding to the
maximization of the semantic information associated with
the true label. Here, we use the code length of the lossy data
coding (Cover 1999) to calculate the entropy of the embed-
ding matrix Z, which apply the Taylor series expansion:

)=—Tr “Z

where k is the order of Taylor expansion, p and A are hy-
perparameters. Therefore, to further ensure the comprehen-
siveness of the obtained Z, we propose that the obtained Z
should minimize £comp(2).

Next, we use the comprehensive representation to guide
the learning of the backbone network. To enhance the se-
mantic richness of the representation in each augmented
view, we constrain the information contained in the aug-
mented embeddings 71, Z> to equal the information con-
tained in the comprehensive embedding Z. We propose to
minimize the following loss:

DR D

=1

hi == hl@®h?

k-‘rl

AZZTF)  (©)

['comp

1)k+1
Lm(‘r Zl;Z2 )‘ZZtT)k) (7)
where Z, is the embedding matrix of augmented view, ¢t =
1,2. As we can see, when 7 is predetermined and carries
maximal information content, in order to minimize Eq. 7, it
is necessary for Z; to be equal to Z. Thus, minimizing Eq. 7
can be considered as a conduit for transferring comprehen-
sive information from Z to both Z 1 and Zs, enabling them to
compensate for the semantic loss incurred by data augmen-
tation. Consequently, while extracting consistent semantic
information from Z; and Z», minimizing Eq. 7 facilitates
the extraction of comprehensive semantic information.
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Algorithm 1: The main algorithm

Input: Training set D; Batch Size n; Encoder function fy;
Projection Head g4; Multi-layer Network ge.
Parameter: Regularization Parameter: Aq, Ao
Output: The optimal encoder: fy-

1: for sample batch X from D do

2. # generate two augmented views
Jil .Z‘ = tl(l‘l) tz(l‘i), tl,f,g S A,l‘i cX
# obtaln the augmented embeddings
s = 96(fo(z}))
z; = go(fo(x7))
# obtain the more comprehensive embedding
% = ge(hy), where h; = h! @ h?
9:  # Under the fixed &, update {95, ¢5}

® Jrnh @

10: {95’ (bﬁ} = {9, ¢} -7 v9,¢(£ssl + )\lﬁmcr)
11:  # Under the fixed {0¢, ¢¢ }, update &
12: 5 = g -r: v{(ﬁssl(eﬁa ¢§) + )\2£comp)

13: end for

Model Objective

Finally, we present the objective during the training phase,
which can be divided into two steps. The first step is to learn
fo and g, that can extract feature representation. The second
step is to learn g¢ that can obtain comprehensive represen-
tation by a bi-level optimization mechanism. The training
process is shown in Algorithm 1.

Specifically, in the first step of each epoch, we fix g¢ and
update fg and g4 through the following formulation:

{9, (b} = {97 ¢} - V9,¢(£ssl + A1£mc7") (8)

where r is the learning rate and \; is the hyperparam-
eter. The purpose of learning Eq. 8 is to extract consis-
tency semantic information between Z; and Z,. However,
Lssi + M Lo in Eq. 8 enables both Z; and Zs to simulta-
neously possess comprehensive semantic information. Thus,
learning Eq. 8 can result in the consistency information be-
tween Z; and Z» being comprehensive information.

In the second step of each epoch, we fix fp and g, and
update g through the following formulation:

g = f -r- VE(‘CSSZ(G& ¢E) + )\2£comp)
St{ef’ (Z)ﬁ} = {97 (Z)} —-T: v9,¢(£ssl + >\1£mc7')

where Lg5(0¢, ¢¢) represents that the loss Ly is calcu-
lated based on fp, and gy, and Az is the hyperparame-
ter. It is important to note that during the computation of
Lyst1, ge is not involved, hence direct differentiation of L
with respect to £ is not possible. However, when comput-
ing matrix L (6¢, ¢¢), as indicated by Eq. 9, 6¢ and ¢,
can be treated as functions of &, allowing for direct differ-
entiation of L4 (0¢, ¢¢) with respect to £. Simultaneously,
optimizing V¢Lgs(0e, d¢) can be conceptualized as fol-
lows: by manipulating ¢ to induce changes in L4 (0¢, d¢),
constrained by the conditions outlined in Eq. 9, where
Lss1(8¢, ¢¢) is consistently optimized under these §-induced
circumstances. Subsequently, among all optimal states of
Lss1(0¢, ¢¢), the objective is to identify a configuration that
minimize the magnitude of VL4 (6, ¢¢). So, optimizing

9
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Figure 3: Structural causal model of latent variables. We as-
sume that part of the semantic missing in the augmented
view x1 and x2 compared to the original view z. These ex-
clusive semantic ¢ is affected by the semantic c and the ap-
plied augmentation strategy t.

VeLssi(0¢, o) can be simply regarded as the mechanism
for modulating ¢ to reduce its magnitude, thereby enhancing
the similarity between matrices Z; and Z5. As widely ac-
knowledged, it is only when matrices Z; and Z5 encapsulate
a greater abundance of analogous semantic information that
matrices Z; and Z, can exhibit increased similarity. There-
fore, optimizing V¢ L (8¢, ¢¢) can compel ge to extract a
greater amount of semantic information. When coupled with
the influence of L.y, this process enables Eq. 9 to coerce
ge¢ into capturing comprehensive semantic information.

Causal Interpretation

We use a Structural Causal Model (SCM) (Pearl and
Mackenzie 2018) to describe the causal relationship between
variables in self-supervised learning, whereby data augmen-
tation can be viewed as a counterfactual. We define c to be
the semantic of original sample, ¢ is the invariant semantics
across augmented views, ¢ is the exclusive semantics in the
augmented view. We assume that the samples are only gener-
ated by their semantic information (or label) and exogenous
variables, as shown in Fig.3. The augmentation strategy t is
randomly sampled from the strategy set 7. We can formu-
late the relation between these variables:

c:= fo(ue), ¢ := fa(e,t),¢:= fz(c,t),x := f(c,us);

where u., u; is independent exogenous variable, and fz, fz
are deterministic functions.

Given a factual observation 2’ = f(c’, u,). If a new aug-
mentation strategy t* is applied, it is equivalent to an inter-
vention mechanism affecting fz, fz:

do(¢ := fz(c,t*),c = fa(c', %))
Using the modified SCM by fixing all exogenous variables,
the relation between the variables in the counterfactual sam-

ple " = f(¢/,uy) and its augmented views can be refor-
mulated as:

= 0176/ = fé(cl7t*)aél = fE(C/at*);

Thus, data augmentation in self-supervised learning can be
viewed as counterfactual. Then, we can obtain:

1963

Theorem 2. Assume that the data generating process is con-
sistent with the above description. Let f : © — z be any
smooth function that can minimize the following objective:
2

E(z%,z?)N(ZhZz) |:H211 - Z72||2i| B Hm”L(Zf) (10)
where Hp,in () denotes the minimum entropy of all aug-
mented embeddings, 2! = {2}, 22}. In this way, the learned
encoder fy can capture all semantic information related to
the original sample.

The above theorem states that when we constrain the em-
beddings to have the maximum entropy, the SSL model can
constrain the learned representation to contain more seman-
tics. Note that the Eq. 10 is similar to Eq. 9. Therefore, this
theorem also provides a theoretical basis for the proposed
bi-level learning method.

Experimental Results

In this section, we first evaluate it on classification task us-
ing linear evaluation and semi-supervised learning settings.
Then, we validate our method on object detection and in-
stance segmentation tasks in computer vision.

Experimental Setting

Datasets. For the classification task, we evaluate our pro-
posed method on the following six image datasets, includ-
ing CIFAR-10 and CIFAR-100 dataset (Krizhevsky 2009),
STL-10 dataset (Coates, Ng, and Lee 2011), Tiny ImageNet
dataset (Le and Yang 2015), ImageNet-100 dataset (Rus-
sakovsky et al. 2015), and ImageNet dataset (Russakovsky
et al. 2015). For transfer learning, we validate our method by
the performance on the object detection and semantic seg-
mentation tasks on COCO (Lin et al. 2014) dataset.

Default Setting. Each input sample generates two cor-
responding positive samples in the experiment. The im-
age augmentation strategies comprise the following image
transformations: random cropping, resizing, horizontal flip-
ping, color jittering, converting to grayscale and gaussian
blurring. Detailed experimental settings for different down-
stream tasks can be found in Appendix B. In the experiment,
we use Resnetl8 or Resnet50 as our base encoder network,
along with a 3-layer MLP projection head to project the rep-
resentation to a embedding space.

CompMod Details. The CompMod consists of a multi-
layer linear network, which is set to 2d’ — d’ — d, where d’
is the output dimension of the backbone network fy.

Downstream Tasks

Self-supervised Learning We conduct a classification
task to test our proposed method. For comparison, we
take SIimCLR (Chen et al. 2020), BarlowTwins (Zbontar
et al. 2021), BYOL (Grill et al. 2020), SimSiam (Chen and
He 2021), W-MES (Ermolov et al. 2021), SwWAV (Caron
et al. 2020), MoCo (He et al. 2020), CMC (Tian, Krish-
nan, and Isola 2020), SSL-HSIC (Li et al. 2021) and VI-
CReg (Bardes, Ponce, and Lecun 2022) as baselines. We val-
idate the proposed method with the results of a linear clas-
sifier and a 5-nearest neighbor classifier. Table 1 shows the
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M CIFAR-10 CIFAR-100 STL-10 Tiny ImageNet
ethods . . . .
linear 5-nn | linear 5-nn | linear S5-nn | linear  5-nn

SimCLR 91.80 88.42 | 66.83 56.56 | 90.51 85.68 | 48.82 32.86
BarlowTwins 90.88 88.78 | 66.67 56.39 | 90.71 85.31 | 49.74 33.61
BYOL 91.73 89.45 | 66.60 56.82 | 91.99 88.64 | 51.00 36.24
SimSiam 91.51 89.31 | 66.73 56.87 | 91.92 8854 | 5092 35.98
W-MSE 91.99 89.87 | 67.64 56.45 | 91.75 88.59 | 4922 3544
SwWAV 90.17 86.45 | 6523 54.77 | 89.12 84.12 | 47.13 31.07
SSL-HSIC 91.95 8991 | 67.22 57.01 | 92.06 88.87 | 51.42 36.03
VICReg 91.08 88.93 | 67.15 56.47 | 91.11 86.24 | 50.17 34.24
SimCLR+ 9391 91.21 | 68.91 58.22 | 92.77 8798 | 51.01 35.23
BYOL+ 93.96 91.53 | 68.74 58.01 | 9495 89.88 | 53.51 37.95
BarlowTwins+ | 92.54 90.75 | 68.29 57.84 | 93.12 89.61 | 51.72 35.21

Table 1: Classification accuracy on small and medium datasets. Top 1 accuracy(%) of linear classifier and a 5-nearest neighbors
classifier for different datasets with a ResNet-18. Best results are in bold.

ImageNet-100 ImageNet
Methods top-1  top-5 | top-1 top-5
SimCLR 70.15 89.75 | 69.32  89.15
MoCo 72.81 91.64 | 71.13 -
CMC 73.58 92.06 | 66.21 87.03
BYOL 74.89 9283 | 7431 91.62
SwAV 75.77 92.86 | 75.30 -
DCL 74.60 92.08 - -
RELIC - - 74.81 92.23
SSL-HSIC - - 72.13  90.33
ICL-MSR 72.08 91.60 | 70.73 90.43
BarlowTwins 72.88 90.99 | 73.22 91.01
SimCLR+ 7221 91.23 | 71.89 91.52
BYOL+ 7695 9394 | 75.11 93.55
BarlowTwins+ | 76.88 94.11 | 75.62 92.13

Table 2: Evaluation on ImageNet-100 and ImageNet
datasets. The representations are obtained with a ResNet-
18 with our method on top 1 accuracy(%) of linear classifier
and a 5-nn classifier. Best results are in bold.

performance of different SSL methods, where “method+”
denotes our proposed method. The results show that our pro-
posed method improves the classification performance, in
which SimCLR+ and BYOL+ improve by more than 2% on
CIFARI10 and CIFAR100 dataset, while BYOL+ improves
by about 2.5% on Tiny ImageNet dataset.

Furthermore, we test our method for classification on two
larger datasets, ImageNet-100 and ImageNet. For compari-
son, we also add several other methods including MoCo (He
et al. 2020), CMC (Tian, Krishnan, and Isola 2020), ICL-
MSR (Qiang et al. 2022) and RELIC (Mitrovic et al. 2020).
The results in Table 2 demonstrate that our method still im-
proves over the baseline, e.g., BarlowTwins+ achieves 4%
performance improvement on ImageNet-100, SimCLR+ and
BarlowTwins+ achieve more than 2% on ImageNet.

Semi-supervised Learning The detailed experimental
setup follows the most common evaluation protocol for
semi-supervised learning, as in Appendix B. Table 3 reports

1964

1% 10%
Methods Epochs top-T top5 top-T top-3
SimCLR 1000 483 755 656 878
BYOL 1000 532 784 68.8 89.0
SwAV 1000 539 785 70.2 89.9
BarlowTwins 1000 55.0 79.2 69.7 89.3
SimCLR+ 1000  49.1 758 65.8 88.0
BYOL+ 1000 546 789 69.2 89.3
Barlow Twins+ 1000 56.1 79.8 70.2 89.9

Table 3: Semi-supervised classification. We finetune the pre-
trained model using 1% and 10% training samples of Ima-
geNet following (Zbontar et al. 2021), and the top-1 and
top-5 under linear evaluation are reported.

the classification results on ImageNet compared with ex-
isting methods using two pre-trained models. From the re-
sults, Barlow Twins+ is 1.1% better than Barlow Twins, and
BYOL+ increases by about 1.4% at the 1% subset setting.

Transfer Learning We evaluate our method for the local-
ization based tasks of object detection and instance segmen-
tation on COCO (Lin et al. 2014) datasets. ImageNet su-
pervised pre-training is often used as initialization for fine-
tuning downstream tasks. Several different self-supervised
methods are used for performance comparison. We report
the results of our proposed method compared with baselines
in Table 5, showing that the proposed method brings perfor-
mance improvements on different downstream tasks.

Ablation Experiments

Parametric Sensitivity In this section, we conduct an ex-
perimental investigation of the model trade-off parameters.
Specifically, we vary A; and ) in the range of [0.001, 0.01,
0.1, 1], and record the classification accuracy of our method
using a ResNet-18 on CIFAR-10 dataset with the SimCLR+
method. The results in Table 6 indicates that our method has
minimal variation in accuracy, indicating that hyperparame-
ter tuning is easy in practice.
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D Data augmentations Methods
Iﬁ(_)rlzontal rotate random  random f:_olor SimCLR+ BYOL+ Barlow Twins+
1p crop grey Jitter

1 v 93.65 92.64 91.75
2 v 92.31 92.78 92.09
3 v 92.78 93.16 92.15
4 v 93.36 92.99 91.95
5 v v 93.47 92.74 92.23
6 v v 93.72 92.89 91.89
7 v v v 93.75 93.78 92.48
8 v v v v v 93.91 93.96 92.54

Table 4: Comparison of different data augmentations by using a ResNet-18 on CIFAR-10 dataset.

Object Det. Instance Seg.
Methods AP AP., AP. AP AP, AP
Supervised 382 582 412 333 547 352
SimCLR 379 577 409 332 546 353
SwAV 37.6 57.6 402 33.0 542 35.1
BYOL 379 57.8 409 33.1 543 350
SimSiam 379 575 409 333 542 352
BarlowTwins  39.2 59.0 425 342 560 365
SimCLR+ 38.1 58.1 41.0 337 546 35.1
BYOL+ 39.7 59.1 429 354 56.1 362
Barlow Twins+ 39.1 593 43.1 352 56.2 36.9

Table 5: Transfer learning. We pre-train the network on Im-
ageNet dataset. Then, we learn representation on the object
detection and instance segmentation tasks on COCO dataset
using Mask P-CNN. Evaluation is on AP, AP5y and AP75.

Analysis of Data Augmentation we compare the linear
classification accuracy under different augmentation strate-
gies on CIFAR-10 dataset as shown in Table 4. As can be
seen, there is no significant difference in classification accu-
racy, indicating that our method can be applied to different
augmentation strategies.

Fusion Strategy and Optimization In this section, we
first investigate the impact of different fusion strategies.

Mixup (Verma et al. 2021) can be used to fuse features
in representation space. We can obtain the more comprehen-
sive representation using the following formula:

hi=axh! + (1 —a)*h? (11)

where « is a coefficient sampled from a uniform distribution,
a ~ U(0,1). By adjusting «, we can control the semantic
information to be biased towards A} or h?. Another strategy
is to achieve semantic fusion in the embedding space:

1 2} (12)

=z @2l = [zZ 25

Then Zz; is mapped onto the embedding space to obtain Z;

via a projection head g. composed of a multi-layer linear
network (2d — d — d): 2; = g¢(%;).

Additionally, our proposed method utilizes a bi-level opti-

mization mechanism for model optimization during training.

1965

A

A 0.001  0.01 0.1 1
0.001 91.79 9213 92.77 91.75
0.01 92.56 91.89 9391 O9l1.11

0.1 93.35 9223 9235 90.78
1 93.03 91.26 92.77 90.08

Table 6: Parametric analysis of A; and \s.

Mixup M(h) | M(z)
« 0.1 0.3 0.5 0.7 0.9 - -
Acc. [91.03 91.33 91.87 91.34 91.56|93.96 | 92.58
No bi-level 92.05

Table 7: Analysis of Fusion Strategy and Optimization.
Experimental results are based on the classification with
BYOL+. M(h) means fusion in representation space, while,
M(z) means fusion in embedding space

In this section, we also analyze the impact of not using this
strategy in experiments.

Table 7 shows the results of BYOL+ utilizing different
feature fusion strategies and optimization on the classifica-
tion task on CIFAR-10 dataset. Experimental results demon-
strate that the fusion strategy and optimization we adopt
achieve the best results.

Conclusion

In this paper, we find that data augmentation in SSL may
lead to the lack of task-related information from informa-
tion theory,resulting in a reduction of the model’s perfor-
mance in downstream tasks. To this end, we design a novel
module CompMod with Meta Comprehensive Regulariza-
tion as a complement to existing SSL. frameworks. Comp-
Mod exploits a bi-level optimization mechanism and con-
straint based on maximum entropy coding to enable more
information to be discovered, thereby enhancing the gener-
alization of the learned model. Moreover, a causal interpre-
tation provide theoretical support for the proposed method.
Finally, the performance of various downstream tasks vali-
dates the effectiveness of our proposed method.
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