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Abstract

Data augmentation has been recently leveraged as an effective
regularizer in various vision-language deep neural networks.
However, in text-to-image synthesis (T2Isyn), current aug-
mentation wisdom still suffers from the semantic mismatch
between augmented paired data. Even worse, semantic col-
lapse may occur when generated images are less semanti-
cally constrained. In this paper, we develop a novel Semantic-
aware Data Augmentation (SADA) framework dedicated to
T2Isyn. In particular, we propose to augment texts in the
semantic space via an Implicit Textual Semantic Preserving
Augmentation, in conjunction with a specifically designed
Image Semantic Regularization Loss as Generated Image Se-
mantic Conservation, to cope well with semantic mismatch
and collapse. As one major contribution, we theoretically
show that Implicit Textual Semantic Preserving Augmenta-
tion can certify better text-image consistency while Image
Semantic Regularization Loss regularizing the semantics of
generated images would avoid semantic collapse and enhance
image quality. Extensive experiments validate that SADA en-
hances text-image consistency and improves image quality
significantly in T2Isyn models across various backbones. Es-
pecially, incorporating SADA during the tuning process of
Stable Diffusion models also yields performance improve-
ments.

1 Introduction

Text-to-image synthesis (T2Isyn) is one mainstream task in
the visual-language learning community that has yielded
tremendous results. Image and text augmentations are two
popular methods for regularizing visual-language mod-
els (Naveed 2021; Liu et al. 2020). As shown in Figure 2 (a),
existing T2Isyn backbones (Xu et al. 2018; Tao et al. 2022;
Wang et al. 2022) typically concatenate noises to textual em-
beddings as the primary text augmentation method (Reed
et al. 2016) whilst employing simply basic image augmen-
tations (e.g,, Crop, Flip) on images’ raw space. Recent stud-
ies (Dong et al. 2017; Cheng et al. 2020) suggest text aug-
mentation to be more critical and robust than image augmen-
tation for T2Isyn, given that real texts and their augmenta-
tions involve the inference process.
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Figure 1: (a) Current augmentations cause semantic mis-
match and quality degradation in T2Isyn task. (b)(c) Illus-
trations of semantic collapse. (d) Our method prevents se-
mantic collapse. See Supplementary Materials D for more.

Albeit their effectiveness, we argue that current popu-
lar augmentation methods exhibit two major limitations in
the T2Isyn task: 1) Semantic mismatch exists between aug-
mented texts/images and generated pairs, it triggers accom-
panied semantic distribution disruption across both modali-
ties, leading to augmented texts/images lacking correspond-
ing visual/textual representations. As shown in Figure 1 (a),
advanced image augmentation, such as Mixup (Zhang et al.
2017a), DiffAug (Zhao et al. 2020), along with text augmen-
tation like Random Mask' or Add Noise? might weaken both
semantic and visual supervision from real images. 2) Seman-
tic collapse occurs in the generation process, i.e., when two
slightly semantic distinct textual embeddings are given, the
model may generate either completely different or extremely
similar images. This indicates that the models may be under-
fitting or over-fitting semantically (see Figure 1 (b)(c)). Both
issues will compromise semantic consistency and genera-
tion quality. While imposing semantic constraints on gener-
ated images can alleviate semantic collapse, the study (Wang
et al. 2022) solely focuses on regulating the direction of se-
mantic shift, which may not be entirely adequate.

Motivated by these findings, this paper proposes a novel
Semantic-aware Data Augmentation (SADA) framework
that offers semantic preservation of texts and images. SADA
consists of an Implicit Textual Semantic Preserving Aug-

'Randomly masking words in raw texts.
Directly adding random noise to textual semantic embeddings.
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Figure 2: L(6,-) is optimization loss for G. S(6, (-,-)) mea-
sures semantic consistency. (a) Simplified training paradigm
of previous methods. (b) Training paradigm of SADA. (c)
Training of IT Ap where generators are frozen.

mentation (I7°'A) and a Generated Image Semantic Conser-
vation (GisC). IT A efficiently augments textual data and
alleviates the semantic mismatch; GisC' preserves gener-
ated image semantics distribution by adopting constraints on
semantic shifts. As one major contribution, we show that
SADA can both certify better text-image consistency and
avoid semantic collapse with a theoretical guarantee.

Specifically, IT A preserves the semantics of augmented
text by adding perturbations to semantic embeddings while
constraining its distribution without using extra models. It
bypasses the risks of semantic mismatch and enforces the
corresponding visual representations of augmented textual
embeddings. Crucially, we provide a theoretical basis for
IT A enhancing text-image consistency, a premise backed
by the group theory for data augmentation (Chen, Dobriban,
and Lee 2020). As illustrated in Figure 2 (b), the augmented
text embeddings are engaged with the inference process,
providing semantic supervision to enhance their regular-
ization role. On the implementation front, two variants for
ITA: a closed-form calculation IT A¢ (training-free), and
its simple learnable equivalent IT Ap. It is further proved
that a theoretical equivalence of IT A¢ arrives at the same
solution to recent methods (Dong et al. 2017; Cheng et al.
2020) that employ auxiliary models for textual augmenta-
tion when these auxiliary models are well-trained. This sug-
gests that IT' A¢ offers an elegant and simplified alternative
to prevent semantic mismatch.

Meanwhile, we identify that an effective GisC dimin-
ishes semantic collapse and benefits the generated image
quality. Inspired by variance-preservation (Bardes, Ponce,
and LeCun 2021), we design an Image Semantic Regular-
ization Loss (L,) to serve as a GisC with IT Ac, which
constrains both the semantic shift direction and distance of
generated images (see Figure 3 (d)). Through Lipschitz con-
tinuity and semantic constraint tightness analysis (as seen
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in Propositions 4.3 and 4.4), we theoretically justify that L,.
prevents the semantic collapse, consequently yielding supe-
rior image quality compared to methods that solely bound
semantic direction (Gal et al. 2022). Notably, SADA can
serve as a theoretical framework for other empirical forms
of IT A and GisC in the future.

Our contributions can be summarized as follows:

* This paper proposes a novel Semantic-aware Data Aug-
mentation (SADA) framework that consists of an Im-
plicit Textual Semantic Preserving Augmentation (1T A)
and a Generated Image Semantic Conservation (GisC).

* Drawing upon the group theory for data augmenta-
tion (Chen, Dobriban, and Lee 2020), we prove that ['T'A
certifies a text-image consistency improvement. As ev-
idenced empirically, /T A bypasses semantic mismatch
while ensuring visual representation for augmented tex-
tual embeddings.

* We make the first attempt to theoretically and empirically
show that GisC can additionally affect the raw space to
improve image quality. We theoretically justify that us-
ing Image Semantic Regularization Loss L, to achieve
GisC prevents semantic collapse through the analysis of
Lipschitz continuity and semantic constraint tightness.

» Extensive experimental results show that SADA can be
simply applied to typical T2Isyn frameworks, such as
diffusion-model-based frameworks, effectively improv-
ing text-image consistency and image quality.

The extended version with full Supplementary Materials
is available at https://arxiv.org/abs/2312.07951.

2 Related Work

T2Isyn Frameworks and Encoders: Current T2Isyn mod-
els have four main typical frameworks: attentional stacked
GANSs accompanied with a perceptual loss produced by pre-
trained encoders (Zhang et al. 2017b, 2018; Xu et al. 2018;
Zhu et al. 2019; Ruan et al. 2021), one-way output fusion
GAN:Ss (Tao et al. 2022), VAE-GANs with transformers (Gu
et al. 2022), and diffusion models (DMs) (Dhariwal and
Nichol 2021). Two encoders commonly used for T2Isyn are
DAMSM (Xu et al. 2018; Tao et al. 2022) and CLIP (Rad-
ford et al. 2021). Our proposed SADA is readily applied to
these current frameworks with different encoders.
Augmentations for T2Isyn: Most T2Isyn models (Reed
et al. 2016; Xu et al. 2018; Tao et al. 2022; Gu et al.
2022) only use basic augmentations such as image corp,
flip, and noise concatenation to textual embedding with-
out exploiting further augmentation facilities. To preserve
textual semantics, I12T2I (Dong et al. 2017) and RiFe-
GAN (Cheng et al. 2020) preserve textual semantics us-
ing an extra pre-trained captioning model and an attentional
caption-matching model respectively, to generate more cap-
tions for real images and to refine retrieved texts for T2Isyn.
They still suffer from semantic conflicts between input and
retrieved texts, and their costly retrieval process leads to in-
feasibility on large datasets, prompting us to propose a more
tractable augmentation method.

Variance Preservation: Stylegan-nada (Gal et al. 2022)
presents semantic Direction Bounding (Lg) to constrain
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semantic shift directions of texts and generated images,
which may not guarantee the prevention of semantic col-
lapse. Inspired by variance preservation in contrastive learn-
ing (Bardes, Ponce, and LeCun 2021) based on the princi-
ple of maximizing the information content (Ermolov et al.
2021; Zbontar et al. 2021; Bardes, Ponce, and LeCun 2021),
we constrain the variables of the generated image semantic
embeddings to have a particular variance along with its se-
mantic shift direction.

3 Implicit Textual Semantic Preserving
Augmentation

Consider observations X Ty een XpeX sampled i.i.d. from a
probability distribution P in the sample space X, where each
X includes real image 7 and its paired text s. According to
X € X, we then have Xi,..., X € X where each X in-
cludes real image embedding e, and text embedding e;. We
take GG with parameter 6 as a universal annotation for gener-
ators in different frameworks; L(0, -) represents total losses
for G used in the framework. Following the Group-Theoretic
Framework for Data Augmentation (Chen, Dobriban, and
Lee 2020), we also assume that:

Assumption 3.1. If original and augmented data are a
group that is exact invariant (i.e., the distribution of the aug-
mented data is equal to that of the original data), semantic
distributions of texts/images are exact invariant.

Consider augmented samples X’ € X’, where X' in-
cludes e, and augmented textual embedding e’,. According
to Assumption 3.1, we have an equality in distribution:

X=X, ey
which infers that both X and X’ are sampled from X. Bring-
ing it down to textual embedding specifically, we further
draw an assumption:

Assumption 3.2. If the semantic embedding e of a given
text follows a distribution Q) s, then €/, sampled from Qs also
preserves the main semantics of es.

This assumption can be intuitively understood to mean
that for the given text, there is usually a group of synony-
mous texts. Satisfying exact invariant, e/, sampled from Q,
preserves the main semantics of es. e, can be guaranteed
to drop within the textual semantic distribution and corre-
spond to a visual representation that shares the same se-
mantic distribution with the generated image on e;. Thus, €/,
can be used to generate a reasonable image. Under Assump-
tion 3.2, we propose the Implicit Textual Semantic Preserv-
ing Augmentation (I7T°A) that can obtain (). As shown in
Figure 3 (a)(b), IT A boosts the generalization of the model
by augmenting implicit textual data under Q).

3.1 Training Objectives for G with /T A
The general sample objective with I'T A is defined as:

- 1k
min Ry (0) := o Zizl L(6, ITA(X;)). 2)
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Figure 3: Diagram of augmentation effects of our proposed
SADA (+ITA,+ITA+ L, ITA+ L,).

We then define the solution of ¢ based on Empirical Risk
Minimization (ERM) (Naumovich 1998) as:

ERM: 0 =S L0, ITAX)), G
: ITAEargrergélEZizl C2 (X)), 3

where O is defined as some parameter space. See detailed
derivation based on ERM in Supplementary Materials A.1.

Proposition 3.3 (/T A increases T2Isyn semantic consis-
tency). Assume exact invariance holds. Consider an unaug-

mented text-image generator é(X ) of G and its augmented

version O a. For any real-valued convex loss S(0,+) that
measures the semantic consistency, we have:

E[S(6,6(X))] = E[S(8, 6rra(X))), )

which means with ITA, a model can have lower
E[S(0, 017 4(X)] thus a better text-image consistency.

Proof. we obtain a direct consequence that: Cov[0;7 4 (X)]

< Covlf(X)] , where Couv[-] means the covariance matrix
decreases in the Loewner order. Therefore, G with IT A
can obtain better text-image consistency. See proof details
in Supplementary Materials A.2. O

For a clear explanation, we specify a form S(0,-) :
S, (-,-)) where (-,-) take a e, and e, for semantic con-
sistency measuring, and 6 denotes the set of training param-
eters. Since we preserve the semantics of e, its generated
images should also semantically match es. Thus, the total
semantic loss of G is defined as:

Ls =5(0,(es,G(es))) + S(0, (€5, G(€X)))
+8(0, (es,G(€l))) + (0, (e, G(es))) . (5)

where G = h(G()), (-) takes a textual embedding and h(-)
maps images into semantic space. Typically, as the first term
is included in the basic framework, it is omitted while other
terms are added for SADA applications.

3.2 Obtaining Closed-from /T A

Theoretical Derivation of /TA- Assume that exact in-
variance holds. We treat each textual semantic embedding
es as a Gaussian-like distribution ¢ = A (es, o), where each
sample ¢, ~ N (es, o) can maintain the main semantic m;
of es. In other words, o is the variation range of e, condi-
tioned by mg, ¢ derives into:

(b = N(esa U|ms) . 6)
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Figure 4: Network structure of /T A and IT Ar. Note that
es and e}, are equivalent to e, and 6;|r respectively.

By sampling e/, from ¢, we can efficiently obtain aug-
mented textual embedding for training. We need to draw
support from real images to determine the semantics mg
that need to be preserved. Empirically, real texts are created
based on real images. e, is thus naturally depending on e,.,
leading to the inference: e, £ e, M) = My, Qs = Qs.
Given a bunch of real images, o|m is assumed to repre-
sent the level of variation inherent in text embeddings, con-
ditioned on the real images. We can redefine ¢ in Eq. (6) for
IT Ac augmentation as: ¢ = N (g, omg)) = N(eg),, B
Cyg)rI), where C.,., denotes covariance matrix of semantic
embeddings; 7, s stand for real images and real texts; Cg),.
is the self-covariance of eg conditioned by semantic embed-
ding of real images e,.; I denotes an identity matrix; S is a
positive hyper-parameter for controlling sampling range. As
such, we define: ¢ £ Q|- According to (Kay 1993), con-
ditional C,,),. is equivalent to:

(Css|r = Css - (Csr(c;Tlcrs 3 @)

where all covariances can be directly calculated. Then ¢ is
calculated from the dataset using semantic embeddings of
texts and images for s and r. In practice, Cg),. is calculated
using real images and their given texts from the training set.

Remarks of IT'Ac  We explore the connections between
IT A¢ and previous methods (Dong et al. 2017; Cheng et al.
2020), assuming all models are well-trained.
Proposition 3.4. [T Ac can be considered a closed-form
solution for general textual semantic preserving augmenta-
tion methods of T2Isyn.

Proof details can be seen in Supplementary Materials A.2.
Therefore, training with bare [T A¢ is equivalent to using
other textual semantic preserving augmentation methods.

IT A¢ Structure Based on Eq. (7), we obtain e’slr from
calculated IT Ac:

= els|r ~¢= eslr + 2 £ €slr €O B (Css|'r‘H7 ®

where z ~ N(0, 8 - Cgy),1), € is sampled from a uniform
distribution U(—1, 1), as shown in Figure 4. I'T A requires
no training and can be used to train or tune a T2Isyn model.

3.3 Obtaining Learnable /T Ay

We also design a learnable IT' A7 as a clever substitute.
Proposition 3.4 certifies that well-trained IT Ay is equiva-
lent to IT'A¢. To obtain IT A through training, we need to
achieve the following objectives:

!
es\r

HlDE}X Ld(aa (e;|rv eslr))v InoinS(oz, (eslrv g(elﬂr))) ’
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where Lg(a, -, -) denotes a distance measurement, enforc-
ing that the augmented e/, Ir should be far from e, as much
as possible; « is training parameters of IT Ar. S(«, (-, -))
bounds the consistency between e, and generated images
on 6;|r , preserving the semantics of e;‘r. The first objective

can be easily reformed as minimizing the inverse distance:

H}]in Lid(a’ (e;|r? eS\T)) = Hgn _Ld(aﬂ (e/s\w 6S|7°))‘

The final loss for training 17 Ay is a weighted combination
of Lgand S(«, (+,-)):

Lirar =r - Lia(a, (€}, €s)))
+ (1 - T) ’ S(aa (es\'r'a g(els\r))a (9)

where r is a hyper-parameter controlling the augmentation
strength. Note that L;7 4, is only used for optimizing o of
IT A7 and parameters of G are frozen here (as Figure 2 (¢)).

IT Ar Structure  Since the augmented ¢, I

tain the semantics in e, € in Eq. (8) is maximized but does
not disrupt the semantics in eg,.. As such, € is not a pure
noise but a e,,.-conditioned variable. Hence, Eq. (8) can be
reformed as e’slT = eq|r + f(es)r) to achieve IT Az, where

f (esv) means a series of transformations of e,,.. The final
IT A process can be formulated as e’s‘r = ITAr(es)r)

es|r + f(es)r). We deploy a recurrent-like structure as shown
in Figure 4 to learn the augmentation. I'7' A takes e, as an

input. For i*" step in overall n steps, there is a group of Mul-
tilayer Perceptrons to learn the weights w; and bias b; condi-
tioned by e, for the previous module’s output /; ;. Then
hi = egjy + (hi—1 - w; + b;) will be output to the following
processes. We empirically set n = 2 for all our experiments.
IT A7 can be trained simultaneously with generative frame-

works from scratch or used as a tuning trick.

should main-

4 Generated Image Semantic Conservation

Enabled by ITA’s providing es|r,e’s‘r, we show that us-
ing Generated Image Semantic Conservation (GisC') will
affect generated images’ raw space. Consider a frozen pre-
trained image encoder (E7) that maps images into the same
semantic space. Consider a feasible and trainable genera-
tor G that learns how to generate text-consistent images:
G(X) — F, Er(F) — &, where F and & are the sets
for generated images f and their semantic embeddings e;.
Since images are generated on texts, we have ey, Le i We
show that semantically constraining generated images can
additionally affect their raw space.

Proposition 4.1. Assume that Ey is linear and well-trained.
Constraining the distribution Qg of ey, can additionally
constrain the distribution F of f.

Proof. There are two scenarios: 1) If Ej is inevitable,
Proposition 4.1 is obvious. 2) If E; is not inevitable, it is
impossible that F all locates in the Null(ET) (nullspace of
Ey) for well trained Ej, thus constraining F can affect £.
See more proof details in Supplementary Materials A.2. [
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We further assume that the positive effeteness of feasible
GisC can pass to the raw generated image space. The non-
linear case is non-trivial to proof. Our results of using non-
linear encoders (DAMSM (Xu et al. 2018) and CLIP (Rad-
ford et al. 2021)) with different feasible GisC' methods sug-
gest that Proposition 4.1 holds for non-linear E; and posi-
tively affect image quality.

4.1 Image Semantic Regularization Loss

We design an Image Semantic Regularization Loss L, to
attain GisC' for preventing semantic collapse and provid-
ing tighter semantic constraints than direction bounding
Lap (Gal et al. 2022).

Theoretical Derivation of L, To tackle semantic collapse
empirically, we constrain the semantic distribution of gen-
erated images, which draws inspiration from the principle
of maximizing the information content of the embeddings
through variance preservation (Bardes, Ponce, and LeCun
2021). Since semantic redundancies undescribed by texts in
real images are not compulsory to appear in generated im-
ages, the generated images are not required to be the same
as real images. Therefore, conditioned by the texts, gener-
ated images should obtain semantic variation in real images.
For example, when text changes from ‘orange’ to ‘banana’,
‘orange’ in real images should likewise shift to ‘banana’ de-
spite the redundancies, and fake images should obtain this
variance (Tan et al. 2023). If exact invariance holds and the
model is well-trained, the text-conditioned semantic distri-
bution of its generated images Qs = N(mys,Cysp sl
should have the semantic variance as close as that of the real
images Q'I"?"S = N(mr\sa Crr|s]1):

min ||Cff|sﬂ_(crr\s]1| ‘27 Crr|s :(Crr _(Crs(cs_sl(csr P (10)
er

where C,..|, is the self-covariance of e, conditioned by real
text embeddings.

Aim to maintain latent space alignment, an existing GisC
method, direction bonding (Gal et al. 2022) is defined as:

(6;\7” B 65\7") ) (elf|s o ef|5)

Ldb =1- .
1, — e B Ter, — eI

Y

Lg, follows that semantic features are usually lin-
earized (Bengio et al. 2013; Upchurch et al. 2017; Wang
et al. 2021).

Given a pair of encoders that maps texts and images into
the same semantic space, inspired by L3, we assume that:

Assumption 4.2. If the paired encoders are well-trained,
aligned, and their semantic features are linearized. The se-
mantic shifts images are proportional to texts:

(12)

(€15 — efls) < (€l — €qpr)-

Assumption 4.2 holds for T2Isyn intuitively because
when given textual semantics changes, its generated image’s
semantics also change, whose shifting direction and distance
are based on textual semantics changes. Otherwise, seman-
tic mismatch and collapse would happen. If Assumption 4.2
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/
s|r

holds, based on IT A¢ that preserves e/, — €s)rs WE have:

s —epls < €0 B-d(Cyps)

s.t. e’s‘r —egr S €O R d((CSsh,) . (13)
If we force that each dimension of e*le ~ {—1,1} where
d = {1,...,n} and n is the dimension of the semantic em-
bedding, we have:

elj‘{\s —€rls = €0 d(Cff\S)
stt.e”, — Cslr = €O B : d((css\r) .

s|r

(14)

Derived form Egs. (10) and (14), we define our Image Se-
mantic Regularization Loss L, as:

L,.= @ || (e;‘s - ef\S) —€ ®5'd(crr\5)||2 )

where 3 - d(Cyys) can be considered a data-based regular-
ized term. € constrains the shifting direction, as shown in
Figure 3 (d). ¢ is a hyper-parameter for balancing L, with
other loss. Note that for I'T Ar, the range of 6;‘T — €g)p 18

not closed-form. Thus, we cannot apply L, with IT Ar.

5)

Remarks of L., We show the effect of L, on the semantic
space of generated images:

Proposition 4.3 (L, prevent semantic collapse: com-
pletely different). L, leads to |e}‘S — eyls| is less than or

equal to a sequence A of positive constants, further con-
strains the semantic manifold of generated embeddings to
meet the Lipschitz condition.

Proof. From Eq. (15), we have the constraint |e}‘s —egs| <
‘elf\sief\sl <

/
el = K, st € # Clr
where K is a Lipschitz constant. See more proof details in
Supplementary Materials A.2. O

A. Therefore, we have:

Proposition 4.3 justifies why image quality can be im-
proved with L,. According to Proposition 4.1, we believe
that the Lipschitz continuity can be passed to visual feature
distribution, leading to better continuity in visual space as
well. Our experiments verify that with L, methods, T2Isyn
models achieve the best image quality.

Proposition 4.4 (L, prevent semantic collapse: extremely
similar). L, prevents |6;‘s —ey|s| = 0 and provides tighter
image semantic constraints than direction bounding L gp.

Proof. For Eq. (11), assume Lg, = 0 and use e’s"r to substi-
tute e, combining with Eq. (8), we have: \e’f’ls—eﬂs| >0.
Preservation of semantic collapse is not guaranteed due to
the distance between €, (6}\5) and ey, is not strictly con-
tained. Assume L, = 0, we have: |e;‘s —egls| > 0, where

provides tighter constraints than L ;. See visual explanation
in Figure 3 (c)(d) and proof details in Supplementary Mate-
rials A.2. O

Propositions 4.3-4.4 show that L, prevents semantic col-
lapse. See SADA’ algorithms in Supplementary Materials B.
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Image Retrieval Text Retrieval
Topl Top5 Topl Top5
CLIP | 30.40 54.73 49.88 74.96
Tuned | 44.43 72.38 61.20 85.16
+ITA| 44.88(+0.45) 72.42(+0.04)| 62.76(+1.56) 85.38(+0.22)

Table 1: Text-Image Retrieval results of CLIP tune w/ and
wo/ SADA ITA. Please refer to Supplementary Mate-
rial D.1 for tuning CLIP with different numbers of samples.

S Experiments

Our experiments include three parts: 1) To demonstrate how
IT A improves text-image consistency, we apply ITA of
SADA to Text-Image Retrieval tasks. 2) To exhibit the fea-
sibility of our SADA, we conduct extensive experiments by
using different T2Isyn frameworks with GANs, Transform-
ers, and Diffusion Models (DM) as backbones on differ-
ent datasets. 3) Detailed ablation studies are performed; we
compare our SADA with other typical augmentation meth-
ods to show that SADA certifies an improvement in text-
image consistency and image quality in T2Isyn tasks. Par-
ticularly noteworthy is the observation that GisC' can alle-
viate semantic collapse. Due to page limitations, key find-
ings are presented in the main paper. For detailed appli-
cation and training information, as well as more compre-
hensive results and visualizations, please refer to Supple-
mentary Materials C and D. Codes are available at https:
//github.com/zhaorui-tan/SADA.

5.1 SADA on Text-Image Retrieval

Experimental setup We compare tuning CLIP (Wang
et al. 2022)(ViT-B/16) performance w/ IT A and wo/ IT A
on the COCO (Lin et al. 2014) dataset. Evaluation is based
on Topl and Top5 retrieval accuracy under identical hyper-
parameter settings.

Results As exhibited in Table 1, using IT'A results in a
boost in image-text retrieval accuracy in both the Top1 and
Top5 rankings, reflecting its proficiency in enhancing the
consistency between text and images. The increase of 0.45%
and 1.56% in Topl retrieval accuracy explicitly suggests a
precise semantic consistency achieved with SADA, provid-
ing empirical validation to our Proposition 3.3.

5.2 SADA on Various T2Isyn Frameworks

Experimental setup We test SADA on GAN-based At-
tnGAN (Xu et al. 2018) and DF-GAN (Tao et al. 2022),
transformer-based VQ-GAN+CLIP (Wang et al. 2022),
vanilla DM-based conditional DDPM (Ho, Jain, and Abbeel
2020) and Stable Diffusion (SD) (Rombach et al. 2021)
with different pretrianed text-image encoders (CLIP and
DAMSM (Xu et al. 2018)). Parameter settings follow the
original models of each framework for all experiments un-
less specified. Datasets CUB (Wah et al. 2011), COCO (Lin
et al. 2014), MNIST, and Pokémon BLIP (Deng 2012) are
employed for training and tuning (see the 2"¢ column in Ta-
ble 2 for settings). Supplementary Material D.2 offers addi-
tional SD-tuned results. For qualitative evaluation, we use
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Encoder, Method

Backbone Settings, Dataset CSt FIDJ
Transformer| CLIP VQ-GAN+CLIP | 62.78 16.16
+SADA Tune COCO 62.81 15.56
DM CLIP SD 7272 5598
+SADA Tune Pokémon BLIP | 73.80 46.07
DM CLIP DDPM 70.77  8.61

+SADA Train MNIST 7091 7.78

GANs DAMSM AttnGAN 68.00 23.98
+SADA Train CUB 68.20 13.17
GANs DAMSM AttnGAN 62.59  29.60
+SADA Tune COCO 64.59 22.70
GANs DAMSM DF-GAN 58.10  12.10
+SADA Train CUB 58.24 1045
GANs DAMSM DF-GAN 50.71  15.22
+SADA Train COCO 51.02 1249

Table 2: Performance evaluation of SADA with different
backbones with different datasets. Results better than the
baseline are in bold.

CLIPScore (CS) (Hessel et al. 2021) to assess text-image
consistency (scaled by 100) and Fréchet Inception Distance
(FID) (Heusel et al. 2017) to evaluate image quality (com-
puted over 30K generated images).

Results As shown in Table 2 and corresponding Figure 6,
the effectiveness of our SADA can be well supported by
improvements across all different backbones, datasets, and
text-image encoders, which experimentally validate the ef-
ficacy of SADA in enhancing text-image consistency and
image quality. Notably, facilitated by ITAc + L., At
tnGAN achieves 13.17 from 23.98 on CUB. For tuning VQ-
GAN+CLIP and SD that have been pre-trained on large-
scale data, SADA still guarantees improvements. These re-
sults support Propositions 3.3, 4.1 and 4.3. It’s worth not-
ing that the tuning results of models with DM backbones
(SD) are influenced by the limited size of the Pokémon BLIP
dataset, resulting in a relatively high FID score. Under these
constraints, tuning with SADA performed better than the
baseline, improving the CS from 72.72 to 73.80 and low-
ering the FID from 55.98 to 46.07.

5.3 Ablation Studies

Experimental setup Based on AttnGAN and DF-GAN,
we compare Mixup (Zhang et al. 2017a), DiffAug (Zhao
et al. 2020), Random Mask (RandMask), Add Noise, with
SADA components in terms of CS and FID. Refer to Sup-
plementary Materials C, D.3 for more detailed settings and
the impact of  in I'T Ar.

Quantitative results Quantitative results are reported in
Table 3.3 We discuss the results from different aspects.

1). Effect of other competitors: Mixup and DiffAug
weaken visual supervision, resulting in worse FID than base-
lines. They also waken text-image consistency under most
situations. Moreover, Random Mask and Add Noise are sen-

3Note for task 2, we use the best results among current augmen-
tations as the baseline since no released checkpoint is available.
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Figure 5: Generated examples of DF-GAN and DDPM trained with different augmentations on e, as ascending Noise ~
N(0,3 -Cyg), 1) is given. Input noise is fixed for each column. See full examples in Supplementary Materials Figures 18, 19 & 20.
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Figure 6: Generated examples of different backbones with
different datasets wo/ SADA and w/ SADA. See more exam-
ples of different frameworks in Supplementary Materials D.

sitive to frameworks and datasets, thus they cannot guaran-
tee consistent improvements.

2). ITA improves text-image consistency: Regarding
text-image consistency, using IT'A wo/, or w/ GisC all lead
to improvement in semantics, supporting Proposition 3.3.
However, I'T' A1 consumes more time to converge due to its
training, weakening its semantic enhancement at the early
stage (as in Task 5). As it converged with longer training
time, I'T Ap improves text-image consistency as in Task 6.

3). GisC promotes image quality: For image quality, it
can be observed that using bare I'T A wo/ GisC, FID is im-
proved in most situations; but using constraints such as Lgp
and L, with ITAp and IT A¢ can further improve image
quality except IT Ar + Lgp in Task 1. These support our
Proposition 4.1 and Proposition 4.3.

4). L, provides a tighter generated images semantic con-
straint than L g,: Specifically, compared with Ly, using our
proposed L, with IT'Ax provides the best FID and is usu-
ally accompanied by a good text-image consistency, thus
validating our Proposition 4.4.
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AttnGAN DF-GAN
Settings Task 1: Train | Task 2: Train | Task 3: Train
CUB CST FID] | CST FID] | CST FIDJ
Paper 638.00% 23.98%] - 14.81% | - -

RM 68.00 23.98 | - 14.81 | 58.10* 12.10*
+Mixup 65.82 4147 | 57.29 2873 | 57.36 25.77
+DiffAug 66.94 22.53 | 5822 17.27 | 58.05 12.35
+RandMask | 67.80 15.59 | 57.96* 15.42 | 58.07 15.17
+Add Noise | 67.79 17.29 | 57.46 4823 | 57.58 42.07
+ITAp 68.53" 14.14 | 58.09 14.03 | 58.807 12.17
+ITAr+Lg,| 68.10 14.55 | 58.07 11.74 | 58.67 11.58
+ITAc 68.42 13.68 | 58.25 12.70 | 58.23 11.81
+ITAc+Lay| 68.18 13.74 | 58.307 12.93 | 58.23 10.77
+ITAc+L, | 6820 13.17| 58.27 11.70 | 58.24 10.45"
Settings Task 4: Tune | Task 5: Tune | Task 6: Tune
COCO CST FID] | CST FID] | CST FIDJ
Paper 50.48 3549 | - 1923 | - -

RM 50.48 3549 | 50.94 1541 | 50.94 15.41
+ Tuned 62.59* 29.60*| 50.63* 15.67* | 50.71* 15.22*
+Mixup 6230 33.41 | 50.38 23.80 | 50.83 22.86
+DiffAug 65.44 33.86 | 49.45 21.31 | 50.94 18.97
+RandMask | 63.76 23.82 | 50.54 15.74 | 50.64 15.33
+Add Noise | 64.771 35.47 | 50.94" 34.90 | 50.80 33.84
+ITAr+Lg, | 6331 26.65 | 50.60 15.05 | 50.77 13.67
+ITAc+Lay| 63.97 2582 | 50.92 14.71 | 50.98 13.28
+ITAc+L, | 64.59 22.70"| 50.81 13.71" | 51.02" 12.49f

Table 3: CST and FID] for AttnGAN, and DF-GAN with
Mixup, Random Mask, Add Noise, and the proposed SADA
components on CUB and COCO. *: Baseline results; Bold:
Results better than the baseline; t: Best results; Underlines:
Second best results; ‘RM’: Released Model; ‘e’: epochs.

Qualitative Results As depicted in Figure 5 and further
examples in Supplementary Materials D, we derived several
key insights.

1). Semantic collapse happens in the absence of a suffi-
cient GisC': As seen in Figure 5, neither non-augmented nor
other augmented methods fail to prevent semantic collapse
in different backbones. The application of GisC through
SADA serves to alleviate this issue effectively.

2). IT A preserves textual semantics: It shows that gen-
erated images of models wo/ IT'A on ¢/, _still maintain the

main semantics of e, though they have low quality, indi-
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person playing handball color, light pot of food, color

SD

+SADA

delivery truck, color cloud, color

SD

+SADA

Figure 7: Generated examples of SD tuned on the Emoji
dataset wo/ and w/ SADA. A significant improvement in di-
versity with +IT A + L, can be observed, especially in
terms of skin color and view perspective.

cating the textual semantic preservation of 17T A.

3). SADA enhances generated image diversity: SADA
appears to improve image diversity when input noise is
not fixed significantly and e, of testing text is used. The
greatest improvement in image diversity was achieved by
ITAc+L,, as the detailed semantics of birds, are more var-
ied than the other semantics. Textual unmentioned details
such as skin colors as shown in Figure 7 is more various
when using SADA. More textual unmentioned details can
be observed in Supplementary Materials Figure 11 (high-
lighting wing bars, color, and background).

4). IT A with GisC improves the model generalization
by preventing semantic collapse: Using IT Ay + Ly, and
ITAc+Lgy/ L, lead to obvious image quality improvement
when more Noise is given, corresponding to our Proposi-
tion 4.1 and Proposition 4.3. However, with I'T' Ac + Lgp,
though the model can produce high-quality images, gener-
ated images on e,- and el | are quite similar while I'T Ac +
L, varies a lot, especially in the background, implying a
not guaranteed semantic preservation of Ly, and a tighter
constraint of L,. as proved in Proposition 4.4. Furthermore,
ITAc + L, provides the best image quality across all ex-
periments.

5.4 SADA on Complex Sentences and Simple
Sentences

We also notice that semantic collapse is more severe when
a complex description is given. Applying SADA alleviates
the semantic collapse across all descriptions. We explore
the effect of SADA on complex sentences and simple sen-
tences. We use textual embeddings of sentences in Table 4
and illustrate interpolation examples at the inference stage
between e, and e, | S shown in Figure 8 right side, where

Noise ~ N(0,8 - Cygr). It can be observed that models
trained with SADA can alleviate the semantic collapse that
occurs in models without SADA, and its semantics can resist

even larger Noise given. Using e’sl , at the inference stage

5105

sentl | this is a yellow bird with a tail.
this is a small yellow bird with a tail
sent2 . . . .
and gray wings with white stripes.
3 this is a small yellow bird with a
sen grey long tail and gray wings with white stripes.

Table 4: Rough, detailed, and in-between description used
for generation.

+1.5Noise

)
€ sir

Figure 8: Left: Generated results of DF-GAN with different
methods on rough to detailed sentences. Right: Interpolation
examples at the inference stage between e, and e/, Is of DF-

GAN and it with SADA on rough to detailed sentences. e/, Is?
input noise for generator GG, and textual conditions are the
same across all rows. Examples of significant collapse are

highlighted in red.

can cause image quality degradation, which reveals the ro-
bustness of the models.

As shown in Figure 8, on the left side, DF-GAN with
SADA generates more text-consistent images with better
quality from rough to precise descriptions compared to
other augmentations. The Right side indicates that DF-GAN
without augmentations experiences semantic collapse when
larger Noise is given. The semantic collapse is more severe
when a complex description is given. Applying SADA al-
leviates the semantic collapse across all descriptions. The
model with SADA can generate reasonably good and text-
consistent images when the 1.5V oise with complex descrip-
tion is given. These visualizations further verified the effec-
tiveness of our proposed SADA.

6 Conclusion

In this paper, we propose a Semantic-aware Data Augmen-
tation framework (SADA) that consists of IT' A (including
ITAr and IT Ac) and L,.. We theoretically prove that using
ITA with T2Isyn models leads to text-image consistency
improvement. We also show that using GisC' can improve
generated image quality, and our proposed I'T' A¢ + L, pro-
motes image quality the most. ITA relies on estimating the
covariance of semantic embeddings, which may, however,
be unreliable in the case of unbalanced datasets. We will ex-
plore this topic in the future.
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