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Abstract

Causal inference in a sub-population involves identifying the
causal effect of an intervention on a specific subgroup, which
is distinguished from the whole population through the influ-
ence of systematic biases in the sampling process. However,
ignoring the subtleties introduced by sub-populations can ei-
ther lead to erroneous inference or limit the applicability of
existing methods. We introduce and advocate for a causal in-
ference problem in sub-populations (henceforth called S-ID),
in which we merely have access to observational data of the
targeted sub-population (as opposed to the entire population).
Existing inference problems in sub-populations operate on the
premise that the given data distributions originate from the
entire population, thus, cannot tackle the S-ID problem. To
address this gap, we provide necessary and sufficient condi-
tions that must hold in the causal graph for a causal effect
in a sub-population to be identifiable from the observational
distribution of that sub-population. Given these conditions, we
present a sound and complete algorithm for the S-ID problem.

Introduction
In machine learning, variable(s) Y are commonly predicted
from observed variable(s) X by estimating the conditional
probability distribution P (Y|X) (Bishop and Nasrabadi
2006). This approach is effective for understanding corre-
lations or associations in the data, but it falls short when we
seek to understand how changes in X would affect Y. Such
an understanding requires a different methodology, known as
causal inference (in population), which involves estimating
the interventional distributions (or causal effect), denoted
by PX(Y). PX(Y) represents the probability of an outcome
Y if we were to intervene or change the values of the input
variable(s) X (Pearl 2000, 2009; Hernán and Robins 2010).1

The gold standard for estimating a causal effect is to per-
form experiments/interventions in the environment, for in-
stance, by using techniques such as randomized controlled

*Equal contribution.
Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

1We utilize Judea Pearl’s framework for causal inference to
present our findings. Within this framework, alternative notations for
interventional distributions include P (Y|do(X)) and Pdo(X)(Y),
which employ the do() operator to denote an intervention. Never-
theless, for the sake of simplicity in notation, we adopt the latter
representation and drop the do().

trials (RCTs) (Fisher 1936). However, these methods often
require real-world experiments, which can be prohibitively
expensive, unethical, or simply infeasible in many scenarios.
Alternatively, researchers can turn to observational meth-
ods, utilizing the causal graph of the environment and avail-
able data to estimate interventional distributions (Pearl 2009;
Spirtes et al. 2000). The causal graph, a graphical representa-
tion that depicts the causal relationships between variables,
plays a central role in this methodology. This observational
approach avoids the need for costly or impractical experi-
ments but comes with its own challenges. In particular, com-
puting interventional distributions uniquely may not always
be feasible.

Identifiablity in population. Identifiability refers to the
ability to uniquely compute a distribution from the available
data. When all variables in the system are observable and
the causal graph is known, all interventional distributions
are identifiable using the so-called back-door adjustment
sets, meaning all causal effects are identifiable (Pearl 1993).
However, only a subset of causal effects can be identified in
the presence of unobserved variables or hidden confounders
(Pearl 1995). Selection bias can also make some causal ef-
fects unidentifiable (Shpitser and Pearl 2006a). This bias,
which is similar to distribution mismatch in learning theory
(Masiha et al. 2021), often arises from conditioning on se-
lection variables. The problem of causal effect identification
in population pertains to whether, given the causal graph, an
interventional distribution can be uniquely computed from
the available data. Various forms of available data lead to
different problems in causal inference in population, the most
well-known of which is the ID problem (Pearl 1995; Tian
and Pearl 2003). This problem arises when the available data
is from the joint distribution of the observed variables. A
summary of these problems is provided in Table 1, and a
more comprehensive discussion can be found in the Related
Work section.

Conditional causal effects represent the conditional distri-
butions that capture the impact of a treatment on the outcome
within specific contexts or sub-populations. This concept al-
lows for targeted interventions and tailored policies, offering
valuable insights for practical applications (Qian and Mur-
phy 2011). Shpitser and Pearl (2006a) considered the c-ID
problem, which pertains to identifying a conditional inter-
ventional distribution PX(Y|Z) from the joint distribution
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Causal inference problem Given distribution(s) Target interventional distribution

On Population
ID P (V) PX(Y)

S-Recoverability P (V|S = 1) PX(Y)
gID {PZi

(V \ Zi)}mi=0 PX(Y)

On Sub-Population
c-ID P (V) PX(Y|Z)
c-gID {PZi

(V \ Zi)}mi=0 PX(Y|Z)
S-ID P (V|S = 1) PX(Y|S = 1)

Table 1: Various causal inference problems based on given and target distributions. Herein, V is the set of observed variables, X
is the set of intervened variables, Y is the set of outcome variables, and S = 1 corresponds to a sub-population. In this paper, we
introduce the S-ID problem. Note that in all of these problems, the causal graph is given.

of observed variables.2 An important practical limitation of
the c-ID formulation is that it assumes access to samples
from the observational distribution of the entire population
rather than just the target sub-population. Unfortunately, the
c-ID identification result cannot be directly extended to the
setting where the available samples are from the target sub-
population, which is often the prevailing scenario in practical
applications. The recent extension of c-ID, known as c-gID
problem (Correa, Lee, and Bareinboim 2021; Kivva, Etesami,
and Kiyavash 2023), which we will discuss in Related Work,
also suffers from the same practical limitation.

Identifiablity in sub-populations. As mentioned earlier,
a sub-population is a specific subset of individuals within a
larger population distinguished by certain characteristics or
traits.3 We utilize an auxiliary binary variable S to model
a sub-population akin to Bareinboim and Tian (2015): S is
added as a child variable representing the specific traits that
distinguish the sub-population of the population (S can have
several parents), and S = 1 corresponds to the target sub-
population. We will formally introduce the auxiliary variable
S in Equation (1). In this paper, we address the problem of
causal inference in a sub-population, where the objective is
to identify PX(Y|S = 1), which is the causal effect of a
treatment or intervention on a specific subgroup of individu-
als within a larger population. Specifically, we introduce the
S-ID problem, an identification problem on sub-population
when we merely have access to observational data of the tar-
get sub-population. That is, given the causal graph, we seek
to determine when PX(Y|S = 1) can be uniquely computed
from P (V|S = 1), where V is the set of observed variables.

A real-world example. Consider the causal graphs de-
picted in Figure 1, where we analyze a hypothetical scenario
in a random country. Here:

• The treatment variable X denotes whether smoking is
banned in public areas.

• The mediator variable Z indicates the percentage of the
population that smokes.

2In the notation PX(Y|Z), it is important to note the sequence
of operations. The notation signifies that we first intervene on the
set X and then, within the resulting distribution, condition on Z.

3A sample in a sub-population is generated from a conditional
distribution that determines the characteristics of the sub-population.
This often introduces selection bias, as the sampling process might
not be representative of the entire population.

X Z Y

W S

X Z Y

W S

Figure 1: X: whether the public health policy bans smoking
in public areas. Y : rate of lung cancer. Z: percentage of
people who smoke. W : the average age of people. In the left
causal graph, PX(Y |S = 1) is S-ID, i.e., can be computed
from P (X,Y, Z,W |S = 1), while it is not S-ID in the right
causal graph.

• The outcome variable Y measures the rate of lung cancer.

• The confounder variable W captures the average age of
the population.

Clearly X influences Z, and both Z and W affect Y . The
relationship between W and X can be explained by the pos-
sibility that in countries with older populations, there may
be greater awareness and concern about the health risks of
smoking, potentially leading to stricter health policies such as
public smoking bans. Additionally, one could argue that W
may also have an impact on Z. Nevertheless, our subsequent
analysis remains valid whether or not we consider a causal
link between W and Z. Now, consider the scenario where the
data from X,Y, Z,W is available from a subset of countries
(sub-population) with younger populations than the world
average. This scenario is illustrated in the left graph in Figure
1. The S-ID problem aims to identify the causal effect of a
new policy X on the outcome variable Y for this target sub-
population, given only observational data from this group. As
we will demonstrate, this causal effect is identifiable and can
be calculated using Algorithm 1.

In contrast, in the setting of the S-Recoverability problem,
a causal inference problem in population (refer to the second
row of Table 1), the task is to compute the causal effect of
X on Y for the entire population using only data from this
sub-population. The limitation of data coming only from the
sub-population renders the inference for the whole population
particularly challenging. Accordingly, Bareinboim and Tian
(2015) showed that in this example, the causal effect of X
on Y (in population) is unidentifiable. In the c-ID setting,
the conditional causal effect of X on Y in sub-population is
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identifiable, but it requires observational data from the entire
population, i.e., from all the countries in the world. Lastly,
consider another scenario where the sub-population is based
on a condition on the mediator variable Z rather than the
confounder W (the right graph in Figure 1). An example of
this scenario might involve a sub-population of countries that
have had high smoking rates in recent years. Applying our
Theorem 1, we can show that in this case, PX(Y |S = 1) is
not identifiable from P (V|S = 1). Note that in the ID setting,
PX(Y ) is identifiable from P (V). This shows that simply
ignoring the sub-population and applying any algorithms in
the ID setting leads to an erroneous inference.

The purpose of this example is to (i) demonstrate the crit-
ical role of causal graphs in whether a causal effect in a
sub-population is identifiable or not and (ii) show that pre-
vious identification results in the literature do not suffice to
answer the S-ID problem. An additional example is provided
in Appendix A.

Our main contributions are as follows.

• We formally introduce the S-ID problem, a practical sce-
nario for causal inference in a sub-population. This prob-
lem asks whether, given a causal graph, a causal effect in
a sub-population can be uniquely computed from the ob-
servational distribution pertaining to that sub-population.

• We provide necessary and sufficient conditions on the
causal graph for when a causal effect in a sub-population
can be uniquely computed from the observational distri-
bution of the same sub-population (Theorems 1 and 2).

• We propose a sound and complete algorithm for the S-ID
problem (Algorithm 1).

Preliminaries
Throughout the paper, we denote random variables by capital
letters and sets of variables by bold letters. We use

∑
X to

denote marginalization, i.e., summation (or integration for
continuous variables) over all the realizations of the variables
in a set X.

Let G be a directed acyclic graph (DAG) over a set of
variables V. We denote by PaG(X), ChG(X), and AncG(X)
the set of parents, children, and ancestors of X (includ-
ing X) in G, respectively. We further define AncG(X) =⋃

X∈X AncG(X) for a set X ⊆ V. A structural equation
model (SEM) describes the dynamics of a system using a
collection of equations

X = fX(PaG(X), εX), ∀X ∈ V,

where G is the causal graph, fX is a deterministic function
and εX is the exogenous noise of variable X , which is inde-
pendent of all the other exogenous noises. A SEMM with
causal DAG G induces a unique joint distribution PM(V)
that satisfies Markov property with respect to G. That is,
PM(V) can be factorized according to G as

PM(V) =
∏
X∈V

PM(X|PaG(X)).

We dropM from PM(·) when it is clear from the context.
In this paper, an intervention on a set X converts M to a

new SEM where the equations of the variables in X are
replaced by some constants.4 We denote the corresponding
post-interventional distribution by PX(V \X). The goal of
causal inference in population is to compute an interventional
distribution PX(Y) for two disjoint subsets X and Y of V.

Let X,Y,W be three disjoint subsets of V. A path P =
(X,Z1, . . . , Zk, Y ) between X ∈ X and Y ∈ Y in G is
called blocked by W if there exists 1 ≤ i ≤ k such that
• Zi is a collider5 on P and Zi /∈ AncG(W), or
• Zi is not a collider on P and Zi ∈W.

Denoted by (X ⊥⊥ Y|W)G , we say W d-separates X and
Y if for any X ∈ X and Y ∈ Y, W blocks all the paths
in G between X and Y . Conversely, (X⊥̸⊥ Y|W)G if there
exists at least one active path between a variable in X and a
variable in Y that is not blocked by W.

The following three rules, commonly referred to as Pearl’s
do-calculus rules (Pearl 2000), provide a tool for calculating
interventional distributions using the causal graph.

• Rule 1: If (Y ⊥⊥ Z|X,W)GX
, then

PX(Y|Z,W) = PX(Y|W).

• Rule 2: If (Y ⊥⊥ Z|X,W)GX,Z
, then

PX,Z(Y|W) = PX(Y|Z,W).

• Rule 3: If (Y ⊥⊥ Z|X,W)G
X,Z(W )

, where Z(W) :=

Z \ AncGX
(W), then

PX,Z(Y|W) = PX(Y|W).

In these rules, GXZ denotes the graph obtained by remov-
ing the incoming edges to X and outgoing edges from Z.

The S-ID Problem
In this section, we start by discussing the integration of an
auxiliary variable S into a SEM to model a sub-population
and introduce the S-ID problem and formulate our objective.
Subsequently, we provide necessary and sufficient graph con-
ditions for the S-ID problem. Finally, given the causal DAG,
we provide a sound and complete algorithm for computing
PX(Y|S = 1) from P (V|S = 1), when this conditional
causal effect is S-ID.

Modeling a Sub-Population: Auxiliary Variable S

LetM be a SEM with the set of variables V, causal DAG G,
and observational distribution P (V), representing the distri-
bution of the entire population. That is, a sample is from the
population if it is generated from P (V). A sub-population,
on the other hand, refers to a biased sampling mechanism.
Formally, a sample is from a sub-population if it is generated
from a conditional distribution P (V|S = 1), in which

S := fS(VS , εS), (1)

4There are other types of interventions, such as soft-
interventions, which are not considered herein.

5A non-endpoint vertex on a path is called a collider if both of
the edges incident to it on the path point to it.
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where fS is a binary function that determines the characteris-
tics or traits of the sub-population, VS ⊆ V, and εS is the
exogenous noise variable independent of the other exogenous
variables. Under this modeling approach, S = 1 signifies that
the sample is generated from a specific sub-population.

We denote by GS the augmented DAG obtained by adding
S to G, such that PaGS(S) = VS , and S does not have any
children. As a result, GS is the causal graph of the SEM
obtained by adding S to the set of variables. Moreover, we
define P S(V) := P (V|S = 1), which is the observational
distribution of the target sub-population. We often omit the
graph subscript in PaG() and AncG() notations as parents and
ancestor sets are identical in G and GS.

Problem Formulation: Definition of S-ID
As mentioned earlier, P (V|S = 1) (or P S(V)) is the ob-
servational distribution of a sub-population. Furthermore,
for two disjoint subsets X and Y of V, PX(Y|S = 1) (or
P S
X(Y)) corresponds to the causal effect of X on Y in that

sub-population. The problem of S-ID, formally defined in
the following, considers the identifiability of PX(Y|S = 1)
from P (V|S = 1).

Definition 1 (S-ID). Suppose X and Y are disjoint subsets
of a set V, and let GS be the augmented causal graph of a
SEM over V∪ {S}. Conditional causal effect PX(Y|S = 1)
is S-ID in GS if for any two SEMsM1 andM2 with causal
graph GS such that PM1(V|S = 1) = PM2(V|S = 1) > 0,
then PM1

X (Y|S = 1) = PM2

X (Y|S = 1).

In other words, this definition states that P S
X(Y) is S-ID

when it can be uniquely computed from P S(V).
In the rest of the paper, we address the following questions.

Given an augmented causal DAG GS over a set V ∪ {S} and
for two disjoint subsets X and Y of V,

• What are the necessary and sufficient conditions on GS

such that P S
X(Y) is S-ID in GS?

• When P s
X(Y) is S-ID in GS, how can we compute it from

P S(V)?

To address the first question, for pedagogical reasons, we
first consider the case where X and Y each contain only
one variable. We subsequently extend our findings to the
multivariate scenario. In the last subsection, we address the
second question and propose a sound and complete algorithm
for the S-ID problem.

Conditions for s-Identifiability: Singleton Case
Suppose X and Y are singleton, where X = {X} and
Y = {Y }. The following theorem provides a necessary and
sufficient condition for P S

X(Y ) to be S-ID in GS.

Theorem 1. For two variables X and Y , conditional causal
effect P S

X(Y ) is S-ID in DAG GS if and only if

X /∈ Anc(S) or (X ⊥⊥ Y |S)GS
X
. (2)

Detailed proofs of our results appear in Appendices B and
C. In the main text, we provide concise proof sketches to
emphasize the key steps of our proofs.

Z

N YX S

(a) Type 1. N can coincide with Y .

Z N YX

S

(b) Type 2. N can coincide with S.

Figure 2: Two types of DAGs used in the proof of Theorem
1. The dotted edges indicate the presence of a directed path.

Sketch of proof. Sufficiency. Suppose Equation (2) holds. Ap-
plying do-calculus rules allows us to show the following
cases.

• If (X ⊥⊥ Y |S)GS
X

, then P S
X(Y ) = P S(Y |X).

• If X /∈ Anc(S) and Y ∈ Pa(X), then P S
X(Y ) = P S(Y ).

• If X /∈ Anc(S) and Y /∈ Pa(X), then

P S
X(Y ) =

∑
Pa(X)

P S(Y |X,Pa(X))P S(Pa(X)).

Necessity. For the necessary part, which is the challenging
part of the proof, we need to show that when X ∈ Anc(S)
and (X ⊥̸⊥ Y |S)GS

X
, then P S

X(Y ) is not S-ID in GS. We first
consider a special case where Y ∈ Anc(X) and prove the
following in the appendix.

Claim 1. If Y ∈ Anc(X) and X ∈ Anc(S), then P S
X(Y ) is

not S-ID in GS.

Accordingly, to complete the proof, suppose Y /∈ Anc(X).

Claim 2. If P S
X(Y ) is not S-ID in a subgraph of GS, then

P S
X(Y ) is not S-ID in GS.

To prove the theorem using Claim 2, we first introduce a
subgraph of GS and then show that P S

X(Y ) is not S-ID in that
subgraph.

Claim 3. There exists a path between X and Y in GS
X , which

is not blocked by S, and it contains at most one collider.

Denote by P , a path between X and Y in GS
X with the

minimum number of colliders such that S does not block P .
Due to Claim 3, path P exists and has at most one collider.

Let G′ be a minimal (in terms of edges) subgraph of GS

such that (i) G′ contains P , (ii) X ∈ AncG′(S), and (iii) if P
has exactly one collider, then the collider is an ancestor of S
in G′. Note that if P has a collider, then it is an ancestor of
S in GS since S does not block P . Thus, graph G′ with these
properties exists.

Figure 2 illustrates two types of DAGs, where the dotted
edges indicate the presence of a directed path, and the di-
rected paths do not share any edges. Variable N can coincide
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X

S

Y X

S

Y

(a) P S
X(Y ) = P S(Y |X)

S

WZ

X Y

(b) P S
X(Y ) =

∑
Z

P S(Y |X,Z)P S(Z)

Figure 3: Three DAGs in which P S
X(Y ) is S-ID.

X

Z

Y

S X

Z

Y

W S

Figure 4: Two DAGs in which P S
X(Y ) is not S-ID.

with Y in Figure 2a and with S in Figure 2b. Furthermore,
in Figure 2b, the directed path in red is towards a variable
inside the box, i.e., the variables in the directed paths from Z
to N (except Z itself), from N to S, and from Y to N .

In the appendix, we introduce a series of transformations to
simplify G′ and convert it to one of the two forms depicted in
Figure 2. Denote by G′′, the DAG obtained by this conversion.
This conversion ensures that if P S

X(Y ) is not S-ID in G′′, then
it is not S-ID in G′. Therefore, it suffices to show that P S

X(Y )
is not S-ID in G′′. To this end, in the appendix, we introduce
two SEMs with causal graph G′′, denoted byM1 andM2,
and show that PM1

X (Y |S = 1) ̸= PM2

X (Y |S = 1), while
PM1(V|S = 1) = PM2(V|S = 1) > 0. This proves that
P S
X(Y ) is not S-ID in G′′ and completes the proof.

Figure 3 depicts three example graphs in which P S
X(Y)

is S-ID. In both DAGs in Figure 3a, (X ⊥⊥ Y |S)GS
X

. As
mentioned in the sketch of proof of Theorem 1, this implies
that P S

X(Y ) = P S(Y |X). We note that in the left graph,
X does not have any causal effect on Y in the population
(i.e., PX(Y ) = P (Y )) since Y is not a descendent of X .
However, X has causal effect on Y in the sub-population
(i.e., P S

X(Y ) ̸= P S(Y )) due to the dependency of X and Y in
P S. In Figure 3b, since X /∈ Anc(S) = {Z,W, S} and Y /∈
Pa(X) = {Z}, we have P S

X(Y ) =
∑

Z P S(Y |Z,X)P S(Z).
Note that while PX(Y ) = P (Y |X), P S

X(Y ) ̸= P S(Y |X).
Remark 1. These examples show that ignoring S and as-
suming that our available samples are generated from P (as
opposed to P S) might lead to erroneous inferences.

Figure 4 depicts two DAGs in which X ∈ Anc(S) and
(X ⊥̸⊥ Y |S)GS

X
(in the left graph X ← Z → Y and in the

right graph X ← Z → W ← Y is an active path in GS
X ).

Hence, Equation (2) does not hold, and Theorem 1 implies
that P S

X(Y ) is not S-ID.

Conditions for s-Identifiability: Multivariate Case
We present a necessary and sufficient condition for P S

X(Y)
to be S-ID in DAG GS in the multivariate case. To do so, we
decompose X into two parts: ancestors and non-ancestors
of S. The following proposition demonstrates that the con-
ditional causal effect of the latter portion of X on any other
subset is always S-ID.

Proposition 1. Suppose GS is an augmented DAG over V ∪
{S}, and let X ⊊ V. For X2 := X \ Anc(S), conditional
causal effect P S

X2
(V\X2) is S-ID in GS and can be computed

from P S(V) by

P S(Anc(S) \ S)
∏

W∈W

P S(W |Pa(W )), (3)

where W = V \ (X2 ∪ Anc(S)).

Corollary 1. For Y ⊆ V \ X2, conditional causal effect
P S
X2

(Y) is S-ID in GS since

P S
X2

(Y) =
∑

V\(X2∪Y)

P S
X2

(V \X2). (4)

So far, we have shown that P S
X2

(V \X2) is always S-ID
in GS, where X2 = X \ Anc(S). The following theorem
provides a necessary and sufficient condition for P S

X(Y) to
be S-ID in GS. When this condition holds, the following
theorem presents a formula to compute P S

X(Y) in terms
of P S

X2
(V \ X2), which is always S-ID as established in

Corollary 1.

Theorem 2. For disjoint subsets X and Y of V, let X1 :=
X ∩ Anc(S) and X2 := X \ Anc(S).

• If X1 = ∅: Conditional causal effect P S
X(Y) is S-ID and

can be computed from Equation (4).
• If X1 ̸= ∅: Conditional causal effect P S

X(Y) is S-ID if
and only if

(X1 ⊥⊥ Y|X2, S)GS

X1X2

. (5)

Moreover, when (5) holds, we have

P S
X(Y) = P S(X1)

−1
∑

V\(X∪Y)

P S
X2

(V \X2), (6)

where P S
X2

(V \X2) can be computed from P S(V) using
Equation (3).

Corollary 2. Conditional causal effect P S
X(Y) is S-ID in GS

if and only if

X1 = ∅ or (X1 ⊥⊥ Y|X2, S)GS

X1X2

. (7)

Furthermore, if X = {X} is singleton, then X1 = ∅, which
is equivalent to X /∈ Anc(S) and Theorem 2 reduces to
Theorem 1 for the singleton case.
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X1

S

Y

Z X2

WX1

S

Y

Z X2

Figure 5: An example for the multivariate case where con-
ditional causal effect P S

{X1,X2}(Y ) is not S-ID in the left
graph while it is S-ID in the right graph and is equal to∑
Z,W

P S(Z,W |X1)P
S(Y |X2, Z,W ).

Sketch of proof. The first part of the theorem (if X1 = ∅) is
a direct consequence of Proposition 1. To show the second
part, we assume X1 ̸= ∅.

Sufficiency. Suppose Equation (5) holds. We need to show
that Equation (6) holds. By applying Rules 2 and 3 of do-
calculus, it can be shown that

P S
X(Y) = P S

X2
(Y|X1) =

P S
X2

(X1,Y)

P S
X2

(X1)
=

P S
X2

(X1,Y)

P S(X1)
.

Moreover, Corollary 1 for X1 ∪Y implies that

P S
X2

(X1,Y) =
∑

V\(X∪Y)

P S
X2

(V \X2).

Equation (6) can be obtained by merging the above equations.
Necessity. Suppose (X1 ⊥̸⊥ Y|X2, S)GS

X1X2

. We need to

show that P S
X(Y) is not S-ID in GS.

Claim 4. There exists X∗ ∈ X1, Y ∗ ∈ Y, and a subgraph
G∗ of GS such that

• X ∩ AncG∗
X∗

(S) = {X∗},
• (X∗ ⊥̸⊥ Y ∗|S)G∗

X∗ , and
• (X \ {X∗} ⊥⊥ Y ∗|X∗, S)G∗

X
.

The first property implies that X∗ ∈ AncG∗(S). Hence,
Equation (2) holds for X∗ and Y ∗ in G∗ and Theorem 1
implies that P S

X∗(Y ∗) is not S-ID in G∗. To conclude the
proof, similar to the sketch of proof of Theorem 1, it suffices
to show that P S

X(Y) is not S-ID in G∗.
For any SEM with causal graph G∗, due to the first and

third properties in Claim 4, Rule 3 of do-calculus implies that
P s
X∗(Y ∗) = P s

X(Y ∗). Therefore, in G∗, the s-identifiability
of P s

X∗(Y ∗) is equivalent to s-identifiability of P s
X(Y ∗), thus

P s
X(Y ∗) is not S-ID in G∗. This shows that P s

X(Y) is also not
S-ID in G∗ since Y ∗ ∈ Y, which concludes our proof.

Consider the two DAGs in Figure 5, where we are in-
terested in computing P S

X(Y) for X = {X1, X2} and
Y = {Y }. Accordingly, we have X1 = X ∩ Anc(S) =
{X1} and X2 = X \ Anc(S) = {X2} for both DAGs.

Algorithm 1: A sound and complete algorithm for S-ID

1: Input: X,Y,GS, P S(V)
2: Output: A formula for P S

X(Y) based on P S(V) if it is
S-ID, otherwise, FAIL

3: X1 ← X ∩ Anc(S)
4: X2 ← X \ Anc(S)
5: W← V \ (X2 ∪ Anc(S))
6: if X1 = ∅ then
7: Return

∑
V\(X∪Y)

P S(Anc(S) \ S)
∏

W∈W

P S(W |Pa(W ))

8: else if (X1 ⊥⊥ Y|X2, S)GS

X1X2

then

9: Return
∑

V\(X∪Y)

P S(Anc(S)\S)
P S(X1)

∏
W∈W

P S(W |Pa(W ))

10: else
11: Return FAIL
12: end if

In the DAG on the left, (X1 ⊥̸⊥ Y |X2, S)GS

X1X2

since

X1 ← Z → Y is an active path. Hence, Theorem
2 implies that P S

{X1,X2}(Y ) is not S-ID. On the other
hand, P S

{X1,X2}(Y ) is S-ID in the DAG on the right
since (X1 ⊥⊥ Y |X2, S)GS

X1X2

. Moreover, P S
X2

(Y ) =

P S(X1, Z,W )P S(Y |X2, Z,W ) due to Proposition 1, thus,
P S
{X1,X2}(Y ) =

∑
Z,W

P S(Z,W |X1)P
S(Y |X2, Z,W ). Note

that P S(X1)
−1P S(X1, Z,W ) = P S(Z,W |X1).

A Sound And Complete Algorithm For S-ID
Equipped by Proposition 1 and Theorem 2, we present Al-
gorithm 1 for the S-ID problem.6 The inputs are the set of
intervened variables X, the set of outcome variables Y, aug-
mented causal DAG GS, and the observational distribution
of the target sub-population P S(V). The algorithm returns a
formula for conditional causal effect P S

X(Y) based on P S(V)
when it is S-ID in GS. Otherwise, it returns FAIL which indi-
cates that P S

X(Y) is not S-ID in GS.
The algorithm starts by decomposing X to ancestors (X1)

and non-ancestors (X2) of S. If X1 = ∅, due to the first
part of Theorem 2, P S

X(Y) is S-ID and the algorithm returns
Equation (4) by replacing P S

X2
(V \X2) with Equation (3).

Otherwise (i.e., when X1 ̸= ∅), the algorithm checks the
s-identifiability condition of Equation (5) in line 8. If the
condition holds, it returns Equation (6), again, by replacing
P S
X2

(V \X2) with Equation (3). If the condition does not
hold, Theorem 2 implies that P S

X(Y) is not S-ID, and the
algorithm returns FAIL.
Corollary 3. Algorithm 1 is sound and complete for the S-
ID problem. That is, when P S

X(Y) is S-ID in GS, it returns
a sound formula for it based on P S(V) (soundness), and
otherwise, it returns FAIL (completeness).

We can use efficient methods such as the one presented
Darwiche (2009) to verify the d-separation in Line 8 of Algo-
rithm 1. Accordingly, the time complexity of the algorithm

6Our implementation is at https://github.com/amabouei/s-ID.
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is O(n+m), where n and m represent the number of nodes
and edges in the graph, respectively.

Related Work
In this section, we review related problems in the causal
inference literature. A summary of the settings for these
problems can be found in Table 1.

Causal Inference in Population
The goal of causal inference in the entire population is to
compute a causal effect PX(Y). The seminal ID problem
(Pearl 1995), proposed by Judea Pearl, is concerned with cal-
culating PX(Y) based on observational distribution P (V)
when the causal graph is known. Pearl proposed three funda-
mental rules known as do-calculus, which, along with proba-
bilistic manipulations, can be used to compute interventional
distributions. Applying these rules, Tian and Pearl (2003)
proposed an algorithm for the ID problem, and later, Shpitser
and Pearl (2006b) and Huang and Valtorta (2006) concur-
rently and with two different approaches showed that the pro-
posed algorithm is sound and complete for the ID problem.
The former introduced a graph structure called Hedge and
showed that the existence of a hedge is equivalent to the non-
identifiability of an interventional distribution in the setting
of the ID problem. The latter showed that the identifiability
of a causal effect PX(Y) is equivalent to the identifiability of
Q[Z] := PV\Z(Z) for Z = AncGX

(Y). They then showed
that the recursive algorithm by Tian and Pearl (2003) is sound
and complete for the identifiability of Q distributions.

A more generalized formulation of the ID problem is
known as gID or general identifiability (Lee, Correa, and
Bareinboim 2019; Kivva et al. 2022). Similar to the ID prob-
lem, the goal in gID is to compute a causal effect PX(Y)
but from {PZi(V \ Zi)}mi=0 for some subsets {Zi}mi=0 of
observed variables. Hence, ID is a special case of gID when
m = 0 and Z0 = ∅. Kivva et al. (2022) extended the ap-
proach of Huang and Valtorta (2006) for the ID problem to
gID and proposed a sound and complete algorithm for gID.

Another problem in causal inference on population is
the so-called S-Recoverability (Bareinboim, Tian, and Pearl
2014; Bareinboim and Tian 2015; Correa, Tian, and Barein-
boim 2019). In contrast to ID and gID, the given distribution
in S-Recoverability originates from a sub-population, yet
the aim remains to calculate a causal effect for the entire
population. The constraint of having data from merely a sub-
population makes the inference task for the whole population
particularly challenging. Consequently, it is plausible to antic-
ipate that a majority of causal effects would be unidentifiable,
a fact that inherently restricts the practical applicability of
the S-Recoverability problem.

Causal Inference in a Sub-Population
Shpitser and Pearl (2006a) tackled the c-ID problem by
proposing a sound and complete algorithm for computing a
conditional causal effect PX(Y|Z) from observational distri-
bution P (V). They showed that Z can be decomposed into
two parts, namely Z1 and Z2, such that PX(Y|Z) is c-ID if
and only if PX1,Z1

(Y,Z2) is ID. Hence, solving c-ID can

be reduced to solving an ID problem. Similar to gID that
generalizes the ID problem, Correa, Lee, and Bareinboim
(2021) and Kivva, Etesami, and Kiyavash (2023) generalized
c-ID to c-gID. The objective in c-gID is again the compu-
tation of a conditional causal effect PX(Y|Z), but from a
set of interventional distributions of form {PZi

(V \Zi)}mi=0
instead of merely the observational distribution.

Both the c-ID and c-gID settings operate on the premise
that the given distributions originate from the entire popula-
tion. Thus, to make an inference for a target sub-population,
they require samples from the whole population (observa-
tional distribution in the case of c-ID and interventional dis-
tributions for c-gID). By contrast, the S-ID problem uses
the observational distribution merely from the target sub-
population.

Causal Graph Variations
In all the aforementioned causal inference problems, the
causal graph is assumed to be given. Although many causal
discovery algorithms, such as the ones proposed by Colombo
et al. (2012); Claassen, Mooij, and Heskes (2013); Bern-
stein et al. (2020); Akbari et al. (2021); Huang et al. (2022);
Mokhtarian et al. (2021, 2023), aim to learn the causal graph
using observational distribution, the causal graph is only iden-
tifiable up to the so-called Markov equivalence class (Spirtes
et al. 2000; Pearl 2009). Addressing this gap, Jaber, Zhang,
and Bareinboim (2019) and Jaber et al. (2022) provided al-
gorithms for the ID and c-ID problems, respectively, where
instead of the causal graph, a partial ancestral graph (PAG)
that represents the equivalence class of the causal graph is
known. Akbari et al. (2023) consider the ID problem when the
underlying graph is probabilistically defined. Tikka, Hyttinen,
and Karvanen (2019) and Mokhtarian et al. (2022) consider
a scenario for the ID problem where additional information
about the causal graph is available in the form of context-
specific independence (CSI) relations. They show that this
side information renders more causal effects identifiable.

Conclusion and Future Work
We introduced S-ID, a practical scenario for causal inference
in a sub-population. The S-ID problem asks whether, given
the causal graph, a causal effect in a sub-population can be
identified from the observational distribution pertaining to
the same sub-population. We provided a sound and complete
algorithm for the S-ID problem. While previous work, such
as the c-ID and S-Recoverability problems, provide consid-
erable insights, they cannot solve the S-ID problem. Indeed
through various examples, we demonstrated that ignoring the
subtleties introduced by sub-populations in causal modeling
can lead to erroneous inferences in the S-ID problem.

Our current framework assumes that all variables in the
sub-population are observable. We acknowledge the potential
practical situations where this may not be the case. Investi-
gating the S-ID problem in the presence of latent variables
is an important future direction. Furthermore, to numerically
estimate a causal effect, three key phases are involved: identi-
fication, estimation, and sensitivity analysis. This paper has
addressed the identification problem, establishing a founda-
tion for further research in the other two critical phases.
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