
Simplicity Bias in Overparameterized Machine Learning

Yakir Berchenko
Department of Industrial Engineering and Management, Ben-Gurion University of the Negev

P. O. 653, Beer-Sheva 84105, Israel.
berchenk@bgu.ac.il

Abstract

A thorough theoretical understanding of the surprising gener-
alization ability of deep networks (and other overparameter-
ized models) is still lacking. Here we demonstrate that sim-
plicity bias is a major phenomenon to be reckoned with in
overparameterized machine learning. In addition to explain-
ing the outcome of simplicity bias, we also study its source:
following concrete rigorous examples, we argue that (i) sim-
plicity bias can explain generalization in overparameterized
learning models such as neural networks; (ii) simplicity bias
and excellent generalization are optimizer-independent, as
our examples show, and although the optimizer affects train-
ing, it is not the driving force behind simplicity bias; (iii) sim-
plicity bias in pre-training models, and subsequent posteriors,
is universal and stems from the subtle fact that uniformly-at-
random constructed priors are not uniformly-at-random sam-
pled; and (iv) in neural network models, the biasing mech-
anism in wide (and shallow) networks is different from the
biasing mechanism in deep (and narrow) networks.

Introduction
Contemporary practice in deep learning has challenged con-
ventional approaches to machine learning. Specifically, deep
neural networks are highly overparameterized models with
respect to the number of data points and are often trained
without explicit regularization. Yet they achieve state-of-
the-art generalization performance. It is interesting to note
that these observations are not limited just to neural network
models. Qualitatively similar behaviour has also been ob-
served when using boosting with decision trees and random
forests (Wyner et al. 2017) and other non-network learn-
ing problems, with some examples dating back to the early
1990s (Loog et al. 2020).

A thorough theoretical understanding of the unreasonable
effectiveness of deep networks (and other overparameterized
models) is still lacking. Previous work (e.g., (Neyshabur,
Tomioka, and Srebro 2014; Neyshabur et al. 2018)) has sug-
gested that an implicit regularization is occurring in neu-
ral networks via an implicit norm minimization; in partic-
ular, the minimization of the (generalized) norm was con-
jectured to be a by-product of the “optimizer”, the method
by which the network is trained (i.e., stochastic gradient

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

descent, SGD). However, this has been questioned by the-
oretical and empirical work showing strong evidence to
the contrary (Razin and Cohen 2020; Huang et al. 2019;
Kawaguchi, Kaelbling, and Bengio 2017). Furthermore, al-
though the reasoning behind SGD as an implicit regularizer
(Hochreiter and Schmidhuber 1997; Keskar et al. 2016) is
insightful (“solutions that do not generalize well correspond
to sharp minima, and added noise prevents convergence to
such solutions”), there are examples where a good general-
ization is obtained irrespective of the optimizer used (Huang
et al. 2019; Kawaguchi, Kaelbling, and Bengio 2017; Wu,
Zhu et al. 2017).

Here we propose an entirely different and new approach:
instead of implicitly assuming that learning-models are
uniformly-probable random objects (prior to training), we
suggest that the probability space over models is in fact
biased towards simple functions. Thus, the trained model
will likely extrapolate well without fluctuating wildly in-
between the training data-points.

Despite some preliminary results (Arpit et al. 2017; Valle-
Perez, Camargo, and Louis 2018; Mingard et al. 2019;
De Palma, Kiani, and Lloyd 2019), a theoretical treatment
with a rigorous proof of such a bias is still lacking. Here,
in addition to explaining the outcome of simplicity bias,
we also study its source. This work suggests that, for
typical overparameterized models (in addition to explain-
ing generalization), simplicity bias is in fact universal and
nearly unavoidable. The crux of the matter is that the func-
tions obtained (at initialization) are uniformly-at-random
constructed but not uniformly-at-random sampled. In other
words, the naive “default” probability space over functions,
where each unique function is sampled with equal proba-
bility, is actually conceptually wrong and irrelevant for this
domain. Instead, it is well-known that if a construction pro-
cess is used to “sample” complex objects then the resulting
probability space is not a uniform space (even if the con-
struction itself is uniformly random, i.e., in each sub-step we
choose uniformly from several construction options). More-
over, different (spaces of) construction processes yield dif-
ferent probability spaces over functions. However, several
properties can be expected to be universal in some sense,
with simplicity bias being a case in point (Chauvin et al.
2004).

Below we present a concrete rigorous example; we then

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11052

identify two distinct mechanisms that bias towards simplic-
ity and provide further theoretical evidence to dispute the
relevance of focusing on shallow (and wide) networks while
researching deep (and narrow) networks.

Results
We now describe three concrete examples: overparam-
eterized learning of a Boolean function, infinitely-wide
neural networks (where we revisit known results), and
infinitely-deep non-wide neural networks.

Learning a Boolean function. Let Fn be the set of
all Boolean functions on n variables. There are 2n pos-
sible binary inputs, and thus there are 22

n

such Boolean
functions, |Fn| “ 22

n

.
For f P Fn, let pX,Yf q denote a uniformly random

sample of observations regarding f , and |pX,Yf q| denote
the sample size (i.e., the number of input–output pairs ob-
served).

How likely are we to overfit when fitting f̂ based on a
small sample? Consider the following negative claim:

Claim 1. The vast majority of functions that agree
with f over the sample obtain only chance agreement with
f out-of-sample (i.e., agreement « 1{2 out-of-sample).

More precisely, for a fixed sample size and a fixed
ϵ ą 0, the law of large numbers immediately entails that
if we choose a function f̂ completely at random (subject
to fitting the sample) then the probability of agreement on
more than 1{2 ` ϵ out-of-sample goes to 0 as n Ñ 8 (note
that f need not be fixed).

However, our main claim here is that this negative result
is actually misleading and demonstrates a misguided way of
thinking. It is true that when fitting by choosing a function
at random we are likely to overfit; however, in practice we
seldom choose a function at random, instead we construct
a function at random or choose a representation at random.
In particular, Boolean functions are typically implemented
using circuits or binary AND/OR trees. Thus, a more nu-
anced question would be: if we choose a Boolean circuit t
completely at random (subject to fitting the sample) what is
the probability of agreement on more than 1{2 ` ϵ out-of-
sample?

Let Tm,n denote the set of all binary Boolean trees withm
internal nodes over n input variables (and consider large and
“overparameterized” trees with m " n). Formally, a uni-
form probability space over Tm,n was introduced in (Chau-
vin et al. 2004) in the following manner: choose uniformly
at random a rooted binary tree and label its m internal nodes
randomly with AND and OR, and the m` 1 external nodes
with a literal, i.e., a variable or its negation. Each of the m
inner nodes is labeled with AND or OR with equal proba-
bility 1{2 and independently of the other nodes; each leaf is
labeled with a literal, chosen according to the uniform dis-
tribution on the 2n literals and independently of the labeling
of all other nodes.

Again, if we construct a tree ti P Tm,n, we can find

many candidates that agree with f perfectly over the sample
pX,Yf q while agreeing with f over only « 1{2 of the
out-of-sample data (i.e., chance agreement). Therefore,
you might surmise that the following learning algorithm is
(statistically) ill-advised:

Naive Algorithm. Given pX,Yf q:

1. Construct uniformly at random a tree
ti P Tm,n.

2. Check if fi, the function
corresponding to ti, agrees with f
over pX,Yf q. If so, return fi. If not,
go to step 1.

Nevertheless, we have the following surprising result link-
ing the complexity1 of f , the sample size, and ϵ (generaliza-
tion):
Theorem 1 (Random trees interpolate without overfitting).
Let Lf denote the complexity of f , and s denote the sample
size, s “ |pX,Yf q|.
For a given 0 ă ϵ ă 1{2, fix b such that logp1{2 ` ϵq ă ´b.
As n Ñ 8, if Lf ď b s

logn then with high probability the
output of the naive algorithm:
(i) agrees with f completely over the sample, and
(ii) agrees with f over more than 1{2`ϵ of the out-of-sample
data.

Remark: note that ϵ and b are fixed, but Lf and s (and m)
are not.

Proof. According to theorem 3.1 of (Lefmann and Savickỳ
1997)2, the probability of randomly constructing a tree that
corresponds to f is ě 1

4

`

1
8n

˘Lf . Therefore, the number of
attempts by the naive algorithm is dominated by a geometric
random variable with mean 4p8nqLf , and a perfect fit to the
data is found in Op

`

p8nqLf
˘

attempts.
The functions in Fn can be partitioned according to their

agreement with f :
• Poor or chance agreement. Each function in this class has

a probability of less than 1{2 ` ϵ of agreeing with f for
a random input.

• Adequate agreement (or better) 3 . Each function in this
class has a probability of more than 1{2 ` ϵ of agreeing
with f for a random input.

The naive algorithm results in overfitting if it samples
a function f̂ from the first class (the poor/chance agree-

1Here, following (Chauvin et al. 2004) we define the complex-
ity of a Boolean function, f , as Lf “ minimal size of a tree com-
puting f , where the size of a tree is the number of internal nodes it
has.

2Note we use the notations of (Chauvin et al. 2004), not (Lef-
mann and Savickỳ 1997). See also theorem 1 in (Chauvin et al.
2004).

3It is possible to further add here an almost sure agreement
class, agreeing with f with probability 1 ´ op1q. A similar proof,
with additional bookkeeping beyond the scope of this note, can
show that for a large enough sample size (or simple enough f) the
naive algorithm will provide f̂ almost surely agreeing with f .

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11053

ment class) which agrees with f over the sample data; how-
ever, for a given f̂ , since the sample data is sampled uni-
formly at random, the probability of such an agreement is
ď p1{2 ` ϵqs. Finally, since the naive algorithm performs
Op

`

p8nqLf
˘

attempts, an application of the union bound
provides the following upper bound on the probability of
overfitting:

P poverfitq “ Op

`

p1{2 ` ϵqsp8nqLf
˘

(1)

but now

p1{2 ` ϵqsp8nqLf ď p1{2 ` ϵqsp8nq
b s
log n “

“

´

p1{2 ` ϵqp8nq
b

log n

¯s

and bearing in mind that limn
b

log n “ eb, we get that the
right-hand side is op1q for large s. b

The following example illustrates the point:
Example 1. Consider a binary classification task of
black/white images with n “ 28 ˆ 28 “ 784 pixels
(with 22

784

« 1010
235

classifiers to choose from). If
we provide the naive algorithm a sample of s “ 106

images, when will it avoid overfitting? Theorem 1 says
that overfitting is avoided if Lf “ Ops{ log nq, in
other words: if f can be implemented using an order of
s{ log n “ 106{ log 784 « 0.35 ˆ 106 gates, which seems
quite a lot and is very permissive.

Wide neural networks. In a very wide network (see
Fig. 1A) with random weights, the situation is in fact
straightforward: under the appropriate conditions, the
output layer simply sums up a large number of random
variables and thus the central limit theorem kicks in.
The result is that the network is a Gaussian process (at
initialization), which is a simple and well-behaved function
of the input. Moreover, previous work regarding very wide
networks (Jacot, Gabriel, and Hongler 2018) demonstrated
this Gaussian process and further found that after training
via gradient descent the result is akin to Gaussian process
regression (Jacot, Gabriel, and Hongler 2018) (i.e., a Gaus-
sian process conditioned on interpolating the sample data;
see (Williams and Rasmussen 2006)). Denote by Btrainp¨q a
Gaussian process (whose mean function and covariance are
training-data dependent) conditioned on passing through
the sample points4. From ref. (Jacot, Gabriel, and Hongler
2018) we can summarize the following proposition:

Proposition 1. In the setting of ref. (Jacot, Gabriel, and
Hongler 2018), a wide network trained on a noise-free data
pX,Yf q via gradient descent after a random initialization is
distributed as Btrainp¨q.

Remark: Needless to say, the mean function and covariance
are training-data dependent, but given pX,Yf q they are
deterministic. The only randomness is due to the random
Gaussian initialization of the network weights.

4The notation B is due to the analogy to the Brownian bridge
process.

Consider again the following naive “training” algorithm:
Naive Algorithm (for neural networks).

Given pX,Yf q:

1. Initialize the weights of a
network (f̂) at random from a normal
distribution.

2. Check if the network f̂ agrees with f

over pX,Yf q. If so, return f̂. If not,
go to step 1.

Remark: This algorithm is obviously non-constructive. In
particular, the probability of agreement is zero. However, (i)
it could be modified to check if the disagreement is smaller
than a predefined threshold (ii) efficiency is not the issue
here, rather the following question: what could be said about
the result if the algorithm does stop?
Proposition 2. In the setting of ref. (Jacot, Gabriel, and
Hongler 2018), a wide network trained on a noise-free data
pX,Yf q via the naive algorithm (given the algorithm has
stopped) is distributed as Btrainp¨q.
Remark: Here too the randomness is due to the random
Gaussian initialization of the network weights.

This highlights that it is not gradient-based training
which contribute to the statistical efficiency and general-
ization of the outcome (although GD is indeed important
for computational efficiency - and for speeding up training).
Rather, there is an inherent simplicity bias due to the
random construction of the network via random weights
initialization.

However, the main driving force for the emergence of
these simple functions in the setting above is the large
width of the network, and not its depth (Lee et al. 2019).
For a “narrow” but deep neural network we show below
an entirely different mechanism which produces simplicity
bias nevertheless.

Deep neural networks. In a multi-layered network
(see Fig. 1B) each layer can be viewed as an operator in a
dynamical system that acts on the output of its preceding
layer. Under the appropriate conditions, this should lead to
convergence to a fixed point5 regardless of the initial input -
i.e. a simple “constant function”.

Example 2. Consider a standard fully connected ReLu
network with no bias, and Gaussian weights initialization;
i.e., prior to training, the output of xj,l, the jth unit in the

lth layer, is R
´

řw
k“1 a

plq
j,kxk,l´1

¯

, where w is the width of

the network, each weight aplq
j,k is a standard normal random

variable independent of the rest, and Rpxq “ maxp0, xq.

Let Xl denote the output of the lth layer, and 0 de-
note the zero vector. Notice the following properties:

5The notion of a fixed point is more subtle in the case of random
dynamical systems, but similar behavior is expected nonetheless
(Boxler 1995; Bhattacharya and Majumdar 2007).

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11054

(i) if Xl “ 0 then the same would be true for all Xk with
k ą l.
(ii) since P pxj,l “ 0q ě P p@k : a

plq
j,k ă 0q “ 0.5w ą 0 we

get P pXl “ 0q ą 0.
Taken together we conclude the following:
as l Ñ 8 we have P pXl “ 0q Ñ 1, and the output is a
simple constant regardless of the input.

The example above presents the core ideas and notation,
while keeping the analysis pretty straightforward (thanks
to the positive mass on P pxj,l “ 0q due to the activation
function). We now show that networks with other activation
functions (with zero mass on P pxj,l “ 0q, but a finite
derivative at zero) exhibit similar phenomena.

Definition 1. Asymptotic stability. Let X0, X1, X2...
denote the states of a dynamical system, with }X} as the
Euclidean norm. We say that a point X˚ is asymptotically
stable if there exists a δ ą 0 such that for all X0 in the
δ-neighborhood of X˚ we have Xl Ñ X˚ as l Ñ 8.

Theorem 2 (Asymptotic stability in deep networks). In the
setting above, consider a deep network with activation func-
tion σ

´

řw
k“1 a

plq
j,kxk,l´1

¯

with σp0q “ 0 and a finite deriva-

tive at zero, σ1
0 ă 8. If the weights ta

plq
j,kuj,k,lě1 are i.i.d.

zero-mean with standard deviation smaller than 1?
wσ1

0
then

0 is asymptotically stable.

Proof (sketch). Consider the dynamical system linearized
at 0. Its Jacobian matrix, J , is a w ˆ w random matrix with
i.i.d. zero-mean entries with variance ă 1

w . Now:

• Large width case: for large w, according to the circu-
lar law (see theorem 1.10 in (Tao, Vu, and Krishnapur
2010)), the eigenvalues of J lie in the unit disk with high
probability. Standard theory (see, e.g., (Boxler 1995) for
additional details) entails that 0 is a (local) attractor and
that for any initial point (close to 0) the system will con-
verge to 0.

• Fixed width case: although less elegant, it is still pos-
sible to bound the Lyapunov exponent of the system,
λ1 ď 1

2 pln 1
w ` ln2 ` ψpw{2qq where ψ is the digamma

function (see details and definitions in chap. 2 sec. 4 in
(Crisanti, Paladin, and Vulpiani 1993), and (Cohen and
Newman 1984)). Since ψpzq « lnz ´ 1

2z ´ Op 1
z2 q we

have λ1 ď ´ 1
w ´ Op 1

w2 q ă 0. Thus, again we conclude
from standard theory that 0 is a (local) attractor and that
for any initial point (close to 0) the system will converge
to 0. b

Remark 1: A similar result was obtained by (Xiao, Pen-
nington, and Schoenholz 2020) for infinitely-wide networks
(the crux of the methods in ref. (Xiao, Pennington, and
Schoenholz 2020), which requires the large width, is the
use of the central limit theorem to approximate the pre-
activations as a gaussian). Our result, in contrast, is not lim-
ited to wide networks, and applies to “narrow” networks as
well; and although the sketch of the proof mentioned the cir-
cular law, and thus a wide network with large w is implied,
this is actually not essential. This is merely the most imme-

diate way to bound the eigenvalues of J below 1 in magni-
tude, and any other way would suffice (see, for example, the
second part addressing fixed width). Furthermore, this sheds
light on the Op 1?

w
q scaling of ta

plq
j,kuj,k,lě1 required.

Remark 2: In the next section we also discuss more re-
laxed and realistic versions of Theorem 2; in particular, in-
cluding biases and finite-depth networks.

Theorem 2, however, primarily acts as an initial starting
point, mainly for didactic purposes. A more interesting ques-
tion to consider is: Can we establish for deep neural net-
works a counterpart to Theorem 1 and proposition 2 that
sheds light on the behavior after training with examples?
Our naive algorithm for training deep neural networks is
similar to before: initialize the weights from a normal dis-
tribution, and check if the outcome fits the sample data.
However, we now also consider a tolerance for disagreement
smaller than a predefined threshold:
Naive Algorithm (for neural networks).

Given pX,Yf q and a tolerance, τ:

1. Initialize the weights of a
network (f̂) at random from a normal
distribution with variance 1

w.

2. Check if the network f̂ agrees with f
over pX,Yf q up to τ; i.e., each output
given by the network on the sample
data is within a distance τ from the
correct output. If so, return f̂. If
not, go to step 1.

Note that for typical networks, with a continuous
activation-function, the resulting network is continuous -
both with respect to its input and moreover with respect to
its weights6. From this follows:
Proposition 3. If f can be described over the sample-data
by the neural network (i.e., there is a choice of the weights
for the neural network such that it fits the sample-data per-
fectly), then the naive algorithm terminates successfully in
finite time with probability 1.

Proof. Due to continuity with respect to weights, the set of
“perfect fit” weights is contained in a ball with radios δτ ą

0, i.e. having a strictly positive mass. Thus, the number of
attempts by the naive algorithm is dominated by a geometric
random variable.

Remark: throughout the rest of the paper we will assume
that f can indeed be described over the sample-data by the
neural network.

Consider the following conditions regarding the network-
structure and the data:
• N1: the network is a fully connected convolutional neural

network. Let d denote the dimension of the input xj ; each
layer in the network has also width d.

• N2: the activation function is linear near the origin; for
example, a shifted hard sigmoid: maxp´1,minp1, xqq.

• S1: small sample size. We assume the sample size is
smaller than d, i.e. d ą |pX,Yf q|.
6For brevity, we focus on regression, though a continuity argu-

ment could be made for classification as well.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11055

• S2: orthonormal samples. For each xi, xj in the sample,
we have that xi and xj are orthogonal (and have unit
length).

Assume the existence of an interpolating solution (i.e., a
set of weights with which the network fits the data perfectly)
possessing the following properties, and that the naive algo-
rithm succeeds in finding it:
• A1: Similar length mapping. Assume that for each xi, xj

in the sample, each one of the layers in the network pro-
duces for xj an output which is roughly the same length,
cl, as for xi (this will be made clear below, and further
discussed in the discussion section).

• A2: Quasi-linear prologue. Assume that for each input
near the origin, the first layers in the network act on it
linearly; only at layer lb, with 1 ! lb, the non-linearity
first takes its effect (this too will be made clear below,
and further discussed in the discussion section).

Remark. Notice that if a network with depth m is an inter-
polating solution, then there is an interpolating solution with
depth m` lb satisfying assumptions A1-A2; for example, a
solution where the first lb layers act as the identity function
on the training data.
Theorem 3 (Probabilistic nearest-neighbor classification).
Denote the s samples pX,Yf q by X “ tx1, x2, ...xsu and
Yf “ ty1, y2, ...ysu. Assume a neural network satisfying
conditions N1-S2 is trained with the naive algorithm, and
a solution satisfying assumptions A1-A2 is found.

Let xnew denote an out-of-sample data-point and ynew
the output by the network corresponding to it.

With high probability (tending to 1 as lb Ñ 8) we have:
i) ynew P ty1, y2, ...ysu.
ii) For yj P ty1, y2, ...ysu, P pynew “ yjq is an increasing
function of the cosine similarity between xnew and xj .

Proof. Let xp1q

j denote the output of the first layer of the
network (after training) given xj as input; more generally,
let xpkq

j denote the output of the kth layer of the network
given xj as input.
Lemma 1. Let xort be a new input, orthogonal to the
training samples tx1, x2, ...xsu. Then the output of the first
layer, xp1q

ort is a zero-mean normally distributed random
variable, independent of tx1, x2, ...xsu and independent of
tx

p1q

1 , x
p1q

2 , ...x
p1q
s u

(see proof in the appendix).
Consider the orthogonal decomposition of xnew:

xnew “

d
ÿ

j“1

hjxj “

s
ÿ

j“1

hjxj ` hortxort (2)

Based on A1-2 and lemma (1) we have

xp1q
new “

s
ÿ

j“1

hjc1x
p1q

j ` z (3)

where z is a zero-mean normally distributed random variable
independent of tx

p1q

1 , x
p1q

2 , ...x
p1q
s u.

Clearly, if for some j we have xp1q
new equal to xp1q

j , or in

the δτ neighborhood of xp1q

j , then ynew “ yj . For which j is
this most likely?
Proposition 4. The larger the magnitude of hj , the more
likely it is that xp1q

new is in the δτ neighborhood of xp1q

j .

Without loss of generality, assume that c1 “ 1 (just to
simplify the notations). Pick some index, k, and rewrite (3)
in the following manner:

xp1q
new “ z `

s
ÿ

j“1

hjx
p1q

j “ z `

s
ÿ

j “ 1
j ‰ k

hjx
p1q

j ` hkx
p1q

k “

“ z `

¨

˚

˚

˚

˚

˝

s
ÿ

j “ 1
j ‰ k

hjx
p1q

j ` phk ´ 1qx
p1q

k

˛

‹

‹

‹

‹

‚

` x
p1q

k

In order for xp1q
new to be in the δτ neighborhood of xp1q

k
the terms inside the parentheses need to be canceled out
by z. Since the Euclidean norm of the (vector) term in the
parentheses is

řs
j“1 h

2
j `1´2hk, while z is concentrated at

the origin (i.e., a zero-mean unimodal spherically symmetric
random variable) we conclude that the larger the magnitude
of hk, the more likely it is that xp1q

new is in the δτ neighbor-
hood of xp1q

k .
Next, if xp1q

new is not within the δτ -neighborhood of any
x

p1q

k , we should examine the probabilities of xp2q
new being

within the δτ -neighborhood of certain xp2q

k . Unfortunately,
unlike the case with lemma (1), xp2q

ort is not a normally dis-
tributed7. However, xp2q

ort is nevertheless a zero-mean uni-
modal spherically symmetric random variable; thus, simi-
larly to proposition (4), we conclude that the larger the mag-
nitude of hk, the more likely it is that xp2q

new is in the δτ neigh-
borhood of xp2q

k . Furthermore, based on A1-2, the same ap-
plies to layers 3, 4, ...lb, and thus as lb Ñ 8 we conclude
that with high probability:
i) ynew P ty1, y2, ...ysu.
ii) For yj P ty1, y2, ...ysu, P pynew “ yjq is an increasing
function of the cosine similarity between xnew and xj .
Corollary 1. If a large ensemble of networks is trained un-
der the conditions of theorem 3 then the ensemble-average
of their output for ynew is a kernel-machine.

Discussion
Although Boolean networks and the deep neural networks in
Theorems 2-3 are perhaps the simplest “overparameterized”
models, and are much simpler than other practical models,

7Interestingly, when the width of the layers is rapidly decreas-
ing, similarity to autoencoders, subsequent outputs are again near-
normal (Li and Woodruff 2021).

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11056

we feel there are a few lessons to be learnt from Theorem 1
and Theorems 2-3.

Shannon effect vs. the ‘no Shannon effect’. Unlike the
intuitive Shannon effect (i.e., that most Boolean functions
are complex (Riordan and Shannon 1942)), the so-called
no Shannon effect in randomly constructed functions (Geni-
trini, Gittenberger, and Mailler 2014) is virtually unknown in
the disciplines of machine learning and statistics. Neverthe-
less, we hypothesize it plays a key role not only in explaining
the generalization of binary neural networks, but also more
broadly for other overparameterized models (albeit through
analogous phenomena). Indeed, in (Valle-Perez, Camargo,
and Louis 2018) the authors rightly argued that general
Kolmogorov complexity reasoning entails simplicity bias;
however, their argument was non-constructive and abstract,
whereas below we argue that simplicity bias is not much
more than a nearly-inevitable outcome of the central limit
theorem (for wide networks) or a dynamical system fixed-
point theorem (for deep networks).

Wide vs. deep networks. There are two very different
mechanisms that bias towards simplicity in neural networks.
In a very wide network (see Fig. 1A) with random weights,
the situation is governed by the central limit theorem, and
thus the network is a Gaussian process (at initialization),
which is a simple and well-behaved function of the input.

The main driving force for the emergence of these simple
functions in the setting above is the large width of the net-
work, and not its depth (Lee et al. 2019). For a “narrow” but
deep neural network we present an entirely different mech-
anism that produces simplicity bias nevertheless. In a multi-
layered network (see Fig. 1B) each layer can be viewed as
an operator in a dynamical system, or Markov chain, that
acts on the output of its preceding layer; this should lead to
convergence to a fixed point regardless of the initial input -
i.e. a simple “constant function”.

The aforementioned viewpoint of a Markov-chain “for-
getting” its initial condition (i.e., input) elucidate also why
adding biases in Theorem 2 would not change the result
substantially. Adding external biases, unrelated to the ini-
tial input, should not prevent forgetting the initial condi-
tion and converging to an output independent of the input
(although now instead of having 0 as the output, the out-
put is drawn from the stationary distribution). Similarly, the
asymptotic phrasing of Theorem 2 does not imply it is irrel-
evant for finite-depth networks; on the contrary, like many
other “asymptotic converence” results, here too convergence
to the fixed-point up to an ϵ-tolerance distance from it, oc-
curs within a finite depth (possibly exponentially fast).

Note also that our new conjecture is different and com-
plementary to the edge of chaos hypothesis (Langton 1990),
which states that in order for a (post-training) dynamical sys-
tem to carry out “computations”, it needs to be between or-
dered and chaotic, i.e. at the edge of chaos (e.g., with a Lya-
punov exponent « 0 in absolute value). Our new hypothesis
states that a pre-training system needs to be in an ordered
state (e.g., with a Lyapunov exponent ă 0 in absolute value)
for it to generalize well after seeing the data (see also (Xiao,
Pennington, and Schoenholz 2020; Schoenholz et al. 2016)
for additional discussion in a specific setting).

Regardless to the universality and veracity of our conjec-
ture above, the following (known) cautionary tale regarding
research on generalization in wide networks should be reit-
erated: generalization in deep networks is likely to be driven
by a different mechanism, and thus insights from shallow-
and-wide networks might not be relevant.

Training and optimizers. In addition to providing a con-
crete and rigorous example of simplicity bias and its con-
tribution to learning, Theorem 1 also suggests a lack of
optimizer-dependence. The continuous neural network anal-
ogous to the (computationally inefficient) naive algorithm
would be “many initializations plus early stopping8”, sug-
gesting that the role of the specific optimizer is not cru-
cial (and Theorem 3 demonstrates it for regression for an
almost-perfect fit). As proposition 2 also implies, the opti-
mizer clearly affects which representation will be sampled
(i.e., which function will be obtained after training), but it is
not the driving force behind simplicity bias.

Our results complement the existing literature that exam-
ines the effects of training with SGD, as demonstrated in
studies such as (Rahaman et al. 2019). Using Fourier anal-
ysis terminology, these works have shown that SGD has a
stronger impact on lower frequencies. If we adopt the defi-
nition of “simple” as having a fast-decreasing Fourier trans-
form, our work introduces a crucial additional factor: the
initial conditions, following random weight initialization,
are simple, and training with SGD maintains this simplic-
ity throughout the process, resulting in a simple outcome.
It is important to note that prior findings related to training
dynamics alone are insufficient; we must also establish the
simplicity of the initial conditions.

Nevertheless, there is certainly merit in research studying
specific optimizers. Here we did not address training or the
standard optimizers; in Theorem 1 we only addressed learn-
ing via “toy training” mostly as a proof of concept - that
good learning can be performed in overparameterized mod-
els merely via the build-in simplicity bias (and without the
use of an optimizer). Additionally, Theorem 2 does not ad-
dress learning at all, it only serve to show that (randomly
initialized) deep networks are biased towards simple func-
tions; nevertheless, there is reason to think that this prior bias
will affect the posterior obtained after training. This seem
even more likely when considering training which start at a
random initialization and is updated via iterations of a local
search (as most common optimizers do). Indeed, ref. (Xiao,
Pennington, and Schoenholz 2020) demonstrated similar re-
sults for infinitely-wide deep networks (while here we also
address finite-width, or “narrow”, networks).

Theorem 3 show that random constructions that fit the
sample act as simple nearest-neighbors classification or
kernel-machines, suggesting that perhaps the vast majority
of interpolating solutions behave so as well. After a random
initialisation, SGD merely changes the weights greedily

8Note that for classification, unlike regression, even if the
weights are continuous random variables, there is a non-zero prob-
ability of random weights yielding a network that fits the training
data perfectly (albeit possibly a very small probability, and subject
to the existence of such a fit).

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11057

to find the closest solution, without any ingenious hidden
addition; thus, we conjecture that the solutions SGD finds
are of similar nature (see (Domingos 2020)), while “sophis-
ticated” solutions are very rare.

Appendix. Here we provide the proof of lemma 1.

Recall the following affine transformation theorem:

Theorem 4 (Affine Transformation Theorem). Let X be
a p-dimensional multivariate normal random variable, i.e.,
X „ N pµ,Σq, where µ is the mean vector and Σ is the
covariance matrix of X . Let A be a constant q ˆ p ma-
trix. Then, the random variable Y “ AX is also multi-
variate normally distributed, and its distribution is given by:
Y „ N pAµ,AΣAT q

Rearrange the (transpose) of the inputs, xTj , and xTort in
the following block matrix:

»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

xT1 0 ¨ ¨ ¨ 0
0 xT1 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ xT1
xT2 0 ¨ ¨ ¨ 0
0 xT2 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ xT2
...

...
. . .

...
xTs 0 ¨ ¨ ¨ 0
0 xTs ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ xTs
xTort 0 ¨ ¨ ¨ 0
0 xTort ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ xTort

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

where each “0” is a vector of an appropriate dimension.

Recall that for the first layers, under A2 and our previous
notation, the output of xj,l, the jth unit in the lth layer, is
řw

k“1 a
plq
j,kxk,l´1. Focusing on the first layer, we drop the su-

perscript notation and write aj “ paj,1, aj,2, aj,3, ...aj,wqT .

Concatenate the weights in the following column vector:

»

—

—

—

—

–

a1
a2
a3
...
aw

fi

ffi

ffi

ffi

ffi

fl

Hidden layers

Input layer

Input layer

B

A

Output layer

Output layer

Hidden layer

Figure 1: Limiting simplicity for large neural networks. (A)
A wide (and shallow) neural network. When the weights are
random, summing over the output of the large hidden layer
will entail a Gaussian process for the output and thus sim-
plicity. (B) A deep (and narrow) neural network. Here the
hidden layers might act as an operator in a dynamical sys-
tem, driving the initial input towards a fixed point, given as
the output of the penultimate layer. Thus, in a deep network
the driving force for the emergence of a simple function (the
“constant” fixed point) and generalization is different from
the one in a wide network.

obtaining
»

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

—

–

xT1 0 ¨ ¨ ¨ 0
0 xT1 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ xT1
xT2 0 ¨ ¨ ¨ 0
0 xT2 ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ xT2
...

...
. . .

...
xTs 0 ¨ ¨ ¨ 0
0 xTs ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ xTs
xTort 0 ¨ ¨ ¨ 0
0 xTort ¨ ¨ ¨ 0
...

...
. . .

...
0 0 ¨ ¨ ¨ xTort

fi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

ffi

fl

¨

»

—

—

—

—

–

a1
a2
a3
...
aw

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

—

—

–

x
p1q

1

x
p1q

2

x
p1q

3
...

x
p1q

ort

fi

ffi

ffi

ffi

ffi

ffi

ffi

fl

Recall that pa1, a2, a3, ...awqT is normally distributed
with a diagonal covariance matrix, and that it is here mul-
tiplied by a matrix with orthogonal rows; thus, by Theo-
rem (4) their product is normally distributed with a diag-
onal covariance matrix. In particular, xp1q

ort is a zero-mean
normally distributed random variable, and conditioning on
tx

p1q

1 , x
p1q

2 , ...x
p1q
s u does not change its distribution.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11058

References
Arpit, D.; Jastrzebski, S.; Ballas, N.; Krueger, D.; Bengio,
E.; Kanwal, M. S.; Maharaj, T.; Fischer, A.; Courville, A.;
Bengio, Y.; et al. 2017. A Closer Look at Memorization in
Deep Networks. In International Conference on Machine
Learning, 233–242.
Bhattacharya, R.; and Majumdar, M. 2007. Random dynami-
cal systems: theory and applications. Cambridge University
Press.
Boxler, P. 1995. Lyapunov exponents indicate stability and
detect stochastic bifurcations. In Probabilistic Methods in
Applied Physics, 97–119. Springer.
Chauvin, B.; Flajolet, P.; Gardy, D.; and Gittenberger, B.
2004. And/Or trees revisited. Combinatorics Probability
and Computing, 13(4-5): 475–497.
Cohen, J. E.; and Newman, C. M. 1984. The stability of
large random matrices and their products. The Annals of
Probability, 283–310.
Crisanti, A.; Paladin, G.; and Vulpiani, A. 1993. Products of
Random Matrices: In Statistical Physics. NATO Asi Series.
Series F, Computer and System Sciences. Springer Berlin
Heidelberg. ISBN 9783540565758.
De Palma, G.; Kiani, B.; and Lloyd, S. 2019. Random deep
neural networks are biased towards simple functions. In
Advances in Neural Information Processing Systems, 1964–
1976.
Domingos, P. 2020. Every model learned by gradient de-
scent is approximately a kernel machine. arXiv preprint
arXiv:2012.00152.
Genitrini, A.; Gittenberger, B.; and Mailler, C. 2014. No
Shannon effect induced by And/Or trees. In 25th Interna-
tional Meeting on Probabilistic, Combinatorial and Asymp-
totic Methods for the Analysis of Algorithms, 109–120.
Hochreiter, S.; and Schmidhuber, J. 1997. Flat minima. Neu-
ral Computation, 9(1): 1–42.
Huang, W. R.; Emam, Z.; Goldblum, M.; Fowl, L.; Terry,
J. K.; Huang, F.; and Goldstein, T. 2019. Understand-
ing generalization through visualizations. arXiv preprint
arXiv:1906.03291, .
Jacot, A.; Gabriel, F.; and Hongler, C. 2018. Neural tan-
gent kernel: Convergence and generalization in neural net-
works. In Advances in neural information processing sys-
tems, 8571–8580.
Kawaguchi, K.; Kaelbling, L. P.; and Bengio, Y.
2017. Generalization in deep learning. arXiv preprint
arXiv:1710.05468, .
Keskar, N. S.; Mudigere, D.; Nocedal, J.; Smelyanskiy,
M.; and Tang, P. T. P. 2016. On large-batch training for
deep learning: Generalization gap and sharp minima. arXiv
preprint arXiv:1609.04836, .
Langton, C. G. 1990. Computation at the edge of chaos:
Phase transitions and emergent computation. Physica D:
Nonlinear Phenomena, 42(1-3): 12–37.

Lee, J.; Xiao, L.; Schoenholz, S.; Bahri, Y.; Novak, R.; Sohl-
Dickstein, J.; and Pennington, J. 2019. Wide neural net-
works of any depth evolve as linear models under gradient
descent. In Advances in neural information processing sys-
tems, 8572–8583.
Lefmann, H.; and Savickỳ, P. 1997. Some typical properties
of large And/Or Boolean formulas. Random Structures &
Algorithms, 10(3): 337–351.
Li, Y.; and Woodruff, D. P. 2021. The Product of
Gaussian Matrices Is Close to Gaussian. arXiv preprint
arXiv:2108.09887.
Loog, M.; Viering, T.; Mey, A.; Krijthe, J. H.; and Tax, D. M.
2020. A brief prehistory of double descent. Proceedings of
the National Academy of Sciences, 117(20): 10625–10626.
Mingard, C.; Skalse, J.; Valle-Pérez, G.; Martı́nez-Rubio,
D.; Mikulik, V.; and Louis, A. A. 2019. Neural networks
are a priori biased towards Boolean functions with low en-
tropy. arXiv, .: arXiv–1909.
Neyshabur, B.; Li, Z.; Bhojanapalli, S.; LeCun, Y.; and Sre-
bro, N. 2018. The role of over-parametrization in general-
ization of neural networks. In International Conference on
Learning Representations.
Neyshabur, B.; Tomioka, R.; and Srebro, N. 2014. In search
of the real inductive bias: On the role of implicit regulariza-
tion in deep learning. arXiv preprint arXiv:1412.6614, .
Rahaman, N.; Baratin, A.; Arpit, D.; Draxler, F.; Lin, M.;
Hamprecht, F.; Bengio, Y.; and Courville, A. 2019. On the
spectral bias of neural networks. In International Confer-
ence on Machine Learning, 5301–5310. PMLR.
Razin, N.; and Cohen, N. 2020. Implicit Regularization in
Deep Learning May Not Be Explainable by Norms. arXiv
preprint arXiv:2005.06398, .
Riordan, J.; and Shannon, C. E. 1942. The number of two-
terminal series-parallel networks. Journal of Mathematics
and Physics, 21(1-4): 83–93.
Schoenholz, S. S.; Gilmer, J.; Ganguli, S.; and Sohl-
Dickstein, J. 2016. DEEP INFORMATION PROPAGA-
TION. stat, 1050: 4.
Tao, T.; Vu, V.; and Krishnapur, M. 2010. Random matrices:
Universality of ESDs and the circular law. The Annals of
Probability, 38(5): 2023–2065.
Valle-Perez, G.; Camargo, C. Q.; and Louis, A. A. 2018.
Deep learning generalizes because the parameter-function
map is biased towards simple functions. In International
Conference on Learning Representations.
Williams, C. K.; and Rasmussen, C. E. 2006. Gaussian pro-
cesses for machine learning, volume 2. MIT press Cam-
bridge, MA.
Wu, L.; Zhu, Z.; et al. 2017. Towards understanding gen-
eralization of deep learning: Perspective of loss landscapes.
arXiv preprint arXiv:1706.10239, .
Wyner, A. J.; Olson, M.; Bleich, J.; and Mease, D. 2017.
Explaining the success of adaboost and random forests as
interpolating classifiers. Journal of Machine Learning Re-
search, 18: 1–33.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11059

Xiao, L.; Pennington, J.; and Schoenholz, S. 2020. Disen-
tangling trainability and generalization in deep neural net-
works. In International Conference on Machine Learning,
10462–10472. PMLR.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

11060

