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Abstract

During the preceding biennium, vision-language pre-training
has achieved noteworthy success on several downstream
tasks. Nevertheless, acquiring high-quality image-text pairs,
where the pairs are entirely exclusive of each other, remains
a challenging task, and noise exists in the commonly used
datasets. To address this issue, we propose SoftCLIP, a novel
approach that relaxes the strict one-to-one constraint and
achieves a soft cross-modal alignment by introducing a soft-
ened target, which is generated from the fine-grained intra-
modal self-similarity. The intra-modal guidance is indicative
to enable two pairs have some local similarities and model
many-to-many relationships between the two modalities. Be-
sides, since the positive still dominates in the softened tar-
get distribution, we disentangle the negatives in the distribu-
tion to further boost the relation alignment with the negatives
in the cross-modal learning. Extensive experiments demon-
strate the effectiveness of SoftCLIP. In particular, on Ima-
geNet zero-shot classification task, using CC3M/CC12M as
pre-training dataset, SoftCLIP brings a top-1 accuracy im-
provement of 6.8%/7.2% over the CLIP baseline.

Introduction

Since OpenAl proposed Contrastive Language-Image Pre-
training (CLIP) (Radford et al. 2021), large-scale vision-
language pre-training (VLP) has achieved rapid develop-
ment. Many approaches (Li et al. 2021b; Yao et al. 2021;
Gao et al. 2022; Li et al. 2021a) have been proposed and
achieved remarkable success on several downstream tasks.
Among these methods, the alignment of the visual and lin-
guistic modalities is a critical component, often requiring the
use of image-text contrastive learning. This learning process
aims to bring paired image and text samples closer while
simultaneously pushing unpaired samples away, necessitat-
ing the complete mutual exclusivity between any two un-
paired samples. However, acquiring high-quality image-text
pairs is a challenging task, owing to the fact that the ma-
jority of image-text pairs are obtained through web crawl-
ing over the Internet, which frequently results in significant
noise. As evidenced in Figure 1(a), there are some local sim-
ilarities between the three pairs, the caption of (i) can also be
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Figure 1: (a) Three image-text pairs randomly sampled
from CC3M dataset have some local similarities, suggesting
the ubiquitous many-to-many relationships. (b) Using fine-
grained intra-modal self-similarity as the softened target can
allow for the existence of some similarities among unpaired
image and text.

used to describe the image (ii) and (iii), indicating many-to-
many relationships instead of perfect one-to-one correspon-
dences, which is also pointed out in CLIP-PSD (Andonian,
Chen, and Hamid 2022). Therefore, it is too harsh and un-
reasonable to completely push away the image (i) and the
text (ii)/(iii). Recent work PyramidCLIP (Gao et al. 2022)
also noticed this problem and proposed to use label smooth-
ing (Szegedy et al. 2016) to mitigate this problem. How-
ever, assigning equal weight to all the negative samples is
improper and ignores the information pertaining to their re-
lationships. The neglect of the potential distinctions among
negative samples results in the underutilization of valuable
information and an incomplete understanding of the under-
lying data structure.

In this paper, we propose SoftCLIP, a novel approach that
relaxes the strict one-to-one contrastive constraint and lever-
ages the intra-modal discriminative information to guide the
interaction between visual and linguistic modalities. Specif-
ically, we employ fine-grained intra-modal self-similarities
as the softened targets for soft cross-modal alignments. Fig-
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ure 1(b) illustrates how our softened targets allow for the
existence of some similarities between the image (i) and
the text (ii)/(iii). By incorporating the softened targets, Soft-
CLIP overcomes the limitations of traditional contrastive
methods and captures the nuanced information between vi-
sual and linguistic modalities, leading to a significant im-
provement in cross-modal learning. Furthermore, treating
different negative samples with different weights helps the
model to capture the authentic distribution of data more ef-
fectively. However, the contribution of negatives in the soft-
ened target distribution can still be overwhelmed by the
dominant positive one. To address this problem, we take
further step to disentangle the negatives in the distribution.
Specifically, we sift out the negative logits regardless of the
positive logit in both prediction and target distributions with
renormalization, and then bring the new two distributions
closer, which boosts the relation alignment with negatives
and brings further improvement.

Extensive experiments on several downstream tasks
demonstrate the effectiveness of the proposed Soft-
CLIP. Specifically, using CC3M (Changpinyo et al.
2021)/CC12M (Sharma et al. 2018) as pre-training dataset
and ResNet50 (He et al. 2016)-Transformer (Vaswani
et al. 2017) as the image-text encoder, SoftCLIP achieved
24.2%/43.2% top-1 accuracy on zero-shot ImageNet (Deng
et al. 2009) classification task, which is 6.8%/7.2% higher
than its baseline CLIP.

Our main contributions are summarized as follows:

* We propose to employ fine-grained intra-modal self-
similarities as softened targets for cross-modal learning,
thereby alleviating the problem of non-strict mutual ex-
clusion between any two pairs.

* We boost the relation alignment with negatives by disen-
tangling the negatives in the distribution to alleviate them
being overwhelmed by the positive one.

* We also use symmetric KL-Divergence to replace the
conventional cross-entropy when incorporating the soft-
ened targets. Extensive experiments demonstrate the ef-
fectiveness of SoftCLIP, which can steadily bring signif-
icant improvements under various scales of pre-training
data and various model architectures.

Related Work
Vision Language Pre-training

Vision-language pretraining (VLP) strives to achieve a uni-
fied representation of two modalities, namely vision and
language, through the utilization of large-scale image-text
pairs. Existing VLP models can be categorized into three
types, i.e., dual-stream models for alignment, single-stream
models for fusion, or their combination.

As a paradigmatic dual-stream model, CLIP (Radford
et al. 2021) has exhibited remarkable performance on zero-
shot recognition and several downstream tasks by lever-
aging contrastive learning on large-scale image-text pairs.
Following this paradigm, SLIP (Mu et al. 2022) and De-
CLIP (Li et al. 2021b) further combine self-supervision to
improve data utilization efficiency. PyramidCLIP (Gao et al.
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2022) and FILIP (Yao et al. 2021) introduce finer-grained
and more interactions between two modalities, seeking for
more accurate cross-modal alignment. CyCLIP (Goel et al.
2022) points out the importance of geometric consistency
in the learned representation space between two modalities,
and proposes geometrically consistency constraints. Differ-
ent from dual-stream ones, single-stream models, such as
Visual-BERT (Li et al. 2019) and OSCAR (Li et al. 2020),
fuse the image and text features with a unified model to
achieve deeper interaction. ALBEF (Li et al. 2021a) and
CoCa (Yu et al. 2022) absorb the essence of the two kinds of
structures, and find a more flexible way to learn visual and
linguistic representations. In this paper, we adopt the dual-
stream architecture and depart from the commonly used one-
hot labels. Instead, we utilize fine-grained intra-modal self-
similarities as softened targets to provide more informative
guidance, which leads to improved cross-modal interactions.

Softened Target

Softened target aims to alleviate the strict constraints im-
posed by one-hot label and avoid the model’s overconfi-
dence towards wrong predictions, which has demonstrated
its effectiveness across various tasks. For example, label
smoothing (Szegedy et al. 2016), a commonly used strat-
egy in classification task, assigns some small positive val-
ues to the ground-truth of all negative samples. Moreover, in
the field of knowledge distillation (Hinton et al. 2015), the
logits predicted by the teacher model will be used as soft-
ened targets to guide the learning process of student model.
The softened targets, containing the teacher’s modeling of
the relationship among all the samples, are more instructive
than the one-hot label. Recently, PyramidCLIP (Gao et al.
2022) has pointed out the potential limitation of the overly
rigid one-hot label, and hence proposes to use label smooth-
ing to mitigate this problem. However, it should be empha-
sized that the indiscriminate treatment towards all negative
samples is unreasonable and necessitates further attention.
CLIP-PSD (Andonian, Chen, and Hamid 2022) also utilizes
softened targets obtained from a teacher model to reduce the
adverse effects of noisy image-text pairs. Its core concept is
progressive self-distillation where the student network acts
as its own teacher and the model dynamically evolves into
its own teacher as training progresses. From this perspective,
SoftCLIP is also working under the self-distillation frame-
work, however, the softened targets do not stem from the
images and texts, but from the pre-extracted ROI (region-of-
interest) features of objects and corresponding tags.

Methodology

In this section, we first present some CLIP preliminaries,
and then introduce the details of our proposed SoftCLIP. The
overall framework can be seen in Figure 2.

CLIP Preliminaries and Label Smoothing

Consider a batch of N image-text pairs {(I;, T;)}~_;, CLIP
employs a dual-stream encoder to obtain the semantic rep-
resentation of each pair. Specifically, for the ;; pair, the
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Figure 2: The overall framework of SoftCLIP. For each image-text pair, the image is fed into a pre-trained object-attribute
detector to extract ROI features and their corresponding tags, which are used to compute the intra-modal self-similarities to
guide the cross-modal interactions. Besides, we disentangle negatives in each distribution to construct another soft loss term
and boost the relation alignment with negatives. And the conventional cross-entropy is replaced by symmetric KL-Divergence

when incorporating the softened targets.

image data I; is input into an image encoder to get the vi-
sual representation v;, and the text data 7; is input into a
text encoder to get the linguistic representation ¢;, gener-
ating L2-normalized embedding pairs {(v;,¢;)}Y,. CLIP
uses InfoNCE (Oord, Li, and Vinyals 2018) to conduct
cross-modal alignment, which pulled the paired image and
text embeddings together while pushing unpaired apart. For
the 74, pair, the normalized image-to-text similarity vector
pi(I,T) = {pi; (I, T)} ", and the text-to-image counter-

part p; (T, I) = {pi;(T, I)}}_; can be calculated through:

i)/7)

Dij I ’ T)= ) ()

) = S exploim(vs, 5)/7)

exp(sim(t;, v;)/T)

Zj.vzl exp(sim(¢;, v;)/T)
where 7 is a learnable temperature parameter initialized
with 0.07 and the function sim(-) conducts dot product to
measure the similarity scores. In CLIP paradigm, the cor-
responding one-hot label vectors are used as the targets to
calculate InfoNCE loss. The one-hot label of the i, pair is
denoted as y; = {y;; };V:l, with y;; equal to 1 and all other
elements equal to 0. Therefore the vision-to-language loss
and the language-to-vision loss can be obtained by:

1 N

i=1

Z

exp(sim(v;, ¢

pij (T, 1) = )

Lo = 3

£l2v = ylapz T I)) (4)
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where H (-, -) denotes the cross-entropy operation. And the
final CLIP loss can be denoted as Lepip = (Ly2r+ Li2y) /2.

As we have discussed, CLIP neglects some local simi-
larities between unpaired images and texts within a batch,
while PyramidCLIP roughly uses label smoothing to soften
the hard one-hot targets to alleviate this issue. Specifically,
the original one-hot label vector y; is softened to y;, which
is formulated as:

Yit 5)

MY+ N

where « is the smoothing hyper-parameter set to 0.2, and 1
denotes the all-ones vector.

yi=(1-

Soft Alignment under Intra-modal Guidance

The label smoothing strategy transfers a small portion of the
confidence from the positive sample and amortizes it to the
negatives, allowing for weak and fixed similarity with nega-
tives. This strategy works in PyramidCLIP, however, the im-
provement it brings is limited since it merely models naive
many-to-many relationships between images and the corre-
sponding texts. To improve this, we try to find clues from
the relation within a single modality. Specifically, we at-
tempt to use the intra-modal self-similarity as the softened
target to guide the CLIP model. An accurate intra-modal
self-similarity can provide a superb supervision to repair a
sample with more semantically similar correspondences in
another modality. Moreover, it inherently contains the im-
plicit expression of many-to-many relationships, with rich
and instructive knowledge.
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Intuitively, we may choose the original images and texts
to calculate the intra-modal self-similarity, i.e., image-to-
image similarity for the visual modality and text-to-text sim-
ilarity for the textual modality. However, this approach en-
counters some problems and does not perform well in prac-
tice, which is revealed in the experimental part. Pyramid-
CLIP pre-extracts the ROI features of detected salient ob-
jects for each image, with tag description for each object,
to introduce cross-level relation alignment, which can bring
significant gains. The ROI features and corresponding tags
of objects, extracted by a pre-trained object-attribute detec-
tor, contain the prior category and attribute information of
objects from the task of object detection. This encourages
us to exploit the priors, i.e., we can alternatively use the ROI
features and tags to calculate the intra-modal self-similarity.

Formally, for the image-text pair (I;,7;), we can pre-
extract the corresponding ROI-tag (ROI features and tags)
pair (R;, A}i\? from the image I;, constructing ROI-tag pairs
{(R;, A;)};L, within a batch. Note that the tags are con-
catenated and separated by commas to form a sentence.
Each pair is feed into the dual-stream model following Pyra-
midCLIP. As shown in Figure 2, R; is processed by the
rear part of the image encoder and A; is processed by the
text encoder, deriving the corresponding L2-normalized rep-
resentation vector pairs {(r;, a;)}X ;. And the linear em-
bedding layers for transforming vector dimension are omit-
ted here. For the 4, pair, the normalized intra-modal self-
similarity vectors of R; and A;, denoted as pz(R R)

{pi; (R, R)} —, and p;(A,4) = {pi;(4, A)} —1 Tespec-
tively, can be obtained by:
exp(sim(r;, r;
ijl exp(sim(r;, 75)/7)
(A, A) = Rl 07)]7) )

Zj.vzl exp(sim(a;, a;)/7)

Next, the ROI self-similarity and tag self-similarity are
utilized as the soft labels to supervise the image-to-text and
text-to-image correspondences respectively. In practice, we
use the weighted average of the hard labels and the soft la-
bels as the final softened targets to ensure the training stabil-
ity and better generalization, which is formulated as:

pi(A, A) = (1 - B)yi + Bpi(4, A), ©)
where y; denotes the hard one-hot label and 3 is a mixing
coefficient set to 0.3. Since the softened targets are also vari-
able distributions, the cross-entropy in CLIP should be re-
placed by the KL-Divergence as follows:

N
1 -
Leotwnt = 77 ) KL(Bi(R, R) || pi(1,T)),

(10)
i=1
1 N

Esoft-le = N ZKL(ﬁz(AvA) H pl(T7 I)) (11)
i=1

Then we can get the average soft loss under the guidance of
ROIs and tags, denoted as Lsott = (Lsoft-v2r + Lsoft-i2v)/2-
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Figure 3: Disentangling the negatives in the distribution.

Boosting Relation Alignment with Negatives

The introducing of intra-modal self-similarity does relax the
strict one-to-one constraint and guide the model to learn
many-to-many correspondences between the visual and lin-
guistic modalities. However, the confidence of the positive
sample still dominates compared to the negatives despite of
the softened target distribution. This may lead to numerous
negatives submerged by the dominant positive ones in the
cross-modal relation alignment. And the problem will be
more serious when meeting faulty positives, which means
the paired images and texts in the web-harvested dataset
are actually irrelevant. To mitigate this issue, we disentangle
negatives in the distribution to boost the relation alignment
with negatives in SoftCLIP.

Specifically, we discard the positive logits in the proba-
bility distribution and only concentrate on the knowledge
among negative logits with renormalization, as shown in
Figure 3. For any distribution vector p; = {p;; };V: 1

RN we use p; = [p:h"'7p:(i—1)7p:(i+1)7"'7p>;N} S

RM*(N=1) to denote its corresponding neg-disentangled dis-
tribution, with the elements calculated through:

* Dij
bij = =

==~ (12)
N
Zk:l,k;ﬁi Dik

where j is taken from [1,...,¢ — 1,4 + 1,..., N]. The dis-
entangling of negatives is applied identically to the distri-
butions p; (R, R), p;(A, A), p;(I,T) and p;(T, I), generat-
ingpf (R, R), p; (A, A), pi(I,T) and p} (T, I) correspond-
ingly. Then we can derive the relation-enhanced formulation
of Esoft—qu and Esoft—le as:

‘Csoft v2l = N ZKL R R) || Dp; (I T)) (13)
=1
Libti120 = ZKL (A, A) || pi(T.1)). (14

Hence, the relation-enhanced soft loss can be written as
= (Leoe-var T Loofe120)/2-

Training Objective

It is well known that the KL-Divergence is essentially asym-
metric, whereas the JS-Divergence is an alternative with
symmetric form. However, we have observed that the JS-
Divergence makes the training stage unstable. Therefore,

re
soft
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we directly symmetrize the KL-Divergence by adding a
reversed term with the two input distributions exchanged,
which has been proved to be effective in the experiments.
For instance, the symmetric form of D = KL(p || ¢) can be
written as:

D= L(KL(p | q) + KL(q || p)).

Following this, we can symmetrize Lqof and L15,, obtain-

15)

ing Lsop and LIo, respectively. And we utilize the two
terms to regulate the original CLIP loss. So the overall loss
function is denoted as:

Lsofecrip = Looft + AE;gft + pLeup, (16)

where the loss weights A and p are set to 1.0 and 0.5 in the
experiments.

Experiments
Pre-training and Evaluation Details

Architectures and Pre-training Datasets SoftCLIP ac-
commodates three distinct model architectures, with the vi-
sual encoder compatible with ResNet50, ViT-B/32 (Doso-
vitskiy et al. 2020) and ViT-B/16 (Dosovitskiy et al. 2020),
while the language encoder utilizes Transformer following
CLIP (Radford et al. 2021). The input resolution of image
encoder is 224 X224 and the maximum context length of text
encoder is 77. And SoftCLIP is pre-trained on three datasets,
CC3M (Changpinyo et al. 2021), CC12M (Sharma et al.
2018) and YFCC15M-V2 (Li et al. 2021b). These datasets
are listed in Table 1.

Object-attribute Detector The object-attribute detector
used to extract ROI features with tags is pre-trained by
VinVL (Zhang et al. 2021), adopting the framework of
Faster R-CNN (Ren et al. 2015). Through the detector, we
take 10 objects with the highest confidence from each im-
age to obtain the corresponding ROI features and category
descriptions with attribute information. Each ROI feature is
of 2052-dimension, concatenated by a 2048-dimensional ap-
pearance feature vector and 4-dimensional position vector
(the coordinates of top-left and bottom-right corners of the
object region).

Implementation Details We train our SoftCLIP using an
AdamW (Loshchilov and Hutter 2017) optimizer and the co-
sine learning rate scheduler with a linear warm-up. Specifi-
cally, the learning rate linearly increases from O to the peak
value within 10% of the total steps, and then decreases with
a cosine anneal strategy. The weight decay rate of AdamW
is set to 0.2. To save GPU memory, automatic mixed-
precision (Micikevicius et al. 2018) is used. The models are
trained from scratch for either 8 or 32 epochs in our experi-
ments, i.e., 8 epochs for ablation and 32 epochs for compar-
ison. We use 8 V100 GPUs for experiments, when training

Dataset CC3M

3M

CCi12M
10M

YFCC15M-V2
15SM

Size

Table 1: Pre-training datasets.
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Method  brelrin o Image  ImagoNe
SoRCLIP  coaw ReNeso i
sfCLP cow VITBR2 gy
SoeLp  coam  VITBIG o
smCUP  ccbw ReNesd 335
scu  ccbw VTR 3
somep oo ViTBAe g
SofCLIP YRCCIMy2 RN 33p
somcLp yrccisvve VTBR2  35g
SoftCLIP YRCCIove VITBI6 5

¢ Our Implementation

Table 2: Comparison against CLIP baseline on ImageNet
Zero-Shot (ZS) classification.

Image
Encoder
333

ResNet50 349

Method PETS DTD F101 FLOW SUN CAL AVG

CLIP$
SoftCLIP
272

CLIPO .
SoftcLIp VITB/16 355

¢ Our Implementation

22.8 48.0
27.1 50.8

21.6 48.3
25.6 53.8

54.9
56.3

53.8
55.6

50.0 65.6 45.8
55.9 704 49.2

534 71.5 46.0
56.2 71.8 49.2

Table 3: Accuracy on 6 datasets with ResNet50 and ViT-
B/16 image encoder pretrained on YFCC15M-V2. PETS /
DTD/F101/FLOW /SUN/CAL are abbreviations for Pets
/ Describable Textures / Food-101 / Flowers-102 / SUN397
/ Caltech-101 datasets. AVG represents average accuracy
across all 6 datasets.

with ResNet50 and ViT-B/32 image encoder, the batch size
is set to 2048, while with the image encoder ViT-B/16, the
batch size is 1024.

Downstream Tasks for Evaluation We validate the effec-
tiveness of the proposed SoftCLIP on three downstream
tasks: zero-shot image classification, zero-shot image-text
retrieval and image retrieval. For zero-shot image classifi-
cation, experiments are carried out on 7 datasets, such as
ImageNet (Deng et al. 2009), Pets (Parkhi et al. 2012), De-
scribable Textures (Cimpoi et al. 2014), Food-101 (Bossard,
Guillaumin, and Van Gool 2014), Flowers-102 (Nilsback
and Zisserman 2008), SUN397 (Xiao et al. 2010) and
Caltech-101 (Fei-Fei, Fergus, and Perona 2004). For zero-
shot image-text retrieval, experiments are conducted on
Flickr30K (Hodosh, Young, and Hockenmaier 2013) and
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Flickr30K(1K) MS-COCO(5K)
Method Elllllcls(gin Image-to-Text Text-to-Image Image-to-Text Text-to-Image
R@1 R@5 R@10 R@1 R@5 R@I0 R@l R@5 R@10 R@l R@5 R@10
CLIPO 549 81.6 905 371 650 750 294 548 66.1 189 40.7 525
DECLIPT ResNet50 587 850 925 407 689 784 31.1 590 699 20.6 438 554
SoftCLIP 62.1 864 93.0 430 710 803 360 612 723 222 458 573
CLIPO VIT-B/16 549 800 884 372 643 743 307 562 674 19.1 409 525
SoftCLIP "'~ 562 821 886 372 643 745 309 562 683 19.2 412 52.6

¢ Our Implementation

' Tested with: https:/github.com/Sense-GVT/DeCLIP#supported-models

Table 4: Zero-shot image-text retrieval results on Flicker30K and MS-COCO. All models are pre-trained on YFCCI15M-V2.

MS-COCO (Lin et al. 2014). For image retrieval, two sub-
tasks are included: instance retrieval task on Oxford (Philbin
et al. 2007) and Paris Buildings datasets (Philbin et al. 2008),
and copy detection task on the INRIA Copydays (Douze
et al. 2009) dataset. The results of image retrieval can be
seen in the supplementary materials.

Zero-shot Image Classification

To validate the effectiveness of the proposed SoftCLIP,
we first conduct experiments on the widely used zero-shot
ImageNet classification task. The results are presented in
Table 2. It is clear that SoftCLIP brings significant im-
provement compared to the CLIP baseline with differ-
ent image encoders, across varying levels of pre-training
data. Notably, SoftCLIP exhibits a significant increase of
6.5%/7.2% in top-1 accuracy compared to CLIP when the
pre-training dataset is CC3M/CC12M and the visual encoder
is ResNet50. Besides, we also provide the zero-shot clas-
sification results on the other six small datasets, which are
illustrated in Table 3. Obviously, the performance of Soft-
CLIP significantly exceed the CLIP baseline across all the
six datasets, which demonstrates the efficacy and general-
ization of the proposed SoftCLIP.

Zero-shot Image-text Retrieval

Next, we validate the efficacy of our proposed method on
image-text retrieval task. To this end, we conduct zero-shot
image-text retrieval experiments on the Flikcer30K and MS-
COCO datasets, and present the obtained results in Table 4.
The experimental results demonstrate that SoftCLIP con-
fers significant improvements on both datasets. In particu-
lar, when the image encoder is ResNet50, SoftCLIP brings
a top-1 hit accuracy improvement of 7.2% and 5.9% on
Flicker30K image-to-text and text-to-image retrieval tasks
respectively. Furthermore, SoftCLIP outperforms DeCLIP
pre-trained with the same dataset by a significant margin.

Ablation Study

In this section, we first conduct ablation studies to demon-
strate the effectiveness of each module in SoftCLIP, and then
explore some other factors which may influence the per-
formance. All the ablation experiments are conducted on
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ResNet50 ViT-B/32
Method IN ZS Top-1 IN ZS Top-1
CLIP (Baseline) 16.5 10.7
+ Label Smoothing 18.3 11.2
" CLIP+SoftLoss 205 117
+ Relation-enhanced Soft Loss 214 12.2
+ Symmetric KL (SoftCLIP) 22.1 12.5

Table 5: The effectiveness of each component in SoftCLIP.

CC3M for 8 epochs. More ablation results can be seen in
the supplementary materials.
Effectiveness of Each Module To verify the effectiveness
of each component proposed in SoftCLIP, we conduct a se-
ries of experiments with all components added to the CLIP
paradigm successively. As demonstrated in Table 5, only the
CLIP loss plus the naive soft loss Lg,g, can bring significant
gains, even exceeding the label smoothing strategy apprecia-
bly. Moreover, the adjunction of relation-enhanced soft loss
o and the symmetrization of KL-Divergence can further
improve the model performance.
Ablation about the Source of Softened Targets As we
have mentioned in the methodology part, image and text
self-similarities are more intuitive to serve as the soft-
ened targets compared with ROI and tag self-similarities.
Here we provide experimental basis to demonstrate why
we choose ROIs and tags. Let £(R, A) denote the soft
loss plus relation-enhanced soft loss under the guidance of
ROI and tag self-similarities, and £(7,T') denote that under
the guidance of image and text self-similarities. We addi-
tionally experiment with a mixed loss function denoted as
L = ~vL(R,A) 4+ (1 —~v)L(I,T), where v is adjustable
to control the proportion of the two terms and the CLIP
loss is not included in this ablation. The variety of the
model performance with respect to ~ is depicted in Fig-
ure 5(a), which reveals that the model performs better with
higher ratio of L(R, A), i.e., the guidance from ROI and tag
self-similarities. We attribute it to two reasons: One is that
the image and text similarities are inaccurate in the early
training stage, while ROIs and tags inherently contain fine-
grained internal alignment due to the priors from the task of
object detection; The second reason is that complete images
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Query: Birds with long orange beaks and black and white feathers in a park.

, Caption: A woman riding a green motorcycle
I with a side car.
i

woman

Figure 4: (a) Text-to-image retrieval examples on MS-COCO dataset. From left to right are the top 10 retrieved images from
rank1 to rank10. (b) Grad-CAM heatmaps for finding the correspondence from word in the caption to region in the image.
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Figure 5: (a) The influence of ROI-tag guidance and image-
text guidance at different mixing ratios. (b) The influence of
soft self-similarity label and hard one-hot label at different
mixing ratios.

and captions only provide a global understanding, which is
relatively coarse, whereas ROIs and tags can capture more
detailed local information, providing better guidance.

Influence of the Parameter 3 Recall that 5 is the weight-
ing coefficient to mix the one-hot hard label and the soft
self-similarity label in Equation (8) (9). Higher value of 3
indicates higher proportion of the self-similarity label. Here
we explore the influence of 3, which is shown in Figure 5(b).
In SoftCLIP (see the blue line), the optimal performance
is achieved with 3 between 0.1 and 0.5. However, as it in-
creases to 3 > 0.8, the performance declines dramatically,
which implies that pure self-similarity labels have very poor
guidance, hence requiring the reconciliation of hard labels.
Another interesting phenomenon is that the accuracy only
drops slightly when we mix a very small ratio of the soft
label, i.e., B = 0.0001. Our explanation is that the relation-
enhanced soft loss term is taking effect. A very small value
of 5 (0.0001) leads to a dominant positive logit (more than
0.9999) in the softened target with all the negatives over-
whelmed. Nevertheless, the negative logits can be prominent
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again after being disengaged in the distribution, hence, the
model can still capture the relation with negatives. To verify
this, we conduct additional experiments with the relation-
enhanced soft loss removed (see the orange line). In this
configuration, the model performance drops sharply when
B < 0.2, which is consistent with the theoretical analysis.

Visualization

Text-to-Image Retrieval In Figure 4(a), we give some text-
to-image top 10 retrieval results on MS-COCO. It can be
seen in the first example that, CLIP tends to narrowly fo-
cus on the unitary and specific expression, such as “black
and white”, while ignoring others like “birds”, result-
ing in the retrieval of mostly images of zebras. Whereas,
SoftCLIP has a more comprehensive understanding of the
text-image relationship and can retrieve the images that have
a better match with the query text.

Word-level Localization Grad-CAM (Selvaraju et al. 2017)
is utilized to show the word-level localization in the im-
age for an image-text pair. As shown in Figure 4(b), Soft-
CLIP has more precise responses to some nouns compared
to CLIP and can accurately locate the region related to the
noun. For instance, in the second example, SoftCLIP can
exactly locate the corresponding regions of “cars” and
“boat”, while CLIP are confused. We attribute this to the
introduction of fine-grained softened target, i.e., the object-
level intra-modal self-similarity.

Conclusions

In this paper, we propose SoftCLIP, a novel approach
that relaxes the strict one-to-one constraint and achieves a
soft cross-modal alignment by introducing intra-modal self-
similarity as softened target and disentangling negatives in
the distribution. SoftCLIP can model the commonly exist-
ing many-to-many relationships in the web-crawled noisy
image-text datasets. Extensive experiments on several tasks
demonstrate the effectiveness of the proposed SoftCLIP.
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