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Abstract

Inferring a diffusion equation from discretely-observed mea-
surements is a statistical challenge of significant importance
in a variety of fields, from single-molecule tracking in bio-
physical systems to modeling financial instruments. Assuming
that the underlying dynamical process obeys a d-dimensional
stochastic differential equation of the form

diBt = b((l:t)dt + E(wt)dwt,

we propose neural network-based estimators of both the drift
b and the spatially-inhomogeneous diffusion tensor D
=T /2 and provide statistical convergence guarantees when
b and D are s-Holder continuous. Notably, our bound aligns

with the minimax optimal rate N ~zita for nonparametric
function estimation even in the presence of correlation within
observational data, which necessitates careful handling when
establishing fast-rate generalization bounds. Our theoretical
results are bolstered by numerical experiments demonstrat-
ing accurate inference of spatially-inhomogeneous diffusion
tensors.

Introduction

The dynamical evolution of a wide variety of natural pro-
cesses, from molecular motion within cells to atmospheric
systems, involves an interplay between deterministic forces
and noise from the surrounding environment. While it is
possible to observe time series data from such systems, in
general the underlying equation of motion is not known an-
alytically. Stochastic differential equations offer a powerful
and versatile framework for modeling these complex sys-
tems, but inferring the deterministic drift and diffusion ten-
sor from time series data remains challenging, especially in
high-dimensional settings. Among the many strategies pro-
posed (Crommelin and Vanden-Eijnden 2011; Frishman and
Ronceray 2020; Nickl 2022), there are few rigorous results
on the optimality and convergence properties of estimators
of, in particular, spatially-inhomogeneous diffusion tensors.

Many numerical algorithms have been proposed to in-
fer the drift and diffusion, accommodating various settings,
including one-dimensional (Sura and Barsugli 2002; Pa-
paspiliopoulos et al. 2012; Davis and Buffett 2022) and mul-
tidimensional SDEs (Pokern, Stuart, and Vanden-Eijnden
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2009; Frishman and Ronceray 2020; Crommelin and Vanden-
Eijnden 2011). Also, the statistical convergence rate has
been extensively studied for both the one-dimensional
case (Dalalyan 2005; Dalalyan and Reif3 2006; Pokern, Stu-
art, and van Zanten 2013; Aeckerle-Willems and Strauch
2018) and the multidimensional cases (Van der Meulen, Van
Der Vaart, and Van Zanten 2006; Dalalyan and Reif3 2007;
van Waaij and van Zanten 2016; Nickl and S6hl 2017; Nickl
and Ray 2020; Oga and Koike 2023; Nickl 2022). For para-
metric estimators using a Fourier or wavelet basis, the statis-
tical limits of estimating the spatially-inhomogeneous diffu-
sion tensor have been rigorously characterized (Hoffmann
1997, 1999a). However, strategies based on such decompo-
sitions do not scale to high-dimensional problems, which
has motivated the investigation of neural networks as a more
flexible representation of the SDE coefficients (Han, Jentzen,
and E 2018; Rotskoff, Mitchell, and Vanden-Eijnden 2022;
Khoo, Lu, and Ying 2021; Li et al. 2021).

Thus, we consider the nonparametric neural network esti-
mator (Suzuki 2018; Oono and Suzuki 2019; Schmidt-Hieber
2020) as our ansatz function class, which has achieved great
success in estimating SDE coefficients empirically (Xie et al.
2007; Zhang et al. 2018; Han, Jentzen, and E 2018; Wang
et al. 2022; Lin, Li, and Ren 2023). We aim to build statis-
tical guarantees for such neural network-based estimators.
The most related concurrent work is (Gu et al. 2023), where
the authors provide a convergence guarantee for the neural
network estimation of the drift vector and the homogeneous
diffusion tensor of an SDE by solving appropriate super-
vised learning tasks. However, their approach assumes that
the data observed along the trajectory are independently and
identically distributed from the stationary distribution. Ad-
ditionally, the generalization bound used in (Gu et al. 2023)
is not the fast rate generalization bound (Bartlett, Bousquet,
and Mendelson 2005; Koltchinskii 2006), resulting in a sub-
optimal final guarantee. Therefore, we seek to bridge the
gap between the i.i.d. setting and the non-i.i.d. ergodic set-
ting using mixing conditions and extend the algorithm and
analysis to the spatially-inhomogeneous diffusion estimation.
We show that neural estimators have the ability to achieve
standard minimax optimal nonparametric function estimation
rates even when the data are non-i.i.d.
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Contribution

In this paper, we construct a fast-rate error bound for estimat-
ing a multi-dimensional spatially-inhomogeneous diffusion
process based on non-i.i.d ergodic data along a single trajec-
tory. Our contributions are as follows:

* We derive for neural network-based diffusion estimators
a convergence rate that matches the minimax optimal
nonparametric function estimation rate for the s-Holder
continuous function class (Tsybakov and Zaiats 2009);

Our analysis explores the [3-mixing condition to address
the correlation present among observed data along the
trajectory, making our result readily applicable to a wide
range of ergodic diffusion processes;

* We present numerical experiments, providing empirical
support for our derived convergence rate and facilitating
further applications of neural diffusion estimators in vari-
ous contexts with theoretical assurance.

Our theoretical bound depicts the relationships between the
error of nonparametric regression, numerical discretization,
and ergodic approximation, and provides a general guideline
for designing data-efficient, scale-minimal, and statistically-
optimal neural estimators for diffusion inference.

Related Works

Inference of diffusion processes from data The problem
of inferring the drift and diffusion coefficients of an SDE
from data has been studied extensively in the literature. The
setting with access to the whole continuous trajectory is stud-
ied by (Dalalyan and Reif3 2006, 2007; Strauch 2015, 2016;
Nickl and Ray 2020; Rotskoff and Vanden-Eijnden 2019),
in which the diffusion tensor can be exactly identified using
quadratic variation arguments, and thus only the drift infer-
ence is considered. Many works focus on the numerical recov-
ery of both the drift vector and the diffusion tensor in the more
realistic setting when only discrete observations are avail-
able, including methods based on local linearization (Ozaki
1992; Shoji and Ozaki 1998), martingale estimating func-
tions (Bibby and Sgrensen 1995), maximum likelihood esti-
mation (Pedersen 1995; Ait-Sahalia 2002), and Markov chain
Monte Carlo (Elerian, Chib, and Shephard 2001). We refer
readers to (Sgrensen 2004; Lépez-Pérez, Febrero-Bande, and
Gonzélez-Manteiga 2021) for an overview of parametric ap-
proaches. A spectral method that estimates the eigenpairs of
the Markov semigroup operator is proposed in (Crommelin
and Vanden-Eijnden 2011), and a nonparametric Bayesian
inference scheme based on the finite element method is stud-
ied in (Papaspiliopoulos et al. 2012). As for the statistical
convergence rate of the drift and diffusion inference, a line of
pioneering works is by (Hoffmann 1997, 1999a,b), where the
minimax convergence rate of the one-dimensional diffusion
process is derived for Besov spaces and matched by adap-
tive wavelet estimators. Alternative analyses mainly follow
a Bayesian methodology, with notable results by (Nickl and
So6hl 2017; Nickl and Ray 2020; Nickl 2022) in both high-
and low-frequency schemes.

Solving high-dimensional PDEs with deep neural net-
works The curse of dimensionality has stymied efforts to
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solve high-dimensional partial differential equations (PDEs)
numerically. However, deep learning has demonstrated re-
markable flexibility and adaptivity in approximating high-
dimensional functions, which indeed has led to significant
advances in computer vision and natural language processing.
Recently, a series of works (Han, Jentzen, and E 2018; Yu
et al. 2018; Karniadakis et al. 2021; Khoo, Lu, and Ying
2021; Long et al. 2018; Zang et al. 2020; Kovachki et al.
2021; Lu, Jin, and Karniadakis 2019; Li et al. 2022; Rotskoff,
Mitchell, and Vanden-Eijnden 2022) have explored solving
PDEs with deep neural networks, achieving impressive re-
sults for a diverse collection of tasks. These approaches rely
on representing PDE solutions using neural networks, and
various schemes propose different loss functions to obtain
a solution. For instance, (Han, Jentzen, and E 2018) uses
the Feynman-Kac formulation to convert PDE solving into a
stochastic control problem, (Karniadakis et al. 2021) solves
the PDE minimizing the strong form, while (Zang et al. 2020)
solves weak formulations of PDEs with an adversarial ap-
proach.

Theoretical guarantees for neural network-based PDE
solvers Statistical learning theory offers a powerful toolkit
to prove theoretical convergence results for PDE solvers
based on deep learning. For example, (Weinan and Woj-
towytsch 2022; Chen, Lu, and Lu 2021; Marwah, Lipton,
and Risteski 2021; Marwah et al. 2023) investigated the
regularity of PDEs approximated by neural networks and
(Nickl, van de Geer, and Wang 2020; Duan et al. 2021; Lu
et al. 2021; Hiitter and Rigollet 2021; Lu, Blanchet, and
Ying 2022) consider the statistical convergence rate of var-
ious machine learning-based PDE solvers. However, most
of these optimality results are based on concentration results
that assume the sampled data are independent and identi-
cally distributed. This i.i.d. assumption is often violated in
various financial and biophysical applications, for example,
time series prediction, complex system analysis, and signal
processing. Among many possible relaxations to this i.i.d. set-
ting, the scenario, where data are drawn from a strong mixing
process, has been widely adopted (Bradley 2005). Inspired by
the first work of this kind (Yu 1994), many authors exploited
a set of mixing concepts such as a-mixing (Zhang 2004;
Steinwart and Christmann 2009), 8- and ¢-mixing (Mohri
and Rostamizadeh 2008, 2010; Kuznetsov and Mohri 2017;
Ziemann, Sandberg, and Matni 2022), and C-mixing (Hang
and Steinwart 2017). We refer readers to (Hang et al. 2016)
for an overview of this line of research.

Notations We will use < and 2 to denote the inequality up
to a constant factor and < the equality up to a constant factor.

Definition 1 (Holder space). We denote the Holder space of
order s € R with constant M > 0 by C*(R%, M), i.e.

C*(RY, M) = {f : R¢ —>R’

Yo 0%flle+ Y sup

lal<s lal=[s) 7Y

0% f(z) — 9% f(y)|
|z —y[s— L]

<ar}.
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Problem Setting

Suppose we have access to a sequence of N discrete posi-
tion snapshots (a:kT){CVZO along a single trajectory (¢)o<t<T,
where the time step 7 = T'/N and (x;):>0 is the solution to
the following It6 stochastic differential equation:

dwt = b(l’t)dt + Z(J:t)dwt, (1)

where b : R4 — RE Y : RY — R and (wy)i>o is
an r-dimensional Wiener process. We refer the vector field
b(x) as the drift vector, and define the diffusion tensor as
D(-) = $3(-)%(-) . As noted in (Lau and Lubensky 2007),
any interpolation between the Itd convention and other con-
ventions for stochastic calculus can be transformed into the
Itd convention by an additional term to the drift vector, and
therefore, we work with the 1t6 convention throughout this
paper’.

Remark 1. Our focus on the inhomogeneity in the space
variable stems from the fact that when the SDE coefficients
are time-dependent, it becomes very challenging to infer them
from a singular observational trajectory, i.e. with only one
observation at each time point and we would leave this case
with multiple trajectories for future work.

For simplicity, we will be working on Q = [0,1)? with
periodic boundaries, i.e. the d-dimensional torus Q = R?/Z4.

Points on the torus (2 are represented by &, where - denotes
the canonical map and z € R? is a representative of the
equivalence class . The Borel o-algebra on §2 coincides
with the sub-o algebra of 1-periodic Borel sets of R%. We
refer readers to (Papanicolau, Bensoussan, and Lions 1978)
for further mathematical details of homogenization with tori.
We further assume the drift and diffusion coefficients in (1)
satisfy the following regularity assumptions:

Assumption 2a (Periodicity). b(x), X(x), and D(x) are

1-periodic for all variables.

Remark 2. This assumption is primarily for simplicity, and
has been adopted in many previous works on the statistical
inference of SDE coefficients, e.g. (Nickl and Ray 2020). This
allows us to bypass the technicalities concerning boundary
conditions, which might detract from our main contributions.

Assumption 2b (Holder-smoothness). Each entry
bi(x),Si;(z), Dij(x) € C*(RY, M) for some s > 2 and
M > 0.

Assumption 2c¢ (Uniform ellipticity). It holds that r > d
and there exists a constant ¢ > 0 such that D(x) ~ cI,

ie. Z” 1 Dij(x)&:&; > c||€||? for any & € RY, holds uni-
formly for any x € R

Remark 3. This uniform ellipticity is commonly assumed
across the analysis of the Fokker-Planck equation. It guaran-
tees the Fokker-Planck equation has a unique strong solution

!The Itd convention along with others represent different methods
to extend the Riemann integral to stochastic processes. Roughly
speaking, Ito uses the left endpoint of the interval for functional
value in the Riemann sum. We adopt the Itd convention due to sev-
eral martingale properties it introduces which are mathematically
convenient for statements and proofs.
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with regularity properties that are essential for the analysis
of asymptotic behavior and numerical approximation of the
solution. We refer readers to (Stroock and Varadhan 1997;
Bogachev et al. 2022) for more detailed discussions.

Since b(x) and X(x) are 1-periodic, the process (x:):>0
in (1) can thus be viewed as a process (Z;):>0 := (¢)1>0

on the torus €2. Denote the transition kernel of the process
x; by Pl(x, ) :=P(x; € - |zo = @), the transition kernel of
the correspondmg process x; satisfies:

d
> Pt (m,-+2kiei> )
=1

(k:l e ,kd)EZd
where e; is the i-th standard basis vector in R%. When no
confusion arises, we will use & to denote its representative in
the fundamental domain 2 in the following.

P!(&, )

-

Spatially Inhomogeneous Diffusion Estimator

In this section, we aim to build neural estimators of both the
drift and diffusion coefficients based on a sequence of N
discrete observations (x kT)QIZO along a single trajectory of
the SDE (1). A straightforward neural drift estimator allows
us to subsequently construct a simple neural estimator of the
diffusion tensor. In what follows, we introduce and prove
the convergence of these neural estimators. Without loss of
generality, we assume 7 < 1 and 7" > 1, and denote the

o-algebra generated by all possible sequences (x k.T),I:[:O as
Frn(b,D).

Neural Estimators

We define £8.(b) and L2 (D) as the objective function for
drift and diffusion estimation, respectively, by noticing that
the ground truth drift vector b can be represented as the
minimizer of the following objective function as the time
step 7 — 0 and the time horizon T — oo:

dt,

1 T

T /o 2

where Ax; = x; . — x;. With the ground truth drift vector
b, the ground truth diffusion tensor can also be represented as

the minimizer of the following objective function as 7 — 0
and T — oo:

2

7 o 1
L5(b; (21)o<t<r) = b(x;) — ;Awt 3)

LR (D; (x4)o<i<r, b) =
41/  (Az, —b(x gﬂ(Axt—b@ng'zm
2 P
@
where || - || is the Frobenius norm of a matrix.

Based on the discussions in the last section, we will only es-
timate the value of b and D in the fundamental domain €2 and
then extend it to the whole space by periodicity. Therefore, us-
ing our data (x ;W){Q’:O as quadrature points, we approximate
the objective function for drift estimation (3) as:

—1

(b )g) = = S
N (B; (®hr)k=0) = N Z

k=0

2

L(k4+1)7r — Lkt >

T

— b(xkr)

)

2

&)
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Algorithm 1 Diffusion inference within function class &
1: Find the drift estimator

b := arg min L8 (b; (zr7)A_0);
bewd
2: Find the diffusion estimator

D := argmin LY (D; (x1+)2_0, b),
De®dxd

where b is the drift estimator obtained in the first step as
an approximation for the ground truth b.

and the objective function for diffusion estimation (4) as

_ 1 N—-1
LRD; (xxr )il b) =5 >
k=0

| F

o o ©)
We will refer to £, (b; (zy,)_) and LE(D; (zk- )Ny, b)
as the estimated empirical loss for drift and diffusion estima-
tion, respectively.

We then parametrize the drift vector and the diffusion
tensor within a hypothesis function class ® and solve for
the estimators by optimizing the corresponding estimated
empirical loss, as in Algorithm 1. Following foundational
works including (Oono and Suzuki 2019; Schmidt-Hieber
2020; Chen et al. 2022), we adopt sparse neural networks
N(L,p, S, M) as our hypothesis function class &, which
is defined as follows. A neural network with depth L and
width vector p = (po,- - ,pr+1) has the following form
f:RPo — RPL+1 with

x— f(x) =Wrlc(Wr_1(---oc(Wox—wq)---)—wr)),

(7)
where W, € RPi+1%Pi gre the weight matrices, w; € RPi
are the shift vectors, and o (+) is the element-wise ReLU acti-
vation function. We also bound all parameters in the neural
network by unity as in (Schmidt-Hieber 2020; Suzuki 2018).

Definition 3 (Sparse neural network). Let N(L, p, S, M) be
the function class of ReLU-activated neural networks with
depth L and width p that has at most S non-zero entries
with the function value uniformly bounded by M and all
parameters bounded by 1, i.e.

(Azir = b(@1r)7) (A = b@)T) | pyce

27

N(L,p, S, M) = {f(:c) has the form of (7)’

L L
D oAWillo+ > llwillo < S, 1l flloe < M,

i=0 i=1
max [Willoo V Jmex |willoo < 1}’

where || - ||o is the number of non-zero entries of a matrix
(or avector) and || - || is the maximum absolute value of a
matrix (or a vector).
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Since we are using the neural network for nonparametric
estimation in Q C RY, we will assume py = d and p 1 = 1
in the following discussion.

Ergodicity
Optimal convergence rates of neural network-based PDE
solvers, as showcased in (Nickl, van de Geer, and Wang
2020; Lu et al. 2021; Gu et al. 2023), are typically estab-
lished under the assumption of data independence. However,
the presence of time correlations in the observational data
(a:k.T)kN:O from a single trajectory significantly complicates
the task of setting an upper bound for the convergence of the
neural estimators obtained by Algorithm 1. In this context, we
fully explore the ergodicity of the diffusion process, bound
the ergodic approximation error by the [3-mixing coefficient,
and show that the exponential ergodicity condition, which is
naturally satisfied by a wide range of diffusion processes, is
sufficient for the fast rate convergence of the proposed neural
estimators.

We first introduce the definition of exponential ergodicity:

Definition 4 (Exponential ergodicity (Down, Meyn, and
Tweedie 1995)). A diffusion process (X;);>o0 with domain
Q is uniformly exponential ergodic if there exists a unique
stationary distribution p that for any x € ,

IP*(2,) = pllrv < My (@) exp(=Cyt),
where M, (z),C,, > 0.

As a direct consequence of (Papanicolau, Bensoussan, and
Lions 1978, Theorem 3.2) and the compactness of the torus

Q, we have the following result:

Proposition 1 (Exponential ergodicity of (Z;)¢>0). The dif-
fusion process (Z+)>o, the image of (x+)1>o in (1) under the
quotient map, is uniformly exponential ergodic with respect
to a unique stationary distribution 11 on the torus §2 under
Assumptions 2a, 2b, and 2c. Especially, there exist constants
Mﬁ, Cﬁ > 0 that only depend on c, b, and D, such that for
any € Q,

IP(&, ) — |l rv < Mg exp(—Cgt).

See (Kulik 2017) for further discussions and required reg-
ularities for this property beyond the torus setting.

The ergodicity of stochastic processes is closely related to
the notion of mixing conditions, which quantifies the “asymp-
totic independence” of random sequences. One of the most
utilized mixing conditions for stochastic processes is the
following 3-mixing condition:

Definition 5 (3-mixing condition (Kuznetsov and Mohri

2017)). The [3-mixing coefficient of a stochastic process

(X1)1>0 with respect to a probability measure p is defined as
B(t; (Xe)iz0, 1) := sup Exe [l = P55 (1 Fo)llrv]

00
t+s

where FU is the o-algebra generated by (X)a<i<p, and PY is
the law of (X¢)a<t<p. Especially, when 3(t; (X¢)i>0,1I) <
Mg exp(—Cgt) for some constants Mg,Cg > 0, we say X
is geometrically 3-mixing with respect to p.
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By taking u as the stationary distribution IT in the defini-
tion above, the proposition follows:

Proposition 2 (B-mixing condition of (%)i>0).
B(t; (T1)i>0,1I) < Mgexp(—Cyt), ie. T, is geomet-
rically (3-mixing with respect to IL

We will denote the pushforward of the invariant measure
IT under the following inverse of the canonical map ¢ -1
Q — Qalso as II.

Convergence Guarantee

In this section, we describe the main upper bound for the
neural estimators in Algorithm 1. We also present a theoreti-
cal guarantee for drift and diffusion estimation in Theorem 3
and 4, respectively. Our main result shows that estimating the
drift and diffusion tensor can achieve the standard minimax
optimal nonparametric function estimation convergence rate,
even with non-i.i.d. data.

Due to the ergodic theorem (Kulik 2017, Theorem 5.3.3)
under the exponential ergodicity condition and the prop-
erty of Itd process, the bias part of the objective functions
,C%(b, (mt)OStST) and EQD—v (D, (wt)0§t§T7 b) for drift and
diffusion estimation as defined in (3) and (4) converge to

By [16() - b(@)l3]
and L2(D) = E, 5 [1D@) - D@3

as 7 — 0 and T — oo, which we will refer to as the pop-
ulation loss for drift and diffusion estimation, respectively.
Our convergence guarantee is thus built on these population
losses.

L2 (b) :=
" ®)

Theorem 3 (Upper bound for drift estimation in
N(L,p, S, M)). Suppose the drift vector b € C*(Q, M),
and the hypothesis class & = N(L,p, S, M) with

K =< Tﬁ,

L <logK, <K, S<KlogK.

~

1Plloo

Then with high probability the minimizer b obtained by Algo-
rithm 1 satisfies

E {E%(i))] < T g T + 7,

-~ (b, D).

where the expectation is taken over (T, )N_, ~

Theorem 4 (Upper bound for diffusion estimation in
N(L,p, S, M)). Suppose the diffusion tensor D €
C*(Q, M), and the hypothesis class & = (L, p, S, M) with
K=N7=5, L<logK, |ple <K, S<Klogk.
Then with high probability the minimizer D obtained by
Algorithm 1 satisfies

logZ N
o~ O

-~ (b,D).

E [cg(b)} < N-=alog® N + 7 +

~

where the expectation is taken over (zy:)N_
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Remark 4. In this remark, we explain the meaning of each
term in the convergence rate (9):

2s
e The term N~ %+ log® N matches the standard minimax

optimal rate N ~mia up to an extra poly(logn) factor.
This is characteristic of performing nonparametric re-
gression for s-Holder continuous functions with N noisy
observations (Tsybakov and Zaiats 2009). This is differ-
ent from the drift estimation (Theorem 3) in which the
nonpammetric dependency is on T instead of N with a

further log N
The term T represents a bias term that arises due to the

finite resolution of the observations (xy.,)N_,. Specifically,
this term encapsulates the error incurred while approx-

imating the objective function LY ( (a:t)0<t<T, b) by

the estimated empirical loss LY (D; (zrr )N, b) with
numerical quadrature and finite dlﬁ‘erence computations;

term which is discussed below.

log

The term quanttﬁes the error in approximating

the populatlon loss Eg (D ) by the objective function

£k (D; (z1)o<i<T, b) by applying the ergodic theorem
up to time horizon T. This term essentially signifies the
portion of the domain that the trajectory has not yet tra-
versed. Refs. (Hoﬁ”mann 1997, 1999a) only provide guar-
antee for L2 (D; (x1)o<i<T,b) and thus this term is not
included.

Proof Sketch

In this section, we omit the dependency of the losses on
the data ()Y, for notational simplicity and unless oth-
erwise stated, the expectation is taken over (g, )h_, ~
Frn(b, D).

To obtain a unified proving approach for both drift and dif-
fusion estimation, it is useful to think of our neural estimator
as a function regressor with imperfect supervision signals.
We consider an estimator § € & of an arbitrary function ¢° as
the ground truth obtained by minimizing over the estimated
empirical loss

2

E}]V (§> (g (wk‘r) + AZk‘r - (wkrr))Q 3 (]O)

0

1
N

where the supervision signal is polluted by the noise given by
AZyr = Z(j11)r — Zkr, With Z; being an F;-adapted contin-
uous semimartingale. Following Doob’s decomposition, we
write Z; = A, + My, where (A;);>0 is a continuous process
with finite variation and is deterministic on [k7, (k + 1)7]
conditioned on F§7 as

N-1

A=Y (B [Zingerryr | Finke)
k=0

- Zt/\k“r)

and (M,);>o forms a local martingale as

N-1

My =Y (Zinksryr — B [Zintrarye | Finke]) -
k=0
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The population loss E%O (g) can also be similarly defined

as in (8). Additionally, we define the empirical loss for the
estimator g as

N—-1
> (6" @kr) — 9(@nr

k=0

1
"N

A0, . 2
LY (9) )"

In our proof, we first show that as long as the following
two conditions hold for the noise (AZj,)I_,, the minimax
optimal nonparametric function estimation rate would be
achieved:

Assumption 6. For any k, the continuous finite variation
process (Ay)>o satisfies

N—-1

Z (AAk‘r)2

k=0

1

Assumption 7. For some v < 1, the local martingale
(My)¢>o satisfies

ma |5 [A (M), | 77| < Oy,

where (-) denotes the quadratic variation.

Remark 5. Based on the noise decomposition AZy, =
AAgr+AMy,, the term A Ay, can be intuitively understood
as the bias of the data. This bias is caused by the numerical
scheme employed for computing 927- On the other hand, the
term AMy,, represents the martingale noise added to the
data, which can be considered analogous to the i.i.d. noise
in the common nonparametric estimation settings. Assump-
tion 6 essentially implies that the estimator § is consistent,
for its expectation converges to g as T — 0. Meanwhile,
Assumption 7 assumes that the variance of the noise present
in the data is at most of order O(771).

To overcome the correlation of the observed data, we adopt
the following sub-sampling technique as in (Yu 1994; Mohri
and Rostamizadeh 2008; Hang and Steinwart 2017): For a
sufficiently large [ > 1 such that N = nl?, we split the
original N correlated samples SV := (zx,)Y_ into [ sub-
sequences S(”a) = (a:(kH_a)T)Z;é fora=0,---,1— 1. The
main idea of this technique is that under fast 3-mixing condi-
tions, each sub-sequence can be treated approximately as n
i.i.d. samples from the distribution II to which the classical
generalization results may apply, with an error that can be
controlled by the mixing coefficient via the following lemma:

Lemma 5 ((Kuznetsov and Mohri 2017, Proposition 2)).

Let h be any function on Q" with —M; < h < Ms for
My, Ms > 0. Then for any 0 < a <1 — 1, we have

Esagion [1(58)] —E[n(5],))]| < (Mo + Ma)nB(r),
where the second expectation is taken over the sub-c-algebra

of F&' generated by the sub-sequence S&) = (m(kl_,_a)T)Z;é

and S(, ) = (T (kitayr ) p—o-

"Here we assume N is divisible by [ without loss of generality.
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Based on Lemma 5, we derive the following fast rate gen-
eralization bound via local Rademacher complexity argu-
ments (Bartlett, Bousquet, and Mendelson 2005; Koltchinskii
2006). The proof is shown in Appendix.

Theorem 6. Let N = nl. Suppose the localized Rademacher
complexity satisfies
R ({oglg € &,En[log] <r}) < o(r),
where ¢(r) is a sub-root function® and Ry () is the
Rademacher complexity of a function class § with respect to
N i.i.d. samples from the stationary distribution IL i.e.
sup 1 Z

N ~
Ulf(X’L)‘| 3
fEF i=1

where (X;)N, ~TI®N o ~ Unif ({£1} V).

Let r* be the unique solution to the fixed-point equation
@(r) = r. Then for any § > NB(IT) and € > 0, we have
with probability 1 — § for any g € &,

o, . 1 0 176 (44€ 4 104) M?log (&
£2(9) < ()

Rn(F) =E (11)

g/ n
- I—EEN(QH_M%T + en
(12)
where §' =6 — NB(IT).
Bias and noise in the objective function certainly affect the
optimization. Thus, we need to seek an oracle-type inequality

for the expectation of the population loss [Zf’\? (g) over the
data, which is proved in Appendix. The main technique is a
uniform martingale concentration inequality (¢ Lemma 12).

Theorem 7. Suppose & is separable with respect to the L™

norm with p-covering number N (p, .|| - ||oc) > 2. Then
under Assumption 6 and 7, we have
A g0 1+e¢€ . g0, 3C4a
E[£4(9)] < [E[£%(9)] + =2
v (9) < 1—, of N(@)| =T

n 12C log N (p, 8, || - |o)

49 [4Cyrp? log 2
eNTY Nrv

Especially, when we choose the hypothesis class & as
the sparse neural network class 91(L, p, S, M) and combine
Theorem 6 and Theorem 7, we have the following theorem
with the proof given in Appendix:

Theorem 8. Suppose Assumption 6 and 7 are satisfied and
the ground truth g° € C*(Q2, M), and the hypothesis class
& = N(L,p, S, M) with
K=N=%, [<logk,
Iplls S K, S Klogk,

where N = N (77 A 1). Then with high probability the mini-
mizer § obtained by minimizing the estimated empirical loss

E?\? (93 (:ka)ﬁzo) satisfies

B[4 (9)] s N

2
2 log” N
Nt

log® N + 7 +

(13)

With Theorem 8, the detailed proofs of Theorem 3 and 4
are given in Appendix.

A sub-root function ¢(r) is a function ¢ : RT — RT that is
non-negative, non-decreasing function, satisfying that ¢(r)/+/r is
non-increasing for r > 0.

9
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Figure 1: Numerical results of the neural diffusion estimator are consistent with the scaling expected from the theoretical bound.
We probe this by varying N and 7' = N7 with fixed lag time 7 and also by varying N and 7 = T'/N with fixed time horizon 7.

Experiments

In this section, we present numerical results on a two-
dimensional example, to illustrate the accordance between
our theoretical convergence rates and those of our proposed
neQural diffusion estimator. Consider the following SDE in
R=:

da; = f(x)V f(xe)dt + f(x:)dwy, (14)

where )
flx)=1+ 3 cos(2m(x1 + x2)),

ie.b(x) = f(x)Vf(x)and D(z) = Lg)?I, where [ is the
2 x 2 identity matrix. Then it is straightforward to verify that
this diffusion process satisfies Assumption 2a, 2b, and 2¢ with
smoothness s = co. Our goal is to estimate the value of the
function f(x) within Q = [0, 1)2. We employ Algorithm 1
for estimating both b(x) and D(x) with separate neural net-
works and treat them entirely independently in the inference
task. One may also prove that the stationary distribution II
of this diffusion process is given by the Lebesgue measure
on the two-dimensional torus, which makes evaluating errors
easier and more precise.

To impose the periodic boundary, we introduce an explicit
regularization term to our training loss

Loer(§) = E(ay)~umit002)5=5 |(0(2) — ()],

approximated by £ (§) with 1000 pairs of random samples
empirically. The final training loss is thus £V (§) + Aper (9),
where ) is a hyperparameter and § can be either borD.

We first generate data using the Euler-Maruyama method
with a time step 70 = 2 x 107° up to Ty = 10*, and then
sub-sample data at varying time steps 7 and time horizons
T for each experiment instance from this common trajectory.
We use a ResNet as our neural network structure with two
residual blocks, each containing a fully-connected layer with
a hidden dimension of 1000. Test data are generated by ran-
domly selecting 5 x 10* samples from another sufficiently
long trajectory, which are shared by all experiment instances.
The training process is executed on one Tesla V100 GPU.

According to our theoretical result (Theorem 4), the con-
vergence rate of this implementation should be approximately
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of order N~ 4 7 4+ T~ up to log terms. We thus consider
two schemes in our experiment. The first involves a fixed
time step 7 = 10~ with an expected rate of 7 + N1, and
the other maintains a fixed 7' = 10® with an expected rate
of N~ 4+ T—1. Each of the aforementioned instances is car-
ried out five times. Figure 1 presents the mean values along
with their corresponding confidence intervals from these runs.
Additionally, reference lines indicating the expected conver-
gence rate N ! are shown in red. Both schemes roughly
exhibit the exponential decay phenomenon, aligning with
our theoretical expectations. As depicted in Figure 1a, the
decreasing rate of the test error decelerates as IV exceeds a
certain threshold. This can be attributed to the fact that when
N and T are sufficiently large, the bias term 7 arising from
the discretization becomes the dominant factor in the error.

Conclusion

The ubiquity of correlated data in processes modeled with
spatially-inhomogeneous diffusions has created substantial
barriers to analysis. In this paper, we construct and ana-
lyze a neural network-based numerical algorithm for esti-
mating multidimensional spatially-inhomogeneous diffusion
processes based on discretely-observed data obtained from
a single trajectory. Utilizing (3-mixing conditions and local
Rademacher complexity arguments, we establish the con-
vergence rate for our neural diffusion estimator. Our upper
bound has recovered the minimax optimal nonparametric
function estimation rate in the common i.i.d. setting, even
with correlated data. We expect our proof techniques serve as
a model for general exponential ergodic diffusion processes
beyond the toroidal setting considered here. Numerical exper-
iments validate our theoretical findings and demonstrate the
potential of applying the neural diffusion estimators across
various contexts with provable accuracy guarantees. Extend-
ing our results to typical biophysical settings, e.g. compact
domains with reflective boundaries and motion blur due to
measurement error, could help establish more rigorous error
estimates for physical inference problems.
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