The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Submodel Enumeration for CTL Is Hard

Nicolas Frohlich, Arne Meier

Leibniz Universitit Hannover, Institut fiir Theoretische Informatik, Appelstrasse 9a, 30167 Hannover, Germany
nicolas.froehlich @thi.uni-hannover.de, meier @thi.uni-hannover.de

Abstract

Expressing system specifications using Computation Tree
Logic (CTL) formulas, formalising programs using Kripke
structures, and then model checking the system is an estab-
lished workflow in program verification and has wide appli-
cations in Al In this paper, we consider the task of model
enumeration, which asks for a uniform stream of output sys-
tems that satisfy the given specification. We show that, given
a CTL formula and a system (potentially falsified by the for-
mula), enumerating satisfying submodels is always hard for
CTL—regardless of which subset of CTL operators is consid-
ered. As a silver lining on the horizon, we present fragments
via restrictions on the allowed Boolean functions that still al-
low for fast enumeration.

Introduction

In artificial intelligence, temporal logic is used as a for-
mal language to describe and reason about the temporal be-
haviour of systems and processes (Barringer et al. 2000;
Bérard et al. 2001). One of the key applications of temporal
logic in artificial intelligence is the formal specification and
verification of temporal properties of software systems, such
as real-time systems (Bellini, Mattonlini, and Nesi 2000;
Konur 2013; Blom 1996), reactive systems (Finger, Fisher,
and Owens 1993), and hybrid systems (da Silva, Kurtz, and
Lin 2021). Temporal logic can be used to specify the desired
behaviour of these systems and to check that systems of that
kind satisfy the specified properties. This task is known as
model checking (MC) and is one of the most important rea-
soning tasks (Schnoebelen 2002). In this context, the search
for satisfying submodels is a useful approach to debugging
faulty systems.

One of the central temporal logics for which the model
checking problem is efficiently solvable (more precisely, the
problem is complete for polynomial time) is the Compu-
tation Tree Logic CTL (Clarke et al. 2018). The logic is
often used in the context of program verification and, ac-
cordingly, is well suited to our study. CTL formulas enrich
classical propositional logic with a variety of modal opera-
tors (next, until, global, future, release) that combine with
so-called path quantifiers (existential and universal) to form
CTL operators.

Copyright © 2024, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

10517

Figure 1: Kripke model of the microwave oven example.
While the structure containing the dashed edge (ws,wg)
does not satisfy the constraint ¢ = AG(Error — —Heat AU
—Start), the submodel without the edge does.

Kripke structures, which model the software system of in-
terest, are essentially labelled directed graphs that have a to-
tal transition relation (Kripke 1963). A submodel of a Kripke
structure is defined with respect to all possible subsets for
the state set and transition relation. Note that the subset for
the transition relation must still be total, otherwise it is not
a valid submodel. More formally, the problem we are inter-
ested in is defined as follows. For a Kripke structure M and
a CTL formula ¢, list of all submodels M’ of M such that
M’ satisfies . Let us illustrate the idea with an example.

Example 1. Consider the Kripke model M shown in Fig-
ure 1, which models the behavior of a microwave oven, a
well-known example from (Clarke et al. 2018). Next, con-
sider the constraint ¢ = AG(Error — —Heat AU —Start),
which says that any path starting in a world labeled with
the Error proposition must first reach a world where —~Start
holds, before Heat becomes true. With the dashed edge from
ws to wg this constraint obviously does not hold in M. In
contrast, the submodel M’ of M without the dashed edge
satisfies ¢. Thus, as an automated repair or a suggestion in
debugging one might want to consider the submodels of M.

Also other areas of research benefit from this kind of
approach as follows. For bounded model checking (Biere
et al. 2003), the size of the state space can easily become
very large for complex systems. For such systems, Biere
et al. suggest combining model checking with SAT solvers,
which allow faster exploration of the state space. Similarly,
Gupta et al. 2000 showed that similar things have been ob-

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

served in the context of BDD-based symbolic algorithms
for image processing. While one might think that the work
of Sullivan et al. 2019 is closely related to our setting, the
authors work with propositional logic in the setting of the
specification language Alloy, which is based on first-order
logic. This is somewhat different from us, as we work with
CTL. However, there is work on CTL-live model checking
for first-order logic validity checking (Vakili and Day 2014),
but this would be a different direction to our approach. Lauri
and Dutta 2019, following an ML perspective, devise an ML
framework that attempts to shrink the search space and aug-
ment the solver with some help. Recently, this topic has been
investigated in the context of plain modal logic (Frohlich and
Meier 2022).

Classically, the task of enumerating models is very differ-
ent from counting the number of existing models or deciding
on the existence of such models. Although enumeration al-
gorithms are usually exponential time algorithms, this does
not preclude practical applications. In addition to theoretical
studies, there are a number of application scenarios (Fomin
and Kratsch 2010), e.g., recommender systems (Friedrich
and Zanker 2011), ASP (Alviano and Dodaro 2016), or
ML (Lauri and Dutta 2019). The formal foundations were
originally laid by Johnson et al. (1988). Intuitively, an enu-
meration algorithm is deterministic and produces a uniform
stream of output solutions avoiding duplicates. This solution
flow is mathematically modelled by the notion of the delay,
i.e., an upper bound on the elapsed time between printing
two successive solutions (or the time before the first, resp.,
after the last, solution is returned). In 2019, Creignou et al.
introduced a framework for intrinsically hard enumeration
problems. Here, the polynomial hierarchy and the concept of
oracle machines have been utilised to present notions that al-
low for proving intractability bounds for enumeration prob-
lems. The complexity class DelP describes “efficient” enu-
meration, that is, a delay that is polynomially bounded in the
input length, while the complexity class DelNP contains in-
tractable and, accordingly, difficult enumeration problems.
Solutions to instances of problems in DelNP cannot effi-
ciently be produced unless the (classical) complexity classes
P and NP coincide.

While the tractability of MC for CTL formulas is known
to be P-complete, the complexity of enumerating satisfying
submodels is still open.

Contributions. In this paper, we fill this gap and present
a thorough study of the complexity of the submodel enu-
meration problem in the context of CTL. We will see that in
general the problem is complete for the class DelNP; so it
is reasonable to consider restrictions that aim for tractable
enumeration cases. However, our answer in this direction
is on the negative side, showing that any restriction on the
CTL operator side does not allow faster enumeration algo-
rithms (assuming P # NP). Finally, we identify some fur-
ther Boolean restrictions that still allow for DelP algorithms.

Related works. The work of Schnoebelen (2002) consid-
ers the classical model checking question for temporal log-
ics. There is a study on the complexity of fragments of
the model checking problem (Krebs, Meier, and Mundhenk

10518

2019) for CTL, but it has no direct impact on our results as
the problems are situated in P (or classes within).

Organisation. At first, we introduce the necessary prelim-
inaries on temporal logic and enumeration complexity. Then
we prove our dichotomy theorem. Finally, we conclude. Due
to space constraints some proof details are omitted (marked
with %) and can be found in the technical report (Frohlich
and Meier 2023).

Preliminaries

In this section, we assume basic familiarity with computa-
tional complexity (Papadimitriou 2007) and will make use
of the framework for hard enumeration problems (Creignou
et al. 2019). Furthermore, we will define the temporal logic
CTL, introduce submodels, and enumeration complexity.

Computational Tree Logic. We follow standard notation
of model checking (Clarke et al. 2018). Let PROP be an in-
finite, countable set of propositions. The set of well-formed
CTL formulas is defined with the following BNF

pu=T|pl-pleVelpAe | PTe|oPT ¢,

where p € PROP,P € {E,A},T € {X,F,G}, T’ €
{U, R}. This results in ten CTL operators, consisting of six
unary operators EX, EX, EF, AF, EG, AG and four binary
operators EU, AU, ER, AR. The set ALL contains all ten
CTL operators. We will call A, V, - Boolean connectors.
Now, we defined a special version of Kripke models.

Definition 2. A rooted Kripke model is a tuple M
(W, R,n,r) where

» W is a non-empty set of worlds (or states),

* RC W x W is atotal, binary transition relation on W

o n: W — 2PROP j5 an assignment function, that maps
each world w to a set n(w) of propositions, and

* r € W is the root.

Definition 3. Let M = (W, R,n,r) be a rooted Kripke
model. A path m in M is an infinite sequence of worlds
wy,Wa, ... such that (w;,w;11) € R forall ¢ > 1. We
write 7r[i] to denote the ith world on the path 7. For a world
w € W we define II(w) = {7 | 7[1] = w } as the (possibly
infinite) set of all infinite paths of M starting with w.

Definition 4. Let M be a rooted Kripke model and ¢, ¢ be
CTL formulas.

MuwET always,

M,wlE=p iff p € n(w) with p € PROP,

M,w = —p iff M, w £ o,

MwEpAY iff MwE pand M,w E 1,

MuwEeVy iffM,w):SOOYMw'Zw

MowEEXe iff 3r € I(w) : M, 7[2] = ¢,

Myw = AXp iffVr € (w) : M, 7[2] E o,

M,wE=EFp iff 3r € (w) Ik > 1: M, 7[k] E o,

M,wkEAFp iffVr e (w) Ik > 1: M, wk] = o,

M,wEEGe iffIr e (w) Yk > 1: M, 7w[k] = o,

MowE=AGy iff¥r e Il(w) Vk > 1: M, 7[k] E o,

M, w | ¢ EUy iff 3r € TI(w)Hk‘zl M, k] =
and Vi < k: M, 7[i] = o,

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

M,w E ¢ AU iff V7 € II(w) 3
and Vi < k : M, [q]
M,w E ¢ ERY iff 3r € I(w) Yk > 1: M, 7[k] E ¢
ordi < k: M,xli] E
M,wE AR iff Vr € I(w) Vb > 1: M, n[k] =+
ordi < k: M,n[i] = .
Furthermore, 1L := —T is constant false. Also omit the root
in M, r |= ¢ and just write M |= ¢ instead. A formula ¢ is
then said to be satisfied by model M, if M = ¢ is true.
Notice an observation regarding the semantics of CTL.
Observation 5. The following equivalences are true:
EX(p = AX(ﬂgO), AG @Y=" EF(—mp),
EGp =-AF(~p),EGp = L ERp,AGp = L AR ¢,
EFp=TEUp AFp =T AU o,
P ERY = 2(2p AU), 0 AR ¢ = —(—p EU).
Now, we formally introduce submodels of Kripke models.
Given two Kripke models M = (W, R,n,r) and M’ =
(W', R',n,r). We call M’ a submodel (of M), if W C W,
R’ C R, and R’ is total. For a function f: A — B we write
flc, given C C A, for the restriction of f to domain C.
Definition 6. Let M = (W, R,n,r) be a Kripke model.
M = (W' R',n [w,r) is a connected submodel of M,
denoted by M’ C M, if (1.) W’ #), (2.) M’ is a submodel
of M, and (3.) for all w € W’ there exists a path m € II(r)
and ¢ > 1 with 7[i] = w.

Clearly, worlds that violate (3.) cannot have influence on
the satisfiability of CTL formulas. Yet, an enumeration al-
gorithm printing connected submodels could trivially be ex-
tended to include non-connected submodels.

Additionally we want to introduce an alternative notation
for submodels, M’ = M — D, with D = (Dw, Dg) for
r ¢ Dy a tuple consisting of a set of worlds and a set of
tuples, and W/ = W \ Dy and R’ = R\ Dg, for M =
(W,R,n,r)and M' = (W' R',nlw-,r).Here, D is called
the set of deletions.

A submodel M’ is satisfying o if M’ |= . The formula
(is often omitted, if it can be deduced from the context.

Enumeration Complexity. The Turing machine, as one
of the standard machine models used in complexity theory,
proves to be problematic for the setting of enumeration al-
gorithms. Its linear nature in accessing data prevents a poly-
nomial delay when traversing exponentially large data sets,
even if the actual data read is small. As a result, random ac-
cess machines (RAMs) are the common machine model of
choice (Strozecki 2019).

Definition 7. Let > be a finite alphabet. An enumeration
problem (EP) is a tuple £ = (I, Sol), where
e | C ¥* is the set of instances,
e Sol: I — P(X*) is a function that maps each instance
x € I to a set of solutions (of x), and
* there exists a polynomial p such that Va € I Vy € Sol(x)
we have that |y| < p(|z]).

Note that sometimes one is interested in dropping the last
requirement of the previous definition (Strozecki 2019).

10519

Definition 8. Let £ = (I, Sol) be an EP. An algorithm A is
called an enumeration algorithm for &, if for every instance
x € I A(x) terminates after a finite sequence of steps and
A(x) prints exactly Sol(z) without duplicates, where A(x)
denotes the computation of A on input x.

We now define the mentioned delay of an enumeration
algorithm.

Definition 9. Let £ = (I, Sol) be an EP, A be an enumera-
tion algorithm for £, = € I be an instance and n = | Sol(x)|
the number of solutions of z. We define the

ith delay of A(x) as the elapsed time between the output
of the ith and (i + 1)st solution of Sol(z),

Oth delay as the precomputation time, i.e, the elapsed
time before the first output of A(x), and

nth delay as the postcomputation time, i.e., the elapsed
time after the last output of A(z) until it terminates.

We say that A has delay f, for f: N — N, if forallx €
and all 0 < 4 < n the ith delay of A(z) is in O(f(|z])).

Hard enumeration. We will shortly introduce the frame-
work of hard enumeration by Creignou et al. (2019). The
idea is to analyse EPs beyond polynomial delay by in-
troducing a hierarchy of complexity classes similar to the
polynomial-time hierarchy and reduction notions for EPs.

We begin by defining two decision problems that naturally
arise in the context of enumeration. Let £ = (I, Sol) be an
EP over the alphabet X. The first decision problem EXIST_&
asks, given an instance x, for the existence of any solutions,
that is, Sol(z) is nonempty.

The second decision problem is concerned with obtain-
ing new solutions. This is the question whether, given an
instance z and a partial solution y, can we extend the partial
solution by a word y’ C 3* such that yy’ is a solution of &,
where 1y denotes the concatenation of y and 3’.

Problem: EXTENDSOL_-E
Input: Instance z, partial solution y
Question: s there some y’ such that yy’ € Sol(z)?

As mentioned before, we use RAMs instead of Turing ma-
chines in the context of enumeration complexity. We now
want to further extend the underlying machine model, by in-
troducing decision oracles. Classically, when analysing run-
time, or in this case delay, algorithm calls to its oracle are
always charged as a single step, regardless of the time the
oracle takes. Our machines can write into special registers
and the oracle will consider these as well as all consecutive
non-empty registers as its input. A query to the oracle then
occurs when the machine enters a special question state and
will transition into a positive/negative state if the oracle an-
swers “yes”/“no”. Now, start with enumeration complexity
classes with oracles.

Definition 10 (Creignou et al. 2019, Def. 2). Let £ be an
EP, and C a decision complexity class. Then we say that
€ € DelC if there is a RAM M with oracle L in C and
a polynomial p, such that for any instance x, the RAM M
enumerates Sol(z) with delay p(|x|). Moreover, the size of
every oracle call is bound by p(|z|).

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

In this paper, the enumeration classes of interest are when
C is either P, or NP; so DelP and DelNP.

The following Proposition 11 as well as Proposition 15
are both simplified versions of results presented by Creignou
et al. (2019). While Creignou et al. considered the full poly-
nomial hierarchies in their proofs, here we are only con-
cerned with the P and NP cases.

Proposition 11 (Creignou et al. 2019, Prop. 6). Let £ =
(I,80l) be an EP and C € {P,NP}. If EXTENDSOL_E € C
then £ € DelC.

Proposition 11 allows for membership results for EPs us-
ing the corresponding decision problem EXTENDSOL. This
technique will prove particularly useful when showing mem-
bership in DelNP, as constructing enumeration algorithms
with oracles can be quite difficult.

We now give the necessary definitions to show hardness
results for EPs. The first definition introduces yet another
machine model, which can then be used to define a reduction
from one EP to another.

Definition 12 (Creignou et al. 2019, Def. 6). Let £ be an EP.
An Enumeration Oracle Machine with an enumeration ora-
cle &, abbreviated as EOM_E, is a RAM that has a sequence
of new registers A., 0¢(0),0¢(1), ... and a new instruction
NOO (next oracle output). An EOM_£ is oracle-bounded, it
the size of all inputs to the oracle is at most polynomial in
the size of the input to the EOM_E.

Note that the sequence of registers as input is only neces-
sary for EOM_E that are not oracle-bounded, to allow input
sizes larger than polynomial.

Definition 13 (Creignou et al. 2019, Def. 7). Let £ =
(I,Sol) be an EP and p1, p2, . . . be the run of an EOM_€ and
assume that the kth instruction is NOO, that is, pr = NOO.
Denote with x; the word stored in O¢(0), O¢(1),... at step
i. Let K = {pj € {pl, e 7pk—1} | pj = NOO andxj =
x }. Then the oracle output yy, in py is defined as an ar-
bitrary y € Sol(xy) such that y; has not been the oracle
output in any p; € K. If no such y;, exists, then the oracle
output in py, is undefined.

On executing NOO in step py, if the oracle output yy, is
undefined, then register A, contains some special symbol in
step pr1; otherwise it contains yy.

Definition 14 (D-reductions). Let £ and £’ be EPs. We say
that & reduces to £’ via D-reduction, € <p &', if there is an
oracle-bounded EOM_E’ that enumerates £ in DelP and is
independent of the order in which the £’-oracle enumerates
its answers.

The next result shows that one can use the decision prob-
lem EXIST_E to show hardness of the corresponding EP £.
Proposition 15 (Creignou et al. 2019, Theorem 13). Let
E = (I,80l) be an EP. If EXIST-E is NP-hard, then £ is
DelNP-hard via D-reductions.

Any following result that states DelNP-hardness for an EP
will be with respect to D-reductions.

Complexity of Submodel Enumeration

In this section, we will present our results regarding the sub-
model EP with respect to CTL formulas.

10520

Problem: E-SUBMODELS
Input: Kripke model M, CTL formula ¢
Task: Output all M’ C M such that M’ | ©?

Let O be a set of CTL operators. Then E-SUBMODELS(O) is
E-SUBMODELS but only for CTL formulas using operators
from O (besides any of the Boolean connectors). The same
applies to the next two auxiliary decision problems.

Problem: JSUBMODEL
Input: Kripke model M, CTL formula ¢
Question: Does M’ C M exist such that M’ = ¢?
Problem: EXTSUBMODEL
Input: Kripke model M, CTL formula ¢,
set of deletions D
Question: Does an extension D’ O D exist such that

M—D'" = p?

The first result will show membership in the class DelNP
for the unrestricted version and will make use of the auxil-
iary problem EXTSUBMODEL.

Theorem 16. E-SUBMODELS € DelNP.

Proof. The algorithm deciding EXTSUBMODEL works as
follows. For given Kripke model M = (W, R,n,r), CTL
formula ¢, and set of deletions D = (Dw,Dg), guess
W’ C W and R’ C R. Afterwards compute D' := (W' U
Dy, R' U Dg) and accept if and only if M — D’ |= ¢.
For correctness, consider that if an extension D’ exists
such that M — D’ |= ¢, it can be computed by nondeter-
ministically guessing the worlds and relations of that exten-
sion. Guessing W’ and R’, computing D’ and checking if
M — D' |= ¢ can all clearly be done in polynomial time
(MC is in P for CTL). By Proposition 11 this is sufficient to
prove that E-SUBMODELS € DelNP. O

Fragment AG. We will show hardness by relating sub-
models to assignments of propositional formulas, such that
a submodel is satisfying, if and only if the corresponding
assignment satisfies the given propositional formulas. For-
mally this is a reduction from the well-known NP-complete
problem SAT (Cook 1971; Levin 1973).

Definition 17. Let ¢ be a propositional formula with pro-
positions PROP(yp) = {z1,22,...,2,}. We define the
Kripke model M(yp) == (W, R, n,w) as follows:

W= {wo} U{w),wi |1 <i<n},
R = {(wo,w¥) | k € {0,1}}
U{(wF,wl) | k,1€{0,1},1<i<n}
U {(ws,wy) | k€ {0,1}},
n(wk) == {x;,x¥} for 1 <i <n, ke {0,1}.

Figure 2 depicts such a Kripke model together with one
of its submodels. Notice that the formula ¢ = (21 A —x2) V
(mx1 A x2) of M is satisfied given the assignment J(x1) =
1,3(xz2) = 0, which the submodel M’ “encodes” by con-
taining the worlds w{, w9 and not w?, w3. The proof of the

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Figure 2: Kripke model M ((z1 A —22) V (-1 Az2)) and a
submodel M’ of M in bold.

following theorem uses this connection by constructing for-
mulas that are satisfied in a submodel if and only if the cor-
responding assignment evaluates to 1, giving rise to a nice
reduction from SAT to 3SUBMODEL(AG).

Theorem 18. E-SUBMODELS(AG) is DelNP-complete.

Proof. The upper bound follows from Theorem 16. By
Proposition 15, showing NP-hardness of 3ISUBMODEL(AG)
implies DelNP-hardness of E-SUBMODELS(AG).

Let ¢ be propositional formula in negation normal form.
G is constructed by substituting x; with AG(x; — x}) and
—x; with AG(z; — 20) in ¢ for all z; € PROP(y). Note
that while we have not formally introduced implication, it
can simply be taken as —z; V z}. Also recall that atomic
negation can always be simulated by introducing new propo-
sitions and labeling the model accordingly.

We now show that () € SAT, if and only if we have that
(M(p), pac) € ISUBMODEL(AF).

Suppose ¢ € SAT. Then there exists an assignment J
such that J(¢) 1. Using J, we construct a submodel
M = (W' R',n,wp) as follows:

W =W\ {wh|1<i<nk=1-3(z;)},
R =RN (W' xW’).

That is, we remove the worlds w}, if J(z;) = 0 and w?, if

Observe that M’ |= (z; — x}), if and only if J(z;) = 1,
since all worlds of M’ labeled with x; are also labeled with
x}. Analogously, M’ = (x; — 2?), if and only if J(z;) =
0. Because pac differs from ¢ only in its atoms, it follows
that M’ |= pac must be true.

In the same way, if there is a submodel M’ such that
M’ = pag, we can construct an assignment J from a path
7 € TI(M’) such that J(p) evaluates to 1.

To conclude the reduction, observe that the construction
of M(p) and pac can both clearly be done in polynomial
time, showing SAT <P 3ISUBMODEL(AG) and proving

m

DelNP-hardness of E-SUBMODELS(AG).

Notice that the reduction requires AG as operator and only
the binary Boolean connectors A, V and atomic negations,
which can be removed by a simple relabeling.

Fragment AF. We will show hardness via relating sub-
models to deciding the problem HAMPATH (Karp 1972).

10521

O= Ol = 0

Figure 3: (a) G with Hamiltonian path s, a, b, t. (b) Kripke
model M(H) of H = (G, s,1).

Definition 19. Let H = (G, s, t) be a HAMPATH instance,
with G = (V, E') agraph and s,t € V. We define the Kripke
model M(H) = (W, R, n,ws) as follows:

W ={w, |veV}Iu{w}, n(w,) =z}, forveV,
R = {(wy, wy) | (u,v) € E,u # t}U{(w,), (0, w)}.

The underlying graph of this model is almost G itself, ex-
cept that a new world w is added, which became the only
successor of w; and has only one relation to itself. Fig-
ure 3 (b) depicts such a model for the graph in Figure 3 (a).

Theorem 20. E-SUBMODELS(AF) is DelNP-complete.

Proof. The upper bound follows directly from Theorem 16.

Let H = (G, s,t) be an instance of HAMPATH with
G = (V,E),s,t € V and n = |V|. Further let M(H) be
the Kripke model obtained from H as described in Defini-
tion 19. Now, construct the formula ¢ = /\U v AF x,.

Notice that a submodel M’ C M satisfies ¢ only if it
is acyclic. That is because all paths have to contain a world
labeled with ¢, which only holds at w,. The world w, has
a single outgoing edge to w, where all paths “end” in an
infinite loop, making other cycles impossible.

Next, we have that paths must contain worlds where v for
v € V holds. This can only be achieved if all path contain
the worlds w, for v € V. It follows that satisfying sub-
models must contain each world at least once, but because
of acyclicity they can also only contain each world at most
once. Thus satisfying submodels must be single path from s
to ¢ containing each world exactly once, i.e., they must be
Hamiltonian. Construction of M(H) and ¢ is in P. O

Notice that the reduction requires AF as operator and the
Boolean connector A.

Fragment AX. We again use HAMPATH to show hard-
ness. By concatenating the AX operator n—1 times followed
by x;, we enforce that submodels must satisfy x; on all path
at position n. Considering the construction of M (H) this is
only possible, if paths are acyclic and contain w; only at po-
sition n. This implies that all satisfying submodels describe
Hamiltonian paths from s to ¢.

Theorem 21. E-SUBMODELS(AX) is DelNP-complete.

Proof. The upper bound follows from Theorem 16.
Suppose H is an instance of HAMPATH and n = |V]|.
Then let M (H) be the Kripke model as defined in Defini-
tion 19 and let ¢ = AX""! 2, be a formula, where AX"*
denotes the n — 1-times concatenation of the AX operator.
Furthermore, let M’ C M (H) be a satisfying submodel.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

2, X1,
£2, $3’ Ty

Figure 4: Kripke model (left) of May(H) and (right) of
Mar(H) for the graph in Figure 3 (a). The highlighted
worlds and relations form a submodel that induces a Hamil-
tonian path for the instance H = (G, s, t) and satisfy (left)
w1 = ((((TAUz;) AU z1) AU 22) AU z3) AU 24 and (right)
wa = (- (TAR2)ARy) ARz1) AR z) ARy) AR z5) AR
z) ARy) AR z3) AR z) AR y) AR z4.

First, show that 7[n] = w; for all paths = € TI(M’).
M w, = AX T g

& V1 ell(w,) : M, 72] E AX" 2 & (Def.)
& Ve (ws)Vo € II(w[2]) : M, 0[2] = AX" 7 g,
& Vr e (ws) : M, 73] E AX" & (prefix)
& VreU(ws) : M mln—1] & AX Tt (repeat)
& Vr e (ws) : M, w[n] E x4

By the definition of M(H), only n(w;) = x. Thus V& €

II(ws) we have 7[n] = w;.

Note that w, cannot be on any path before that. Otherwise
the path could only continue to w and “end” there. Also,
submodels again cannot have cycles, otherwise there would
be a path that never reaches w;. So we can conclude that on
all paths in M’ the first n elements must be different. With n
worlds other than w, this leads to satisfying submodels that
are Hamiltonian paths from w; to w;, showing correctness
of the reduction. The reduction can be computed in P. [

Notice that the reduction merely requires AX as operator
and no Boolean connectors are used.

Fragment AU. We continue to use HAMPATH. For frag-
ment AU, we construct a new submodel May(H) that ex-
pands each node into a “diamond” construct with a world
for the incoming relations and a world for the outgoing re-
lations, as well as a number of intermediate worlds equal
to the total number of vertices in (G. We then construct an
AU formula such that all paths in a satisfying submodel are
acyclic and contain a different intermediate world at each
“diamond”, thereby describing a Hamiltonian path of G.

10522

Definition 22. Let G = (V, E) be a graph, s,t € V,n =

|[V|, and H = (G, s,t) be an instance of HAMPATH. We
define the model May(H) := (W, R, n, w;) as follows:

W= {wy, Wy, wy; | v € V,1 <4 <n},
R = {(wy, Wy ;), (Wy i, 0y) | v EV,1<i<n},
U {(w1t7wv) ‘ (u,v) € E’u 7& t} U {<wt7wt)}a
N(wy,;) ={x;}forl <i<n, n):={z}.
Figure 4 depicts the submodel M ay (H) constructed from
the graph in Figure 3 (a), with H = (G, s, t).
Theorem 23 (x). E-SUBMODELS(AU) is DelNP-complete.

Proof. The upper bound follows directly from Theorem 16.

Let H = (G, s,t) be an instance of HAMPATH and ¢,,
be the formula of interest here, for
) pi AU zx; ifi> 0,
PETATAUL, ifi=0.

The reduction then is H — (May(H O

); @n)-

Notice that the reduction merely requires AU as operator
and no Boolean connectors are used.

Fragment AR. We use a similar “diamond” expansion of
the nodes in G, as in the proof for AU. Here an extra world
is added to the construct between the middle worlds and the
world for outgoing relations. In addition, the labeling is ex-
tended to make AR behave in the indented way. That is, we
want to repeatedly force the left hand side of the AR oper-
ator in our constructed formula ¢ to only hold in specific
subsequent worlds to simulate the behavior of the AX oper-
ator. The construction of ¢, also requires that worlds labeled
with x1, 2o, ..., x, are on the paths, similar to the proof of
the AU fragment.

Definition 24. Let G = (V, E) be a graph with n = |V|

and H = (G,s,t) an instance of HAMPATH. Define
Mar(H) = (W, R,n,w;) as follows (see Figure 4 for an
example):

W= {wvvwvyw’uywv,i | veV,1<:i< n}a

(wv; Wy ’L)
(wv iy wv)
(D, 10y

=

veV,lSiSn}

U {(Wy, wy) | (u,v) € Fand u # t}
U { (g, ¢) },
N(wy,;) ={x;}forl <i<n, nby):={z, vy},
n(wy) ={z,21,...,z},n(Wy) = {y,x1,..., T}

Theorem 25 (x). E-SUBMODELS(AR) is DelNP-complete.

Proof. The upper bound follows from Theorem 16 again.
For the lower bound reduce from HAMPATH, using the
Kripke model Mar(H) defined in Definition 24 and ¢,
with

Notice that the reduction merely requires AR as operator
and no Boolean connectors are used.

((pi=1 AR 2) AR y) AR z;
T

if 7 > 0,
ifi =0.
O

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Fragment EX, EF, EG, EU & ER. DelNP-hardness of
existentially quantified operators follows immediately, when
considering negation.

Corollary 26. For) # O C {EX, EF,EG,EU, ER} we
have that E-SUBMODELS(QO) is NP-complete.

Proof. Follows directly form the duality between the exis-
tential and universal path quantifiers (see Observation 5) and
our results for the universally quantified cases. 0

Notice that for the fragments EX, EU and ER negation
suffices as the only Boolean connector to archive intractabil-
ity. In contrast the fragments EF and EG require all Boolean
connectors. We summarise all results in one statement.

Theorem 27. Let) # O C ALL be a set of CTL operators.
Then E-SUBMODELS(Q) is DelNP-complete.

The silver lining

In this section, we strive for tractability results. For this we
restrict also the allowed Boolean connectors and accord-
ingly require to extend the problem notion a bit as follows.
For instance, we will write EXTSUBMODEL(EX, ER, EU)
whenever we restrict the formulas to only the operators
EX, ER, EU without any Boolean connectors.

Fragment EX, ER, EU & Conjunction, Disjunction.
The first tractability result we present is a restriction to for-
mulas only containing existentially quantified CTL opera-
tors and no negation. That is, we show DelP membership
of E-SUBMODELS(EX, ER, EU, A, V). Recall that we have
EFop=TEUpand EGp = p ER L.

The following Lemma 28 gives a straightforward way to
decide EXTSUBMODEL(EX, ER, EU, A, V), by only having
to consider the model and partial solution.

Lemma 28. Let M’ C M be a submodel. If M = ¢, for
any {EX,EU, ER, A, V}-formula o, then M’ }£= .

Proof. To prove this lemma consider its contraposition, i.e.,
M’ = ¢ implies M = . Note that the set of paths that
satisfy ¢ in M’ also exist in M. Since ¢ does not contain
negation, the same set of paths must satisfy ¢ in M. O

Theorem 29. E-SUBMODELS(EX, ER, EU, A, V) € DelP

Proof. We describe a deterministic polynomial time algo-
rithm for EXTSUBMODEL(EX, ER, EU, A, V). By Lem. 28,
if, for a partial solution, we have that M — D [~ ¢, then
it cannot be extended to an actual solution. Conversely, if
M — D E ¢ is true, then the empty extension is suf-
ficient. Thus, any polynomial time model checking algo-
rithm on an instance (M — D,) can be used to decide
EXTSUBMODEL(EX, ER, EU, A, V). O

Fragment AF & AG. We adapted a result presented by
Krebs et al. (Krebs, Meier, and Mundhenk 2019, Lemma
10), showing that every {AF, AG}-formula can be reduced
to contain at most two temporal operators.

Lemma 30 (x). For any formula ¢ we have that (1.)
AFAF o =AF @ (2.) AGAGp = AGp (3.) AGAFAGp =
AFAGy (4.) AFAGAF ¢ = AGAF ¢

10523

Theorem 31 (x). E-SUBMODELS(AF, AG) is in DelP.

Proof. The following deterministic polynomial time algo-
rithm decides EXTSUBMODEL(AF, AG).

The input is (M, p, D), where M = (W, R,n,7) is a
Kripke model, ¢ is a {AF, AG}-formula, and D is a set of
deletions. Let M’ = (W', R',n,r) := M — D be current
submodel and ¢’ be the shortened formula obtained from ¢
using Lemma 30. Notice that ¢’ can only have one of four
forms.

Now, the algorithm has the following behaviour, depend-
ing on ¢’, where z is in PROP:

¢’ = AF z: if M’ |= EF z accept, else reject.
¢ = AGu: if M = EG x accept, else reject.
¢ = AFAGz: if M’ |= EF EG z accept, else reject.

¢ = AGAFz: let M = (W’,R',i,r) be the sub-
model M’ but with a new labeling function 7 defined
as N(w') == {x, } forall w’ € W’ with z € n(w').

Accept if M E EF(z AEXEF z,,) for some w’ € W',
else reject. O

Conclusion and outlook

In this paper, we have presented a complete study of the
submodel enumeration problem for the temporal logic CTL
with respect to restrictions on the allowed CTL opera-
tors. We have examined all CTL operator fragments and
show DelNP-completeness for every possible fragment in
the presence of all Boolean connectors. This paints a com-
pletely negative picture and precludes using the debugging
approach as motivated in this setting. As a silver lining on
the horizon, we presented fragments obtained by constraints
on Boolean functions, allowing for fast DelP algorithms that
could be used for bugfix recommendations. We are currently
planning to extend this approach to a complete picture for
all Boolean fragments and combinations with CTL operator
fragments. In particular, this leads to a very large number of
possible fragments: as a rough estimate, one has to consider
seven Boolean fragments, which, combined with ten CTL
operators, lead to an astonishing number of 7 - 219 = 7168
cases. As future work, it would be worthwhile to apply the
framework of parameterised complexity (Downey and Fel-
lows 1999) aiming at more efficient subcases. Another press-
ing issue is to investigate the motivated debugging approach
using enumeration algorithms in a feasibility study. Further-
more, submodel enumeration is just one of many possible
enumeration problems for CTL. Other variants worth inves-
tigating in this context include (minimal) modifications to i
instead of, or in addition to, frame modifications.

Acknowledgments

The authors thank the anonymous reviewers for their valu-
able feedback and appreciate funding by the German Re-
search Foundation (DFG) under the project id ME4279/3-1.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

References

Alviano, M.; and Dodaro, C. 2016. Answer Set Enumeration
via Assumption Literals. In AI*IA, volume 10037 of Lecture
Notes in Computer Science, 149—163. Springer.

Barringer, H.; Fisher, M.; Gabbay, D.; and Gough, G., eds.
2000. Advances in Temporal Logic. Applied Logic Series.
Springer Dordrecht.

Bellini, P.; Mattonlini, R.; and Nesi, P. 2000. Temporal log-
ics for real-time system specification. ACM Comput. Surv.,
32(1): 12-42.

Bérard, B.; Bidoit, M.; Finkel, A.; Laroussinie, F.; Petit, A.;
Petrucci, L.; Schnoebelen, P.; and McKenzie, P. 2001. Sys-
tems and Software Verification, Model-Checking Techniques
and Tools. Springer.

Biere, A.; Cimatti, A.; Clarke, E. M.; Strichman, O.; and
Zhu, Y. 2003. Bounded model checking. Adv. Comput., 58:
117-148.

Blom, J. 1996. Temporal logics and real time expert sys-
tems. Computer Methods and Programs in Biomedicine,
51(1): 35-49. Improving Control of Patient Status in Critical
Care: The IMPROVE Project.

Clarke, E. M.; Grumberg, O.; Kroening, D.; Peled, D. A.;
and Veith, H. 2018. Model checking, 2nd Edition. MIT
Press. ISBN 978-0-262-03883-6.

Cook, S. A. 1971. The Complexity of Theorem-Proving Pro-
cedures. In STOC, 151-158. ACM.

Creignou, N.; Kroll, M.; Pichler, R.; Skritek, S.; and
Vollmer, H. 2019. A complexity theory for hard enumer-
ation problems. Discret. Appl. Math., 268: 191-209.

da Silva, R. R.; Kurtz, V.; and Lin, H. 2021. Symbolic con-
trol of hybrid systems from signal temporal logic specifica-
tions. Guidance, Navigation and Control, 1(02): 2150008.
Downey, R. G.; and Fellows, M. R. 1999. Parameterized
Complexity. Monographs in Computer Science. Springer.
Finger, M.; Fisher, M.; and Owens, R. 1993. Metatem at
work: Modelling reactive systems using executable tempo-
ral logic. In IEA/AIE-93. Gordon and Breach Publishers Ed-
inburgh, UK.

Fomin, F. V.; and Kratsch, D. 2010. Exact Exponential Al-
gorithms. Springer Berlin, Heidelberg.

Friedrich, G.; and Zanker, M. 2011. A Taxonomy for Gen-
erating Explanations in Recommender Systems. Al Mag.,
32(3): 90-98.

Frohlich, N.; and Meier, A. 2022. Submodel Enumeration
of Kripke Structures in Modal Logic. In AiML, 391-406.
College Publications.

Frohlich, N.; and Meier, A. 2023. Submodel Enumeration
for CTL Is Hard. arXiv:2312.09868.

Gupta, A.; Yang, Z.; Ashar, P.; and Gupta, A. 2000. SAT-
Based Image Computation with Application in Reachabil-
ity Analysis. In FMCAD, volume 1954 of Lecture Notes in
Computer Science, 354-371. Springer.

Johnson, D. S.; Yannakakis, M.; and Papadimitriou, C. H.
1988. On generating all maximal independent sets. Infor-
mation Processing Letters, 27(3): 119-123.

10524

Karp, R. M. 1972. Reducibility Among Combinatorial Prob-
lems. In Complexity of Computer Computations, The IBM
Research Symposia Series, 85-103. Plenum Press, New
York.

Konur, S. 2013. A survey on temporal logics for specify-
ing and verifying real-time systems. Frontiers Comput. Sci.,
7(3): 370-403.

Krebs, A.; Meier, A.; and Mundhenk, M. 2019. The model
checking fingerprints of CTL operators. Acta Informatica,
56(6): 487-519.

Kripke, S. 1963. Semantical Considerations on Modal
Logic. Acta Philosophica Fennica, 16: 83-94.

Lauri, J.; and Dutta, S. 2019. Fine-Grained Search Space

Classification for Hard Enumeration Variants of Subset
Problems. In AAAI, 2314-2321. AAAI Press.

Levin, L. 1973. Universal sorting problems. Problems of
Information Transmission, 9: 265-266.

Papadimitriou, C. H. 2007. Computational complexity. Aca-
demic Internet Publ.

Schnoebelen, P. 2002. The Complexity of Temporal Logic
Model Checking. In Advances in Modal Logic, 393-436.
King’s College Publications.

Strozecki, Y. 2019. Enumeration Complexity. Bull. EATCS,
129.

Sullivan, A.; Marinov, D.; and Khurshid, S. 2019. Solution
Enumeration Abstraction: A Modeling Idiom to Enhance a
Lightweight Formal Method. In ICFEM, volume 11852 of
Lecture Notes in Computer Science, 336-352. Springer.

Vakili, A.; and Day, N. A. 2014. Reducing CTL-live model
checking to first-order logic validity checking. In Formal
Methods in Computer-Aided Design, FMCAD 2014, Lau-
sanne, Switzerland, October 21-24, 2014, 215-218. IEEE.

