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Abstract

Samplers are the backbone of the implementations of any
randomised algorithm. Unfortunately, obtaining an efficient
algorithm to test the correctness of samplers is very hard to
find. Recently, in a series of works, testers like Barbarik, Teq,
Flash for testing of some particular kinds of samplers, like
CNF-samplers and Horn-samplers, were obtained. But their
techniques have a significant limitation because one can not
expect to use their methods to test for other samplers, such
as perfect matching samplers or samplers for sampling linear
extensions in posets. In this paper, we present a new testing
algorithm that works for such samplers and can estimate the
distance of a new sampler from a known sampler (say, uni-
form sampler).

Testing the identity of distributions is the heart of testing the
correctness of samplers. This paper’s main technical contri-
bution is developing a new distance estimation algorithm for
distributions over high-dimensional cubes using the recently
proposed sub-cube conditioning sampling model. Given sub-
cube conditioning access to an unknown distribution P, and
a known distribution @ defined over {0, 1}", our algorithm
CubeProbeEst estimates the variation distance between P
and Q within additive error ¢ using O (rn®/¢*) subcube con-
ditional samples from P. Following the testing-via-learning
paradigm, we also get a tester which distinguishes between
the cases when P and () are e-close or n-far in variation dis-
tance with probability at least 0.99 using O(n?/(n —¢)*)
subcube conditional samples.

The estimation algorithm in the sub-cube conditioning sam-
pling model helps us to design the first tester for self-
reducible samplers. The correctness of the testers is formally
proved. On the other hand, we implement our algorithm to
create CubeProbeEst and use it to test the quality of three
samplers for sampling linear extensions in posets.

Introduction

Sampling algorithms play a pivotal role in enhancing the ef-
ficiency and accuracy of data analysis and decision-making
across diverse domains (Chandra and Iyengar 1992; Yuan
et al. 2004; Naveh et al. 2006; Mironov and Zhang 2006;
Soos, Nohl, and Castelluccia 2009; Morawiecki and Srebrny
2013; Ashur, De Witte, and Liu 2017). With the exponential
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surge in data volume, these algorithms provide the means
to derive meaningful insights from massive datasets with-
out the burden of processing the complete information. Ad-
ditionally, they aid in pinpointing and mitigating biases in-
herent in data, ensuring the attainment of more precise and
equitable conclusions. From enabling statistical inferences
to propelling advancements in machine learning, safeguard-
ing privacy, and facilitating real-time decision-making, sam-
pling algorithms stand as a cornerstone in extracting infor-
mation from the vast data landscape of our modern world.

However, many advanced sampling algorithms are often
prohibitively slow (hash-based techniques of (Chakraborty,
Meel, and Vardi 2013; Ermon et al. 2013; Chakraborty et al.
2014; Meel et al. 2016) and MCMC-based methods of (An-
drieu et al. 2003; Brooks et al. 2011; Jerrum 1998)) or lack
comprehensive verification ((Ermon, Gomes, and Selman
2012), (Dutra et al. 2018), (Golia et al. 2021)). Many popu-
lar methods like “statistical tests” rely on heuristics with-
out guarantees of their efficacy. Utilizing unverified sam-
pling algorithms can lead to significant pitfalls, including
compromised conclusion accuracy, potential privacy, and se-
curity vulnerabilities. Moreover, the absence of verification
hampers transparency and reproducibility, underscoring the
critical need for rigorous validation through testing, com-
parison, and consideration of statistical properties. Conse-
quently, a central challenge in this field revolves around de-
signing tools to certify sampling quality and verify correct-
ness, which necessitates overcoming the intricate task of val-
idating probabilistic programs and ensuring their distribu-
tions adhere to desired properties.

A notable breakthrough in addressing this verification
challenge was achieved by (Chakraborty and Meel 2019),
who introduced the statistical testing framework known as
“Barbarik”. This method proved instrumental in testing the
correctness of uniform CNF (Conjunctive Normal Form)
samplers by drawing samples from conditional distribu-
tions. Barbarik demonstrated three key properties: accept-
ing an almost correct sampler with high probability, reject-
ing a far-from-correct sampler with high probability, and re-
jecting a “well-behaved” but far-from-correct sampler with
high probability. There have been a series of follow-up
works (Meel, Pote, and Chakraborty 2020; Pote and Meel
2021, 2022; Banerjee et al. 2023). However, in this frame-
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work, conditioning is achieved using a gadget that does not
quite generalize to applications beyond CNF sampling. For
instance, for linear-extension sampling (Huber 2014), where
the goal is to sample a linear ordering agreeing with a given
poset, the test requires that the post-conditioning residual in-
put be a supergraph of the original input, with the property
that it has exactly two user-specified linear-extensions. This
requirement is hard to fulfill in general. On the other hand,
a generic tester that would work for any sampler implemen-
tation without any additional constraints and simultaneously
be sample efficient is too good to be true (Paninski 2008).
From a practical perspective, the question is: Can we de-
sign an algorithmic framework for testers that would work
for most deployed samplers and still have practical sample
complexity?

We answer the question positively. We propose algorithms

that offer a generic approach to estimating the distance be-
tween a known and an unknown sampler, assuming both
follow the ubiquitous self-reducible sampling strategy. Our
techniques follow a constrained sampling approach, extend-
ing its applicability to wide range of samplers without man-
dating such specific structural conditions. A key founda-
tional contribution of this paper includes leveraging the sub-
cube conditional sampling techniques (Bhattacharyya and
Chakraborty 2018) and devising a method to estimate the
distance between samplers — a challenge often more intri-
cate than simple correctness testing.
Organization of our paper We first present the pre-
liminaries followed by a description of our results and
their relevance. We then give a detailed description of our
main algorithms CubeProbeEst and CubeProbeTester. The
detailed theoretical analysis is presented in the supple-
mentary material. We only present a high-level technical
overview. Finally, we present our experimental results and
conclude. The extended version of the paper is available at
www.arxiv.org/abs/2312.10999.

Preliminaries

In this paper, we are dealing with discrete probability dis-
tributions whose sample space is an n-dimensional Boolean
hypercube, {0, 1}". For a distribution D over a universe €2,
and for any = € 2, we denote by D(z) the probability mass
of the point x in D. [n] denotes the set {1,...,n}. For con-
cise expressions and readability, we use the asymptotic com-
plexity notion of O, where we hide polylogarithmic depen-
dencies of the parameters.

Samplers, Estimators, and Testers A sampler Z
Domain — Range is a randomized algorithm which, given
an input z € Domain, outputs an element in Range. For a
sampler Z, DZ¥ denotes the probability distribution of the
output of Z when the input is 1) € Domain. In other words,

Vx € Range, D% (z) = Pr[Z(¢) = ],

where the probability is over the internal random coins of Z.
We define a sampler Zyy to be a known sampler if, for any
input ©» € Domain, we know its probability distribution
DIw:¥ explicitly. We note that the input ¢/ depends on the
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application. For example, in the perfect-matching and linear-
extension samplers, v is a graph, whereas, for the CNF sam-
pler, ¢ is a CNF formula.

Definition 1 (Total variation distance). Let 7y, and Zg
be two samplers. For an input ¢y € Domain, the variation
distance between Zg and Zyy is defined as:
d%y(Zg, Tyy) = max {DTY(A) — DIV (A)}.
ACRange

Definition 2 (({,d)-approx dry estimator). A ((,0)-
approx dry estimator is a randomized approximation algo-
rithm that given two sampler Zg and Zyy, an input 9, tol-
erance parameter ¢ € (0,1/3] and a confidence parameter
d € (0,1), with probability (1 — ¢) returns an estimation

dist” of d%/ (Zg,Tyy) such that:

Ay (Zg, Tw) — ¢ < dist” < d%,(Zg, Tw) + ¢

Definition 3 (c-closeness and 7-farness). Consider any
sampler Zg. Zg is said to be e-close to another sampler Zyy
on input v, if d%, (Zg,Zyy) < € holds. On the other hand,
Zg is said to be n-far from Zyy with respect to some input

if d%, (Zg, Ty) > 7 holds.

Definition 4 ((¢,7,0)-identity tester)). An (g,7,0)-
identity tester takes as input an unknown sampler Zg, a
known sampler Zyy, an input v to the samplers, a tolerance
parameter € € (0, 1/3), an intolerance parameter 1 € (0, 1]
with n > ¢, a confidence parameter 6 € (0, 1), and with
probability at least (1 — ¢): (1) outputs ACCEPT if Zg is e-
close to Zyy on input 1, (2) outputs REJECT if Zg is n-far
from Zyy on input .

For practical purposes, § can be 0.99 or any close-to-one
constant. From now onwards, we shall consider the input
domain and output range of a sampler to be a Boolean hyper-
cube, that is, Domain = {0,1}" and Range = {0,1}" for
some integers m and n. Therefore the universe of probability
distributions of samplers is n-dimensional binary strings.

Self-reducible sampler. A self-reducible sampler Z
{0,1}™ — {0, 1}™ generates a sample z by first sampling a
bit and then sampling the rest of the substring. Formally, we
can define a self-reducible sampler as follows:

Definition 5 (Self-reducible sampler). A sampler Z
{0,1}" — {0,1}" is said to be a self-reducible sampler
if, for any input ¢ € {0,1}™, there exists ¢ € {0,1}™ for
which the following is true:

Dz’w(xlxg...zn)|$1:b17___7xi:bi = DI’w(bl...bi:z:7;+1...z")
where b; € {0, 1} for all 4.

The concept of self-reducibility has been influential in the
field of sampling since the work of (Jerrum, Valiant, and
Vazirani 1986), which showed the computational complex-
ity equivalence of approximate sampling and counting for
problems in #P. Intuitively, self-reducibility is the idea that
one can construct the solution to a given problem from
the solutions of subproblems of the same problem. Self-
reducibility is a critical requirement for simulating subcube
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conditioning. Also, it does not hamper the model’s general-
ity too much. As observed in (Khuller and Vazirani 1991;
GroB3e, Rothe, and Wechsung 2006; Talvitie, Vuoksenmaa,
and Koivisto 2020), all except a few known problems are
self-reducible.

Subcube Conditioning over Boolean hypercubes Let P
be a probability distribution over {0, 1}"™. Sampling using
subcube conditioning accepts A1, As,..., A, C {0,1},
constructs S = A; x Ag X ... x A,, as the condition set, and
returns a vector ¢ = (z1,Z2,...,Z,), such that x; € A,
with probability P(x)/(>_, cq P(w)). If P(S) =0, we as-
sume the sampling process would return an element from S
uniformly at random. A sampler that follows this technique
is called a subcube conditioning sampler.

Linear-Extension of a Poset We applied our prototype
implementation on verifying linear-extension samplers of a
poset. Let us first start with the definition of a poset.

Definition 6 (Partially ordered set (Poset)). Let S be a set
on k elements. A relation < (subset of S x S) is said to be a
partial order if < is (i) reflexive (a =< a for every a € 5) (ii)
anti-symmetric (¢ < b and b < a implies a = b for every
a,b € S) and (iii) transitive (¢ = band b < c implies a = ¢
for every a,b,c € S). We say (.5, <) is a partially ordered
set or poset in short. If all pairs of S are comparable, that is,
for any a,b € S, either a < bor b < a then (5, <) is called
a linear ordered set.

Definition 7 (Linear-extension of poset). A relation <; O
< is called a linear-extension of =, if (S, =<;) is linearly or-
dered. Given a poset P = (5, <), we denote the set of all
possible linear-extensions by L(P).

Definition 8 (Linear-extension sampler). Given a poset
P = (95,=), a linear-extension sampler Zy.,; samples a
possible linear-extension =<; of P from the set of all possible
linear-extensions L£(P).

Linear-extension to Boolean Hypercube Let us define a
base linear ordering on S as j;. We order the elements of S
as S = Sy = ... %] Sy based on =<}, where k = |S]|. For
a poset P = (5, <), we construct a k X k matrix Mp such
that for all i, Mp(i,4) := 1 and for all ¢ # j,if S; < S;
then Mp(i,5) := 1 and Mp(i,j) := 0 when S; < S,
if (S;,5;) €=, that is if S;,S; are not comparable in =,
then Mp(i,5) := *. The matrix Mp is a unique repre-
sentation of the poset P = (S, <). Myp is anti-symmetric,
i.e., the upper triangle of Mp is exactly the opposite of the
lower triangle (apart from the * and the diagonal entries).
So only the upper triangle of Mp without the diagonal en-
tries can represent P. Now unrolling of the upper triangle

of Mp (without the diagonal) creates a {0, 1, *}kC? string
Z M- Suppose for a P there are n *’s in the unrolling. Then
we can say sampling a linear-extension of P is equivalent to
sampling from a {0, 1}"™ subcube of the Boolean hypercube

{0, 1}k02, where P induces subcube conditioning by fixing
the bits of non-* dimensions. Adding one more new pair,
say (S,s,Sj), to P results in fixing one more bit of = 4,
and vice versa. We introduce a mapping SubCond that can
incorporate a new pair into poset P and subsequently fixes
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Figure 1: Top-left graph represents cover graph of a poset
P over S {1,2,3,4}, and poset relation =<=
{(1,2),(1,3),(2,4),(1,4)}. The bottom row shows two
possible linear-extensions 1 <2 <3 <4and1 <3 <2=
4, with corresponding cover graphs (red arrows). The matrix
on the top-right corresponds to Mp. Unrolling of the upper
triangle (bold-underline) of Mp gives xaq, = 111 * 1x.
Fixing the 4th bit of x4, to 0 is equivalent to including the
relation (3, 2) into <. Here SubCond(=,4) ==< U{(3,2)}.

the corresponding bit in bit string x o4, . Thus SubCond pro-
vides a method to achieve subcube conditioning on a poset.

Basic Probability Facts We will use the following prob-
ability notations in our algorithm. A random variable X is
said to follow the exponential distribution with parameter A
if Pr(X = x) = A\e™ if 2 > 0 and 0 otherwise. This is
represented as X ~ Exp(\). A random variable X is said to
be sub-Gaussian (SubG in short) with parameter o if and
only if its tails are dominated by a Gaussian of parameter
a?. We include formal definitions and related concentration
bounds in the supplementary material.

Our Results

The main technical contribution of this work is the algorithm
CubeProbeEst that can estimate the variation distance be-
tween a known and an unknown self-reducible sampler. The
following informal theorem captures the details.

Theorem 9. For an error parameter ¢ € (0, 1), and a con-
stant 6 < 1/3, CubeProbeEst is ({, d)-approx dyv estimator
between a known and unknown self-reducible samplers Ty

and Zg respectively with sample complexity of 9} (n2 /C 4).

Our framework seamlessly extends to yield an (g,7,0)-
tester CubeProbeTester through the “testing-via-learning”
paradigm (Diakonikolas et al. 2007; Gopalan et al. 2009;
Servedio 2010). To test whether the sampler’s output distri-
bution is e-close or 7-far from the target output distribution,

the resultant tester requires O (n2 /(n— 5)4) samples.

To demonstrate the usefulness of CubeProbeEst, we devel-
oped a prototype implementation with experimental evalu-
ations in gauging the correctness of linear-extension sam-
plers while emulating uniform samplers. Counting the size
of the set of linear extensions and sampling from them has
been widely studied in a series of works by (Huber 2014;
Talvitie et al. 2018a,b). The problem found extensive ap-
plications in artificial intelligence, particularly in learning
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graphical models (Wallace, Korb, and Dai 1996), in sort-
ing (Peczarski 2004), sequence analysis (Mannila and Meek
2000), convex rank tests (Morton et al. 2009), preference
reasoning (Lukasiewicz, Martinez, and Simari 2014), partial
order plans (Muise, Beck, and Mcllraith 2016) etc. Our im-
plementation extends to a closeness tester that accepts “close
to uniform” samplers and rejects “far from uniform” sam-
plers. Moreover, while rejecting, our implementation can
produce a certificate of non-uniformity. CubeProbeEst and
CubeProbeTester are the first estimator and tester for gen-
eral self-reducible samplers.

Novelty in Our Contributions In relation to the previous
works, we emphasize our two crucial novel contributions.

* Qur algorithm is grounded in a notably refined form of
“grey-box” sampling methodology, setting it apart from
prior research endeavors (Chakraborty and Meel 2019;
Meel, Pote, and Chakraborty 2020; Banerjee et al. 2023).
While prior approaches required arbitrary conditioning,
our algorithm builds on the significantly weaker sub-
cube conditional sampling paradigm (Bhattacharyya and
Chakraborty 2018). Subcube conditioning is a natural fit
for ubiquitous self-reducible sampling, and thus our al-
gorithm accommodates a considerably broader spectrum
of sampling scenarios.

* All previous works produced testers crafted to produce
a “yes” or “no” answer to ascertain correctness of sam-
plers. In essence, these testers strive to endorse samplers
that exhibit “good” behavior while identifying and reject-
ing those that deviate significantly from this standard.
However, inherent technical ambiguity exists in setting
the thresholds of the distances (1 and ¢) that would label
a sampler as good or bad. In contrast, the CubeProbeEst
framework produces the estimated statistical distance
that allows a practitioner to make informed and precise
choices while selecting a sampler implementation. In this
context CubeProbeEst is the first of its kind.

Our Contribution in the Context of Distribution Test-
ing with Subcube Conditional Samples. The crucial
component in designing our self-reducible-sampler-tester
CubeProbeEst is a novel algorithm for estimating the varia-
tion distance in the subcube conditioning model in distribu-
tion testing. Given sampling access to an unknown distribu-
tion P and a known distribution Q over {0, 1}", the distance
estimation problem asks to estimate the variation distance
between P and (). The corresponding testing problem is the
tolerant identity testing of P and @. Distance estimation and
tolerant testing with subcube conditional samples have been
open since the introduction of the framework five years ago.
The following theorem formalizes our result in the context
of distance estimation/tolerant testing using subcube condi-
tional samples.

Theorem 10. Let P be an unknown distribution and Q) be
a known distribution defined over {0,1}". Given subcube
conditioning access to P, an approximation parameter vy €
(0,1) and a confidence parameter 6 € (0,1), there exists

an algorithm that takes O (n?) subcube-conditional samples
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Sfrom P on expectation and outputs an estimate of dvv (P, Q)
with an additive error ¢ with probability at least 1 — 6.

This is the first algorithm that solves the variation distance
estimation problem in O(n?) subcube conditioning samples.

Related Works
The state-of-the-art approach for efficiently test-
ing CNF samplers was initiated by Meel and

Chakraborty (Chakraborty and Meel 2019). They employed
the concept of hypothesis testing with conditional sam-
ples (Chakraborty et al. 2016; Canonne, Ron, and Servedio
2015) and showed that such samples could be “simulated”
in the case of CNF samplers. The approach produced
mathematical guarantees on the correctness of their tester.
Their idea was extended to design a series of testers for
various types of CNF samplers (Barbarik (Chakraborty and
Meel 2019) for uniform CNF samplers, Barbarik2 (Meel,
Pote, and Chakraborty 2020) for weighted CNF sam-
plers, Teq (Pote and Meel 2021) for testing probabilistic
circuits, Flash (Banerjee et al. 2023) for Horn samplers,
Barbarik3 (Pote and Meel 2022) for constrained samplers).
The theoretical foundation of our work follows the sub-
cube conditioning model of property testing of probability
distributions. This model was introduced by (Bhattacharyya
and Chakraborty 2018) as a special case of the conditional
sampling model (Chakraborty et al. 2016; Canonne, Ron,
and Servedio 2015) targeted towards high-dimensional dis-
tributions. Almost all the known results in the subcube con-
ditioning framework deal with problems in the non-tolerant
regime: testing uniformity, identity, and equivalence of dis-
tributions. (Canonne et al. 2021) presented optimal algo-
rithm for (non-tolerant) uniformity testing in this model.
(Chen et al. 2021) studied the problem of learning and test-
ing junta distributions. Recently (Mahajan et al. 2023) stud-
ied the problem of learning Hidden Markov models. (Blanca
et al. 2023) studied identity testing in related coordinate con-
ditional sampling model. (Fotakis, Kalavasis, and Tzamos
2020) studied parameter estimation problem for truncated
Boolean product distributions. Recently (Chen and Mar-
cussen 2023) studied the problem of uniformity testing in
hypergrids. Very recently, in a concurrent work, the authors
in (Kumar, Meel, and Pote 2023) studied the problem of tol-
erant equivalence testing where both the samplers are un-

known and designed an algorithm that takes o (n?) samples.

Estimator of Self-reducible Samplers

Our estimator utilizes the subcube conditional sampling
technique. The main program CubeProbeEst works with
two subroutines: Est and GBAS. The algorithm GBAS is
adopted from the Gamma Bernoulli Approximation Scheme
(Huber 2014). Since its intricacies are crucial for our algo-
rithm, we include the algorithm here for completeness.

CubeProbeEst: In this algorithm, given a known self-
reducible sampler Zyy, subcube conditioning access to an
unknown self-reducible sampler Zg, along with an input 1,
an approximation parameter ¢ and a confidence parameter 9,
it estimates the variation distance between Zg and 7)) with
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Algorithm 1: CubeProbeEst (Zg, Zyy, ¥, ¢, )

1a=Zlogj

2 W:m

38 =6/2a

4 S=10

5 S < «aiid samples from Zg (1))
6 val =0

7 for x € S'do

8 ‘ val = val + max (0,1

val
«

_ DIw Y ()
Est(Zg,y,n,x,v,0")
9 return

Algorithm 2: Est (Zg, 1, n, ,7,5")
Uk [2 - log (34)]
2 fori =1tondo

3 | 4« SubCond (¢, z1...75_1)
4 | D;+ GBAS(Zg,v,i,k,z;)
s DLV =TI, P,

6 return D%g’w

additive error (. CubeProbeEst uses the algorithm Est as a
subroutine. It starts by setting several parameters «,y, ¢’ in
Line 1-Line 3. In Line 4, it initializes an empty multi-set .S,
and then takes « samples from Zg(¢)) in S in Line 5. Now
it defines a counter val in Line 6, initialized to 0. Now in
the for loop starting from Line 7, for every sample z € S
obtained before, CubeProbeEst calls the subroutine Est in
Line 8 to estimate the probability mass of D?W-¥ at . Fi-
nally, in Line 9, we output val/« as the estimated variation
distance and terminate the algorithm.

Est: Given subcube conditioning access to the unknown
self-reducible sampler Zg, an input v, the dimension n, an
n-bit string =, parameters -y and 4’ and an integer ¢, the sub-
routine Est returns an estimate of the probability of DZ¢-%
at x by employing the subroutine GBAS . In the for loop
starting from Line 2, it first calls SubCond with ¢ and

z1,...,T;—1 wWhich outputs 15 Now in Line 4 it calls GBAS
with Zyy, v, i, k along with the ¢-th bit of z, i.e , x; with the
integer k (to be fixed such that ' /n = 2exp(—kvy?/3)) to
estimate P, the empirical weight of DZ¢-¥. Now in Line 5,
Est computes the empirical weight of DZ9¥(z) by tak-

ing a product of all marginal distributions P, ..., P, ob-
tained from the above for loop. Finally in Line 6, Est returns

—

D9 the estimated weight of the distribution DZo*¥ on z.

GBAS: In this algorithm, given access to an unknown self-

reducible sampler Zg, input 1), integers ¢ and k, and a bit
HEAD, GBAS outputs an estimate p of p. GBAS starts by
declaring two variables s and r, initialized to O in Line 1.
Then in the for loop starting in Line 2, as long as s < k,

it first takes a sample w from the sampler Zg on input 1 in
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Algorithm 3: GBAS (Zg, 1, i, k, HEAD)

150,70
2 while s < k£ do

-~

3| w~Ig(y);

4 if HEAD = w; then

5 | s« s+1;

6 a~Exp(l),r+r+a;

7p+ (k—1)/r;
8 return p;

Line 3. Then in Line 4, it checks if the value of HEAD is w;
where w; is the ¢-th bit of the n-bit sample w. If the value of
HEAD equals wj;, then in Line 5, it increments the value of s
by 1. Then in Line 6, GBAS samples « following Exp(1), the
exponential distribution with parameter 1 and assigns r + a
to r. At the end of the for loop in Line 7, it assigns the esti-
mated probability p as (k — 1)/r. Finally, in Line 8, GBAS
returns the estimated probability p.

Theoretical Analysis of Our Estimator
The formal result of our estimator is presented below.

Theorem 9. For an error parameter ¢ € (0, 1), and a con-
stant § < 1/3, CubeProbeEst is (¢, 6)-approx dtvy estimator
between a known and unknown self-reducible samplers Iy

and Zg respectively with sample complexity of o (n2 /C 4).

The formal proof is presented in the supplementary material.

High-level Technical Overview

The main idea of CubeProbeEst stems from an equivalent
characterization of the variation distance which states that
4%y (6. Tw) = B, _pro.s (1 — DI#¥(z) /DTo¥ (z)). Our
goal is to estimate the ratio D% (x)/D%e¥ (x) for some
samples z-s drawn from DZ¢-%. As Ty is known, it is suf-
ficient to estimate DZ9¥(z). It is generally difficult to es-
timate DZ¢-¥(z). However, using self-reducibility of Zg to
mount subcube-conditioning access to DZ9>% we estimate
DZ9-¥(x) by conditioning over the n conditional marginal
distributions of DZ¢-¥. Using the chain formula, we obtain
the value of DZ9-%(z) by multiplying a number of these
conditional probabilities. This is achieved by the subroutine
Est . The probability mass estimation of each conditional
marginal distribution is achieved by the subroutine GBAS ,
which is called from Est . The idea of GBAS follows from
(Huber 2017), which roughly states that to estimate the prob-
ability of head (say p) of a biased coin, within (multiplica-
tive) error -y; and success probability at least 1 — 4, it is suf-
ficient to make 7" coin tosses on average, where T = k/p
with k& > 3log(2/8)/~2. The crucial parameter is the er-
ror margin ~y; that is used in Est . It should be set so that
after taking the errors in all the marginals into account, the
total error remains bounded by the target error margin .
Our pivotal observation is that the error distribution in the
subroutine GBAS , when estimating the mass of the condi-
tional marginal distributions, is a SubGaussian distribution
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(that is, a Gaussian distribution dominates its tails). Fol-
lowing the tail bound on the sum of SubGaussian random
variables, we could afford to estimate the mass of each of
the marginal with error ~; ~v/+/n and still get an es-
timation of DZ¢-¥(z) with a correctness error of at most
~. That way the total sample complexity of Est reduces to
O(n/(y/vn)?) = O(n*/+%). As a/y* = O (1/¢*), we
get the claimed sample complexity of CubeProbeEst.

From Estimator to Tester

We extend our design to a tester named CubeProbeTester
that tests if two samplers are close or far in variation dis-
tance. As before, the inputs to CubeProbeTester are two
self-reducible samplers Zg,Zyy, an input v, parameters &,
7, and the confidence parameter §. CubeProbeTester first
computes the estimation margin-of-error ¢ as (n — €) /2, and
sets an intermediate confidence parameter ; as 24. The al-
gorithm estimates the distance between Zg and 7y on input
1, by invoking CubeProbeEst on Zg, Zyy, ¢ along wit/h\the

estimation-margin ¢ and ¢;. If the computed distance dist is
more than the threshold K = (n + €)/2, the tester rejects.
Otherwise, the tester accepts.

Algorithm 4: CubeProbeTester (Zg, Zyy, ¥, €, 1, 0)
1(=(n—¢)/2

2 (St =20

3 K=(n+e)/2

4 dist = CubeProbeEst(Zg, iy, 1, (, 6¢)

5 if dist > K then

6 | return REJECT

7 return ACCEPT

The details of CubeProbeTester are summarised below.

Theorem 11. Consider an unknown self-reducible sampler
Ig, a known self-reducible sampler Ty, an input 1, close-
ness parameter € € (0, 1), farness parametern € (0, 1) with
1 > € and a confidence parameter 6 € (0, 1). There exists
a (g,m,0)-Self-reducible-sampler-tester CubeProbeTester

that takes O (n2 /(n— 5)4) samples.

We note that our tester is general enough that when Zg is
e-close to Tyy in £o-distance !, then CubeProbeTester out-
puts ACCEPT . Moreover, If CubeProbeTester outputs re-
ject on input 1, then one can extract a configuration (witness
of rejection) 1), such that Zg and Zyy are n-far.

Evaluation Results

To evaluate the practical effectiveness of our proposed al-
gorithms, we implemented prototype of CubeProbeEst and
CubeProbeTester in Python3 2. We use CubeProbeEst to

175 is e-close to Zyy on input 1) in £.-distance if for ever
z € {0,1}", (1—e)D™W ¥ (x) < DT ¥ (z) < (14e)DPW ¥ ().
2Codes and experimental results are available at
www.github.com/uddaloksarkar/cubeprobe.
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estimate the variation distance (dty) of three linear exten-
sion samplers from a perfect uniform sampler. SAT solvers
power the backends of these linear extension samplers. The
objective of our empirical evaluation was to answer the fol-
lowing:

RQ1 Can CubeProbeEst estimate the distance of linear ex-
tension samplers from a known (e.g., uniform) sampler?
RQ2 How many samples CubeProbeEst requires to esti-
mate the distance?

RQ3 How do the linear extension samplers behave with an
increasing number of dimensions?

Boolean encoding of Poset Given a poset P = (S, <p),
we encode it using a Boolean formula ¢p in conjunctive
normal form (CNF), as described in (Talvitie et al. 2018b):

1 for all elements a,b € S, the formula ¢p contains the
variables of the form v,; such that v,, = 1 represents
a = band vy, = 0 represents b < a.

2 The CNF formula ¢p contains the following clauses.
Type-1: vgp for all a,b € S such that a <p b. This en-
forces the poset relation <p. Type-2: —v,p, V —Wpe V Vge
for all a, b, c € S to guarantee the transitivity.

This reduction requires |*/C5 many variables and |*|P; many
clauses of type-2. The number of clauses of type-1 depends
on the number of edges in the cover graph of P.

Experimental Setup

Samplers Used: To assess the performance of
CubeProbeEst and CubeProbeTester, we utilized three
different linear extension samplers- LxtQuicksampler,
LxtSTS, LxtCMSGen, to estimate their dty distances
from a uniform sampler. The backend of these samplers
are powered by three state-of-the-art CNF samplers:
QuickSampler (Dutra et al. 2018), STS (Ermon, Gomes,
and Selman 2012), CMSGen (Golia et al. 2021). A poset-to-
CNF encoder precedes these CNF samplers, and a Boolean
string-to-poset extractor succeeds the CNF samplers to
build the linear extension samplers. We also required
access to a known uniform sampler which is equivalent to
having access to a linear extension counter®. We utilized an
exact model counter for CNF formulas to meet this need:
SharpSAT-TD (Korhonen and Jarvisalo 2021).

Poset Instances: We adopted a subset of the poset in-
stances from the experimental setup of (Talvitie et al. 2018a)
and (Talvitie et al. 2018b) to evaluate CubeProbeEst and
CubeProbeTester. The instances include three different
kinds of posets. (a) posets of type avgdegy, are generated
from DAGs with average indegree of k = 3,5; (b) posets
of type bipartite, have been generated by from bipartite set
S = AUB by adding the order constraint a < b (resp. b < a)
with probability p (resp. 1 — p) for all (a,b) € A x B; (c)
posets of type bayesiannetwork is obtained from a transitive
closure a randomly sampled subgraph of bayesian networks,
obtained from (Elidan 1998).

3For a set S if we know the size of the set | S|, we know the
mass of each element to be 1/ |S| in a uniform sampler.
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LxtQuickSampler LxtSTS LxtCMSGen
Instances dim | Estd dry | #samples | A/R | Estd dty [ #samples [ A/R | Estd dry [ #samples | A/R
avgdeg_3_008_2 19 0.1854 9986426 A 0.0205 11013078 A 0.1772 9914721 A
avgdeg_3_010_2 30 0.1551 24537279 A 0.0155 24758147 A 0.1267 24126731 A
avgdeg_5_010_3 16 0.0976 7593533 A 0.0338 7338508 A 0.1135 7261255 A
avgdeg_5_010_4 11 0.0503 3486025 A 0.0387 3475635 A 0.1147 3412151 A
bn_andes_010_1 35 0.2742 33557190 A 0.0396 33536595 A 0.1601 33235104 A
bn_diabetes_010_3 | 26 0.1955 19211200 A 0.0009 18847561 A 0.1478 18539480 A
bn_link_010_4 28 0.2024 21482230 A 0.0346 22377750 A 0.1635 21161624 A
bn_munin_010_1 33 0.2414 30348931 A 0.0448 30693619 A 0.1230 30218998 A
bn_pigs_010_1 36 0.3106 36917129 R 0.0569 36311963 A 0.1353 35978964 A
bipartite_0.2_008_4 | 25 0.3204 17761820 R 0.0073 17840945 A 0.1153 17546682 A
bipartite_0.2_010_1 | 41 0.3299 46244946 R 0.1528 48135745 A 0.1461 47003971 A
bipartite_0.5_008_4 | 22 0.2977 13144132 A 0.0528 13424946 A 0.1059 13317859 A
bipartite_0.5_010_1 | 36 0.3082 35875122 R 0.0037 36728064 A 0.1472 35823878 A

Table 1: For each sampler the three columns represent the estimated dry, number of samples consumed by CubeProbeEst and
the output of CubeProbeTester. “A” and “R” represent ACCEPT and REJECT respectively.

Samplers
—8— LxtQuicksampler

LxtSTS
--#- LxtCMSGen

Estimated ary distance

20 30 40
Dimension

0 10

Figure 2: TV distances of samplers from uniformity are es-
timated across dimensions. For each dimension, we take the
median dty over all the instances of that dimension.

Parameters Initialization: For our experiments with
CubeProbeEst, the approximation parameter ¢ and confi-
dence parameter J are set to be 0.3 and 0.2. Our tester
CubeProbeTester takes a closeness parameter ¢, farness pa-
rameter 7, and confidence parameter ¢. For our experiments
these are settobe € : 0.01,7 : 0.61,and ¢ : 0.1, respectively.
Environment All experiments are carried out on a high-
performance computer cluster, where each node consists of
AMD EPYC 7713 CPUs with 2x64 cores and 512 GB mem-
ory. All tests were run in multi-threaded mode with 8 threads
per instance per sampler with a timeout of 12 hrs.

Experimental Results & Discussion

RQ1 Table 1 shows a subset of our experimental results.
Due to space constraints, we have postponed presenting our
comprehensive experimental results to the supplementary
material. We found that among 90 instances:

¢ LxtQuickSampler has the maximum dty from uni-
formity in 48 instances, LxtSTS in 14 instances, and
LxtCMSGen in 28 instances;
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e LxtQuickSampler has the minimum dyy from uni-
formity in 10 instances, LxtSTS in 69 instances, and
LxtCMSGen in 11 instances;

These observations indicate that LxtSTS serves as a
linear extension sampler that closely resembles uni-
form distribution characteristics. At the same time,
LxtQuickSampler deviates significantly from the traits
of a uniform-like linear extension sampler. LxtCMSGen
falls in an intermediate position between these two.

RQ2 Table 1 reflects that the number of samples drawn
by CubeProbeEst depends on the dimension of an instance.
Again, when the dimension is kept constant, the number of
samples drawn remains similar across all runs.

RQ3 In Figure 2, at lower dimensions, both
LxtQuickSampler and LxtCMSGen behave relatively
close to uniform sampling. However, as the dimension
increases, dty between these two samplers from uniformity
increases. In contrast, Lxt STS shows a different behavior.
In lower dimensions, the estimated dty distance can be no-
tably high for certain instances, but it tends to stabilize with
increasing dimension. It is worth highlighting that, in higher
dimensions, LxtSTS demonstrates a more uniform-like
sampling behavior compared to the other two samplers.

Conclusion

In this paper, we have designed the first self-reducible sam-
pler tester, and used it to test linear extension samplers. We
have also designed a novel variation distance estimator in
the subcube-conditioning model along the way.

Limitations of our work Our algorithm takes O(n?)
samples while the known lower bound for tolerant testing
with subcube conditioning is of Q(n/logn) for this task
(Canonne et al. 2020). Moreover, our algorithm works when
the samplers are self-reducible, which is required for our
analysis. So our algorithm can not handle non-self-reducible
samplers, such as in (Grofle, Rothe, and Wechsung 2006;
Talvitie, Vuoksenmaa, and Koivisto 2020).
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