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Abstract
Variational quantum algorithm (VQA) derives advantages
from its error resilience and high flexibility in quantum re-
source requirements, rendering it broadly applicable in the
noisy intermediate-scale quantum era. As the performance
of VQA highly relies on the structure of the parameterized
quantum circuit, it is worthwhile to propose quantum archi-
tecture search (QAS) algorithms to automatically search for
high-performance circuits. Nevertheless, existing QAS meth-
ods are time-consuming, requiring circuit training to assess
circuit performance. This study pioneers training-free QAS
by utilizing two training-free proxies to rank quantum circuit-
s, in place of the expensive circuit training employed in con-
ventional QAS. Taking into account the precision and compu-
tational overhead of the path-based and expressibility-based
proxies, we devise a two-stage progressive training-free QAS
(TF-QAS). Initially, directed acyclic graphs (DAGs) are em-
ployed for circuit representation, and a zero-cost proxy based
on the number of paths in the DAG is designed to filter out
a substantial portion of unpromising circuits. Subsequently,
an expressibility-based proxy, finely reflecting circuit per-
formance, is employed to identify high-performance circuits
from the remaining candidates. These proxies evaluate cir-
cuit performance without circuit training, resulting in a re-
markable reduction in computational cost compared to cur-
rent training-based QAS methods. Simulations on three VQE
tasks demonstrate that TF-QAS achieves a substantial en-
hancement of sampling efficiency ranging from 5 to 57 times
compared to state-of-the-art QAS, while also being 6 to 17
times faster.

Introduction
The emergence of quantum computing introduces an entire-
ly novel computing paradigm that leverages the principles of
quantum mechanics, offering the potential for exponential
acceleration (Nielsen and Chuang 2010). Variational quan-
tum algorithms (VQAs) combining quantum hardware eval-
uation with classical optimization are anticipated to provide
quantum advantage in the absence of fault-tolerant quantum
error correction (Cerezo et al. 2021; Shi et al. 2022). VQAs
have demonstrated their superiority over classical algorithm-
s in certain fields, including integer factorization, combina-
torial optimization, and quantum Hamiltonian ground state
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Figure 1: Average number of queries and time (in hours) re-
quired to achieve the ground states of 6-qubit TFIM, 5-qubit
Heisenberg model, and 6-qubit BeH2 molecule by random
sampling (RS), PQAS (Zhang et al. 2021) and TF-QAS over
10 independent runs. Fewer queries indicate better capability
to recognize high-performance circuits. LW and GW denote
that the quantum circuit is generated through layerwise and
gatewise pipelines, respectively.

estimation. The parametrized quantum circuit (PQC) acts as
a bridge connecting quantum and classical computational re-
sources. VQA involves executing a PQC on a quantum com-
puter to calculate an objective function value, followed by
refining the circuit parameters using optimization techniques
on a classical computer.

The performance of VQA heavily relies on the structure
of the used PQC. Automated design of PQC, also known
as quantum architecture search (QAS) has gained increas-
ing attention (Grimsley et al. 2019; Ostaszewski et al. 2021;
Zhang et al. 2021, 2022; He et al. 2022; Du et al. 2022;
Wu et al. 2023; Wang et al. 2023; Lu et al. 2023). Due
to the constraints posed by the hardware-native topologies
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and gate sets of quantum devices, manually designed tem-
plates or circuits for a specific problem require compilation
before deployment onto the quantum device. This involves
routing qubits with swap networks and gate synthesis, lead-
s to a notable enlargement of the quantum circuit size, and
consequently yields suboptimal circuits. Instead, QAS is an
end-to-end approach dedicated to directly searching for an
optimal quantum circuit under the constraints of the quan-
tum device, enabling the discovery of more efficient circuit
structures.

Neural architecture search (NAS), dedicated to the au-
tomated design of neural networks, exhibits parallels with
the design of parametric quantum circuits. Inspired by NAS,
a variety of quantum architecture search (QAS) algorithm-
s have been proposed, including differentiable QAS (Zhang
et al. 2022; Wu et al. 2023), QAS based on reinforcemen-
t learning (Ostaszewski et al. 2021), predictor-based QAS
(Zhang et al. 2021) and weight-sharing QAS (Du et al.
2022). Training-free (or zero-shot) NAS has garnered con-
siderable attention as it can incur significantly reduced com-
putational costs while attaining competitive performances
compared to training-based NAS algorithms. The key idea
behind training-free NAS is to design proxies that predict the
performance of neural networks without training the neural
network. While training-free NAS prevails in the field of ma-
chine learning, the training-free paradigm has not been fully
developed in QAS. The design of proxies for training-free
NAS generally draws inspiration from theoretical analysis
of deep neural networks. The inherent distinctions between
quantum circuits and deep neural networks preclude the di-
rect application of existing training-free proxies in NAS for
the evaluation of quantum circuits. Training quantum cir-
cuits is less efficient than training neural networks, empha-
sizing the critical importance of the training-free approach
for QAS. Consequently, it becomes necessary and valuable
to explore effective training-free proxies for QAS. This mo-
tivates us to develop QAS algorithms in a training-free man-
ner based on the unique characteristics of quantum circuits.

This paper proposes a straightforward yet potent QAS
based on path-based and expressibility-based proxies that
are training-free. The integration of these proxies not on-
ly improves the capability to identify high-performance cir-
cuits but also notably diminishes computational time, as de-
picted in Fig. 1. Prominent instances of VQAs include vari-
ational quantum eigensolvers (VQE) (McClean et al. 2016),
quantum approximation optimization algorithms (QAOA)
(Farhi, Goldstone, and Gutmann 2014), quantum neural net-
works (QNN) (Cong, Choi, and Lukin 2019) and quantum
generative modeling (Lloyd and Weedbrook 2018; Situ et al.
2020). Despite variations in their objective functions (such
as energy, mean squared error, and Kullback-Leibler diver-
gence), these algorithms employ the same quantum subrou-
tine to generate parameterized trial state or ansatz, allowing
for tuning parameters to achieve the optimal or near-optimal
values of the objective function. As a result, the performance
of VQAs hinges upon the intrinsic expressibility of the cho-
sen parameterized quantum circuit, defined as a circuit’s a-
bility to uniformly reach the entire Hilbert space (Sim, John-
son, and Aspuru-Guzik 2019). Since the assessment of ex-

pressibility solely entails collecting quantum states gener-
ated with random parameters, without any parameter opti-
mization, the computational cost of circuit expressibility is
significantly lower compared to achieving ground-truth per-
formance through iterative optimization of gate parameters
until convergence.

The search space of quantum circuits expands exponen-
tially with the size of the circuit. For large-scale quantum
circuits, it is necessary to evaluate a substantial number of
circuits. Even though assessing the expressibility of a quan-
tum circuit comes with a considerably lower computational
cost compared to evaluating its ground-truth performance,
calculating the expressibility for a multitude of quantum cir-
cuits remains unfeasible. To this end, we propose a zero-cost
proxy to filter out the majority of the unpromising quan-
tum circuits from the search space. The proxy is defined as
the number of paths between the input and output nodes of
the DAG representation of the quantum circuit. The num-
ber of paths can approximate the topological complexity of
the quantum circuit, providing a rough indication of various
properties like expressibility and entangling capacity. Al-
though the number of paths only offers a rough insight into a
quantum circuit’s performance, it can serve as a preliminary
filtering proxy to eliminate poor-performance circuits.

Overall, the main contributions are summarized below.
• We identify and investigate two training-free proxies

to rank quantum circuits. The path-based proxy can
be regarded as zero-cost, exhibiting a relatively weak-
er correlation with circuit performance. In contrast, the
expressibility-based proxy is closely linked to circuit per-
formance, albeit operating at a pace three orders of mag-
nitude slower compared to the path-based proxy. As these
proxies do not involve the objective functions of VQAs,
they may easily transfer across different VQAs.
• This paper establishes a simple but effective progressive

training-free QAS framework (TF-QAS) that effective-
ly leverages the zero cost of the path-based proxy and
the strong correlation of the expressibility-based proxy to
circuit performance. The progressive (from rough to pre-
cise) strategy not only results in a substantial reduction in
computational cost but also enables better identification
of high-performance circuits by capturing various prop-
erties of the circuit.
• We evaluate the performance of TF-QAS on three VQE

tasks for TFIM, Heisenberg, and BeH2 models. Simu-
lation results reveal that TF-QAS achieves an average
sampling efficiency 28 times greater than that of state-
of-the-art (SOTA) QAS, reducing the average computa-
tional cost from 8.8 hours to 1.2 hours.

Related Works
Quantum Architecture Search Algorithms (QAS)
QAS is an automated process for designing quantum circuit-
s. It comprises a search module and a performance evalua-
tion module. Previous QAS algorithms primarily concentrat-
ed on the search module, employing various search strate-
gies such as reinforcement learning algorithms (Ostaszews-
ki et al. 2021; Kuo, Fang, and Chen 2021; Wang et al. 2023),
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evolutionary algorithms (Las Heras et al. 2016; Romero, Ol-
son, and Aspuru-Guzik 2017; Huang et al. 2022), and sim-
ulated annealing (Khatri et al. 2019; Cincio et al. 2021)
to identify high-performance circuits. Although these QAS
algorithms have demonstrated superior performance com-
pared to manually designed circuits in various VQAs, they
are computationally expensive due to their requirement for
calculating the ground-truth performances of numerous cir-
cuits through circuit training during the search process. Cir-
cuit training entails iterative parameter optimizations for
each gate until convergence, a highly time-consuming pro-
cess. The computational bottleneck is a barrier to the appli-
cations of QAS algorithms, particularly for large-scale quan-
tum circuits.

To enhance the search efficiency of QAS, researchers have
directed their attention to the evaluation module, exploring
two efficient evaluation methods: one-shot super-circuit (Du
et al. 2022; Wang et al. 2022) and predictor-based QAS
(Zhang et al. 2021; He et al. 2023). The super-circuit ap-
proach involves sharing gate parameters with sub-circuits
after one-shot training to accelerate circuit evaluation. Nev-
ertheless, optimizing the super-circuit presents a challenge,
and furthermore, there is a weak correlation in performances
between sub-circuits with inherited parameters and those
with optimal parameters from individual training. Predictor-
based QAS tries to directly predict circuit performance us-
ing a neural network. However, training the neural network
requires a training set containing representative circuits and
their corresponding ground-truth performances. To ensure a
precise performance evaluation, a sufficient number of train-
ing samples is essential, particularly when dealing with the
vast search space of large-scale circuits. Consequently, the
process of data collection still incurs substantial computa-
tional costs. These strategies for performance evaluation in-
volve circuit training. To further enhance efficiency, this pa-
per proposes a QAS algorithm that eliminates the need for
circuit training.

Training-free Neural Architecture Search (NAS)
Training-free NAS has risen to prominence among NAS al-
gorithms owing to its exceptional efficiency and competitive
performance. It estimates the performances of neural archi-
tectures using intuitive or theoretical proxies without neural
network (NN) training. NASWOT (Mellor et al. 2021) de-
signed a proxy based on the number of linear regions that
reflect the learning capability of an NN. Abdelfattah et al.
assessed performance with a pruning-at-initialization crite-
ria (Abdelfattah et al. 2021). Neural tangent kernel, which
reflects the convergence speed of an NN, is utilized for per-
formance evaluation (Chen, Gong, and Wang 2021; Shu
et al. 2022). Gradients are also leveraged to develop prox-
ies (Zhang and Jia 2021; Xu et al. 2021). Recently, the pa-
rameterized quantum circuit has been compared with classi-
cal neural networks and interpreted within their framework,
where the gate parameters of circuits resemble the weight-
s and biases of classical neural networks. However, these
proxies are constructed based on the properties of neural net-
works. Due to the inherent differences between quantum cir-
cuits and neural networks, these proxies cannot directly gen-
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Figure 2: An illustration of a circuit’s DAG representation.

eralize to QAS. This challenge motivates us to delve deeper
into the quantum circuit in order to develop QAS algorithms
in a training-free manner.

Methodology
We propose a training-free QAS algorithm that leverages t-
wo proxies (i.e., the number of paths and expressibility) to
rank parameterized quantum circuits (PQCs) in place of the
computationally intensive training step inherent in prevail-
ing QAS algorithms. These proxies characterize the PQC in
a more general way, independent of the specific VQAs. The
proposed training-free QAS is highly appealing and practi-
cal thanks to its simplicity and low computational overhead.

Number of Paths
A quantum circuit can be represented as a directed acyclic
graph (DAG) (Nam et al. 2018) as depicted in Fig. 2. The
DAG comprises an input node, a series of gate operation n-
odes, and an output node, interconnected in sequence. The
directed edges encode the input/output relationships be-
tween quantum gates. DAG precisely captures the sequence
of gate operations and the dependencies between quantum
gates. The number of paths within a DAG is defined as the
count of distinct paths from the input node to the output n-
ode. Fig. 2 illustrates two distinct input-to-output paths, de-
picted by blue and green lines. The number of paths is an
indicator to assess the complexity of a quantum circuit. The
computational complexity of calculating the number of path-
s in a quantum circuit isO(|E|), where |E| denotes the num-
ber of edges in the corresponding DAG. Consequently, the
path-based proxy can be regarded as zero-cost.

Path counting provides a simple and efficient metric for
quantifying the topological complexity of quantum circuits.
Generally, a smaller number of paths might indicate a rela-
tively simpler quantum circuit, whereas a larger number of
paths implies a more complex circuit. Moreover, the num-
ber of paths correlates with the quantity of two-qubit gates
and the qubits they operate on. The utilization of two-qubit
gates notably amplifies the number of paths. However, it’s
crucial to recognize that consecutively applying two-qubit
gates to the same qubits does not contribute to an increased
path count. For example, the two-qubit gate ZZ(4) in Fig. 2
doubles the number of paths, whereas the ZZ(6) has no im-
pact on the path count. This observation implies that sole-
ly counting two-qubit gates cannot comprehensively encom-
pass circuit complexity. Furthermore, the number of paths is
also associated with entanglement capability. Quantum cir-
cuits with a larger number of paths generally imply a greater
potential for entanglement, facilitating increased interaction
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among qubits. Because the performance of a quantum circuit
is affected by various factors such as the gate types and the
arrangement of quantum gates, relying solely on the num-
ber of paths cannot precisely depict the circuit performance.
Nevertheless, the information concerning circuit complex-
ity and entanglement properties provided by the number of
paths enables it to function as a preliminary filter for exclud-
ing poorly performing circuits.

Expressibility
The expressibility of a parameterized quantum circuit (PQC)
is defined as its capability to uniformly reach the entire
Hilbert space (Sim, Johnson, and Aspuru-Guzik 2019). The
state fidelity (i.e., the overlap of states) is defined as F =
|〈ψθ|ψφ〉|2, where θ and φ are the gate parameters of the
PQC. The expressibility of a PQC C can be quantified by

E(C) = −DKL(P (C, F )‖PHaar(F )), (1)

where P (C, F ) is the resulting distribution of state fideli-
ties generated by the sampled ensemble of parameterized s-
tates. In practice, P (C, F ) is approximated by the probabil-
ity distribution of fidelities obtained through sampling pa-
rameterized states from the PQC with random parameters.
The input state of the PQC is set as |0...0〉. PHaar(F ) de-
notes the probability density function of fidelities for the en-
semble of Haar random states. Its analytical form is known
as PHaar(F ) = (N−1)(1−F )N−2, whereN is the dimen-
sion of the Hilbert space (Życzkowski and Sommers 2005).
Once sufficient samples of state fidelities are gathered, the
Kullback-Leibler (KL) divergence (DKL) can be utilized to
quantify the difference between the estimated fidelity distri-
bution of the PQC and that of the Haar distributed ensem-
ble. A larger value of E(C) indicates better expressibility.
For an idle circuit with no quantum gate or a circuit without
parameterized gate, the value of E(C) reaches its minimum
since the circuit consistently produces the same quantum s-
tate. Furthermore, E(C) also quantifies the uniformity in the
state distribution of a PQC.

Although various VQAs (such as VQE, QAOA, and QN-
N) employ different objective functions (such as energy and
mean squared error), these objective functions are all de-
rived from the output state of the PQC. VQAs use the same
quantum subroutine to generate parameterized trial states or
ansatz, aiming to achieve optimal or approximate optimal
values of the objective functions by adjusting gate param-
eters. Circuits with high expressibility are capable of uni-
formly mapping the initial state to nearly all states in the
Hilbert space possibly encompassing the optimal solution-
s (e.g., the ground states in VQE). As a result, the perfor-
mance of VQA hinges on the inherent expressive power of
the chosen PQC. Furthermore, PQCs with high expressibil-
ity generate quantum states that are distributed uniformly,
an advantage particularly valuable in scenarios with limited
prior knowledge.

Two-stage Progressive TF-QAS
The path-based proxy, being zero-cost, provides a crude re-
flection of circuit performance, rendering it suitable for fil-
tering out unpromising quantum circuits from the extensive

Algorithm 1: A two-stage progressive TF-QAS
Input: number of circuits sampled from the search space
S; number of remaining circuits after filtering based on the
path-based proxy R, where R� S
Output: the top-K circuits

1: Randomly sample a set of circuits D = {Ci}Si=1 from
the search space.

2: for each Ci in D do
3: Represent Ci by a DAG and calculate the number of

paths.
4: end for
5: Output R circuits with the largest numbers of paths
Dr = {Cjk}Rk=1.

6: for each Ci in Dr do
7: Calculate the expressibility Ei of Ci based on Eq. 1.
8: end for
9: return the top-K circuits DK ranked by expressibility

search space. In contrast, the expressibility-based proxy re-
liably indicates the performance of quantum circuits, facil-
itating the selection of high-performance circuits from the
remaining circuits. Taking advantage of the zero cost of
the path-based proxy and the strong rank correlation of the
expressibility-based proxy with circuit performance, we de-
vise a two-stage progressive training-free QAS (TF-QAS)
as shown in Algorithm 1. Because the path-based proxy is
zero-cost, we can sample a substantial number of circuits
(D = {Ci}Si=1) from the search space randomly, and cal-
culate their respective numbers of paths. The generation of
random circuits can be achieved through a gatewise or layer-
wise pipeline (Zhang et al. 2021). Subsequently, R circuits,
possessing the highest numbers of paths, are selected to for-
m a candidate set Dr = {Cjk}Rk=1, where R � S. In the
second stage, we sort the circuits inDr according to their ex-
pressibility. As the expressibility is independent of specific
VQAs, TF-QAS outputs the top-K quantum circuits (DK)
characterized by the highest expressibility, rather than just
the single highest one. For a particular VQA, the best circuit
from DK can be chosen according to their performances on
this VQA.

Simulation Results
We evaluate the performance of TF-QAS across three vari-
ational quantum eigensolver (VQE) tasks for finding the
ground states of the transverse field Ising model (TFIM),
Heisenberg model, and BeH2 molecule. Our method belongs
to model performance inference (MPI)-based QAS, which
rapidly assesses the predictive performance of various can-
didate circuits to identify high-performing ones. We com-
pared our method to the state-of-the-art MPI-based QAS,
namely PQAS (Zhang et al. 2021), and random sampling
(RS). Additionally, we extended our comparisons to include
the hardware-efficient ansatz (HEA) (Kandala et al. 2017).
Simulations are executed on a computer equipped with an
R9 7950X CPU @4.5GHz and a GeForce RTX 4090 GPU.
All numerical simulations are implemented with the Tensor-
circuit package (Zhang et al. 2023) in Python. Each simula-
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tion is independently run ten times, and the averaged results
are reported.

Setttings
We consider VQE tasks for 6-qubit TFIM, 5-qubit Heisen-
berg model, and 6-qubit chemical Hamiltonian of BeH2 at
bond distance. The Hamiltonian of TFIM and Heisenberg
are defined as HTFIM =

∑n
i=1 ZiZi+1 + Xi and HHeis =∑n

i=1XiXi+1+YiYi+1+ZiZi+1+
∑n
i=1 Zi, where n de-

notes the number of qubits. The Hamiltonian of BeH2 is con-
structed using the coefficients and the Pauli terms provided
by the supplement material in previous work (Kandala et al.
2017). We assume that the ground state energy is attained if
the estimated value E is within the chemical accuracy, i.e.,
E − E0 ≤ 1.6 × 10−3 Hartree (Ha), where E0 is the exact
ground state energy.

We follow the prior work (Zhang et al. 2021) to con-
struct the search space of QAS. The native gate set is A =
{Rx, Ry, Rz, XX, Y Y, ZZ}. Rx, Ry and Rz are single-
qubit gates, where Rx(θ) = e−iθσx/2 (similarly for Ry
and Rz). XX , Y Y and ZZ are two-qubit gates, where
XX(θ) = e−iθσxσx/2 and similarly for Y Y and ZZ. The
layouts of quantum circuits resulting from a uniformly ran-
dom selection of gates are notably “chaotic”, often suffer-
ing from serious barren plateau problems. To mitigate this,
we generate quantum circuits by the gatewise and layerwise
pipelines with hierarchical sampling employed in prior re-
search (Zhang et al. 2021), in order to create structured cir-
cuits. The gatewise pipeline constructs a quantum circuit by
adding gates one by one, while the layerwise pipeline gen-
erates a circuit by iteratively adding half-layers (i.e., n/2)
of quantum gates. As single-qubit gates are less susceptible
to noise and easier to implement than two-qubit gates, we
will exclude circuits with a higher number of two-qubit gates
than single-qubit ones. In VQE for the TFIM, the quantum
circuit begins with a layer of Hadamard gates applied to all
qubits, consistent with prior study (Zhang et al. 2021).

The parameters of quantum circuits are initialized with
random values within the range of [−2π, 2π], and subse-
quently optimized using the Adam optimizer with a learn-
ing rate of 0.01 until convergence to calculate the ground-
truth performance. For expressibility evaluation, 2000 state
fidelities are sampled using random gate parameters to esti-
mate the fidelity distribution of the circuit. The number of
remaining circuits filtered by the path-based proxy R is set
to 5000.

Layerwise Search Space
For the layerwise pipeline, we select a gate type and then
allocate it to either all the odd qubits or all the even qubits.
For two-qubit gates, they are positioned on qubit pairs such
as (2,3), (4,5)... or (1,2), (3,4).... In the layerwise search s-
pace, the total number of quantum gates in a circuit is con-
sistently set as 36, 35, and 57 for the TFIM, Heisenberg, and
BeH2 models. The max depths of circuits in these tasks are
set as 10, 15, and 20. Any generated circuit surpassing the
max depth is simply omitted.

The primary objective of VQE is to compute the ground
states of a given system. In this context, Algorithm 1 is ex-
tended slightly: we keep querying the ground-truth perfor-
mances of quantum circuits (from best to worst as ranked
by TF-QAS) until the ground state energy within the range
of chemical accuracy is obtained. Fig. 1 shows the average
number of queries for the ground-truth performances re-
quired to achieve the ground state energy over 10 indepen-
dent runs. In comparison to PQAS (Zhang et al. 2021), TF-
QAS drastically reduces the number of queries for ground-
truth performance, ranging from nearly 5 to 57 times, while
also achieving a speed improvement of 6 to 17 times. Be-
yond the queries depicted in Fig. 1, PQAS requires another
300 queries for the ground-truth performances to construc-
t the training set. Random sampling (RS) denotes the can-
didate circuits are randomly selected from the pre-defined
search space. Compared to RS, TF-QAS improves the sam-
pling efficiency by nearly 100 times in VQE for the TFIM
and Heisenberg models.

We also show the probability of achieving the ground state
energy over 10 independent runs, operating within a fixed
budget of 100 queries for the ground-truth performances of
quantum circuits in Table 1. TF-QAS outputs the top 100
circuits for the final validation. PQAS nearly fails to find
out quantum circuits that achieve the ground state energy
across all the VQAs. In contrast, under an equivalent number
of quantum gates, TF-QAS finds out quantum circuits that
attain the ground state energy with probabilities of 100%,
80%, and 50%, respectively. The average energy errors of
TF-QAS fall within the scope of chemical accuracy (1.6 ×
10−3) in TFIM and Heisenberg models, and they marginally
exceed the chemical accuracy in the BeH2 model.

Furthermore, we compare the performance with the hard-
ware efficient ansatz (HEA) (Kandala et al. 2017), demon-
strating the benefits of the automatic design of quantum cir-
cuits. HEA is constructed through the iterative replication
of L identical unit layers, each comprising single-qubit op-
erations followed by entangling two-qubit operations. Since
HEA is a manually designed circuit with a fixed structure,
we only need to optimize the gate parameters. 100% in the
table denotes the successful attainment of the ground state
energy by HEA, while 0% indicates the failure to achieve the
ground state energy. Upon employing an identical or com-
parable number of quantum gates to that of TF-QAS, HEA
fails to attain the ground state energy across all VQE tasks.
In order to achieve the ground state energy, HEA requires
twice the number of quantum gates used by TF-QAS in both
the TFIM and Heisenberg models. Compared with manual-
ly designed circuits, TF-QAS not only employs significantly
fewer gates to suppress noise and trainability issues but al-
so upholds ample expressibility to contain the solution of
VQA.

Gatewise Search Space with IBM’s Topology
We use the topology of IBM’s 5-qubit quantum device called
ibmq quito, which has limited connectivity between qubits
as shown in Fig. 3. Our simulation is limited to VQE for
the Heisenberg model as the TFIM and the BeH2 molecule
are 6-qubit systems. In this context, PQAS is not applicable
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VQE task Method #gates Prob. E − E0 Design
RS 36 0% 1.2× 10−1 Auto

PQAS 36 10% 9.0× 10−2 Auto
TFIM TF-QAS 36 100% 1.4× 10−14 Auto

HEA-2 36 0% 1.2× 10−1 Manual
HEA-3 54 0% 1.1× 10−1 Manual
HEA-4 72 100% 4.5× 10−6 Manual

RS 35 0% 8.9× 10−2 Auto
PQAS 35 0% 8.9× 10−2 Auto

Heisenberg TF-QAS 35 80% 1.2× 10−3 Auto
HEA-3 42 0% 1.5× 10−1 Manual
HEA-4 56 0% 7.4× 10−3 Manual
HEA-5 70 100% 2.6× 10−5 Manual

RS 57 0% 5.0× 10−3 Auto
PQAS 57 10% 4.8× 10−3 Auto

BeH2 TF-QAS 57 50% 1.8× 10−3 Auto
HEA-3 54 0% 1.1× 10−2 Manual
HEA-4 72 100% 6.2× 10−4 Manual

Table 1: Probability of attaining the ground state energy
within 100 queries to the ground-truth performances of
quantum circuits across 10 independent runs. HEA-L is used
to name a hardware efficient ansatz with L layers. E − E0

denotes the average energy error across 10 independent sim-
ulations, where E and E0 are the estimated energy and the
exact ground state energy.

0 1 2

3

4

Figure 3: The topology of IBM’s 5-qubit quantum device
(ibmq quito).

as its image representation only allows two-qubit gates to
act on adjacent qubits. The quantum circuit consists of 35
quantum gates, with a max circuit depth of 20.

TF-QAS also demonstrates satisfying performance in the
gatewise search space with limited connectivity between
qubits. As shown in Table 2, TF-QAS achieves the ground
state energy with a probability of 50% using 35 quantum
gates, whereas HEA with 3 layers fails to achieve the ground
state energy even though it uses 42 gates. In order to achieve
the ground state energy, TF-QAS requires 137 queries, sig-
nificantly fewer than the 6649 queries required by RS as
shown in Fig. 1. This reflects a 48-fold improvement in sam-
pling efficiency.

Rationality Analysis
Table 3 displays the average time of calculating the number
of paths, expressibility, and ground-truth performance of a
circuit generated through the layerwise pipeline. The com-

Method #gates Prob. E − E0 Design

RS 35 0% 9.7× 10−2 Auto
TF-QAS 35 50% 3.5× 10−3 Auto
HEA-3 42 0% 1.2× 10−1 Manual
HEA-4 56 100% 2.2× 10−4 Manual

Table 2: Probability of achieving the ground state energy of
the Heisenberg model over 10 independent runs in the gate-
wise search space using the topology of ibmq quito.

VQE task Path Expressibility Performance
TFIM 1.8× 10−4 0.21 9.4

Heisenberg 2.1× 10−4 0.21 10

BeH2 7.8× 10−4 0.35 36

Table 3: Average time (in seconds) of calculating the number
of paths, expressibility and ground-truth performance of a
circuit. This average time is computed across 500 circuits.

putational cost of the path count is below 7.8×10−4 second
in all VQE tasks, making it analogous to a zero-cost proxy.
Although the computational cost of the expressibility is 45-
103 times lower than that of the ground-truth performance,
the computation of expressibility for a substantial number of
quantum circuits remains time-consuming and inefficient.

Table 4 displays the rank correlation, assessed through
both Spearman and Kendall’s Tau, between the values of
the training-free proxies and the ground-truth performance.
The expressibility-based proxy exhibits a strong correlation
with the ground-truth performance, rendering it suitable for
the precise selection of high-performance circuits from the
candidate set. Despite the low correlation exhibited by the
path-based proxy, it is capable of filtering out unpromising
circuits from the extensive search space while retaining the
optimal ones, as demonstrated in Fig. 4. We randomly se-
lect 50,000 circuits from the search space and sort them by
the number of paths. Fig. 4 shows the proportion of circuits
achieving the ground state energy within the topM quantum
circuits out of all circuits attaining the ground state energy.
Despite filtering out 90% of the circuits, more than 55% of
the optimal circuits are still preserved. For the VQE for the
Heisenberg model in gatewise search space, all the optimal
circuits are preserved. Therefore, the two-stage progressive
TF-QAS is rational. The fast but coarse path-based proxy
is first used to filter out a substantial portion of unpromis-
ing circuits, followed by the use of the refined but relatively
slow expressibility-based proxy to select high-performance
circuits.

Ablation Study
We assess the performance of QAS algorithms that exclu-
sively depend on either expressibility-based or path-based
proxies. This assessment aims to showcase the efficacy of
merging these proxies in a two-stage progressive learning
approach. In the case of the expressibility-based QAS and
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VQE task Proxy Spearman Kendall’s Tau
TFIM Path 0.21 0.16

Expressibility 0.58 0.43
Heisenberg Path 0.54 0.39
(Layerwise) Expressibility 0.85 0.67

BeH2 Path 0.61 0.47
Expressibility 0.82 0.64

Heisenberg Path 0.57 0.41
(Gatewise) Expressibility 0.81 0.62

Table 4: Correlation coefficients between the values of
training-free proxies and the ground-truth performances, es-
timated from 6,000 circuits randomly selected from the
search space.

VQE task Method #Queries Time(h)
Path 104.7 0.4

TFIM Expressibility 73.4 2.6
TF-QAS 33.5 0.5

Path 310.9 1.5
Heisenberg Expressibility 85.8 2.5
(Layerwise) TF-QAS 36.5 0.5

Path 189.0 3.5
BeH2 Expressibility 161.9 8.0

TF-QAS 110.5 2.5
Heisenberg Path 702.0 2.3
(Gatewise) Expressibility 264.8 6.3

TF-QAS 137.9 1.1

Table 5: Average number of queries to the ground-truth per-
formances by different QAS algorithms required to achieve
the ground state energy over 10 independent runs.

path-based QAS, we keep querying the ground-truth perfor-
mances of quantum circuits from best to worst as ranked
by the expressibility-based and path-based proxies until the
ground state energy is achieved. Table 5 presents the av-
erage number of queries required by different QAS algo-
rithms. In terms of computational time, the expressibility-
based QAS exhibits the poorest performance, despite its in-
herent intuitive effectiveness. Due to the limited correlation
between the path-based proxy and the ground-truth perfor-
mance, the path-based QAS requires more queries for cir-
cuit performances than the other two methods. Although the
path-based proxy is zero-cost, the path-based QAS general-
ly demands more time to achieve ground state energy com-
pared to TF-QAS, owing to its significantly higher query
count. Interestingly, TF-QAS requires the fewest queries.
This is because the performance of complex quantum cir-
cuits is determined by various properties, whereas a single
proxy solely captures a solitary property of the quantum cir-
cuit. TF-QAS combines two training-free proxies to identify
circuits that perform well across multiple training-free prox-
ies, enabling better discovery of optimal circuits.
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Figure 4: The variation of the proportion τ = ηM/η w.r.t.
M . The circuits are sorted by the number of paths, and the
top M circuits are selected. ηM denotes the number of cir-
cuits achieving the ground state energy within the top M
circuits. η represents the number of circuits achieving the
ground state energy among all the 50,000 circuits. The val-
ues of η are 14, 13, 28, and 8 for TFIM, Heisenberg-LW,
BeH2, and Heisenberg-GW, respectively. The inset enlarges
the bottom-left portion of the figure.

Conclusion
This paper employs two training-free proxies to rank quan-
tum circuits, replacing the expensive circuit training pro-
cess in current QAS algorithms. Through simulation re-
sults, we discern distinct properties of the path-based
and expressibility-based proxies in estimating quantum cir-
cuit performance. Exploiting the zero cost associated with
the path-based proxy and the strong correlation of the
expressibility-based proxy, we devise a two-stage progres-
sive training-free QAS (TF-QAS). VQE simulations in-
volving the TFIM, Heisenberg model, and BeH2 molecule
demonstrate the superior capability of TF-QAS in identi-
fying high-performance circuits, as well as the significant-
ly lower computational cost compared to the SOTA PQAS.
With these advantages, TF-QAS can be applied to VQAs in-
volving larger-scale circuits, which remain challenging for
training-based QAS algorithms. In future work, we will ex-
plore training-free QAS that takes into account trainability
for large-scale QAS. Furthermore, the proposed proxies will
be integrated into existing QAS algorithms including RL-
based QAS and evolutionary QAS, providing feedback for
these search strategies.
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