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Abstract
We propose expanding the shared Transformer module to pro-
duce and initialize Transformers of varying depths, enabling
adaptation to diverse resource constraints. Drawing an analogy
to genetic expansibility, we term such module as learngene. To
identify the expansion mechanism, we delve into the relation-
ship between the layer’s position and its corresponding weight
value, and find that linear function appropriately approxi-
mates this relationship. Building on this insight, we present
Transformer as Linear Expansion of learnGene (TLEG), a
novel approach for flexibly producing and initializing Trans-
formers of diverse depths. Specifically, to learn learngene, we
firstly construct an auxiliary Transformer linearly expanded
from learngene, after which we train it through employing soft
distillation. Subsequently, we can produce and initialize Trans-
formers of varying depths via linearly expanding the well-
trained learngene, thereby supporting diverse downstream
scenarios. Extensive experiments on ImageNet-1K demon-
strate that TLEG achieves comparable or better performance
in contrast to many individual models trained from scratch,
while reducing around 2× training cost. When transferring to
several downstream classification datasets, TLEG surpasses
existing initialization methods by a large margin (e.g., +6.87%
on iNat 2019 and +7.66% on CIFAR-100). Under the situation
where we need to produce models of varying depths adapting
for different resource constraints, TLEG achieves comparable
results while reducing around 19× parameters stored to initial-
ize these models and around 5× pre-training costs, in contrast
to the pre-training and fine-tuning approach. When transfer-
ring a fixed set of parameters to initialize different models,
TLEG presents better flexibility and competitive performance
while reducing around 2.9× parameters stored to initialize,
compared to the pre-training approach.

Introduction
Deep neural networks (DNNs), e.g., Vision Transformer, have
demonstrated remarkable performance in a wide variety of
computer vision tasks (Sun et al. 2019; Carion et al. 2020;
Liang et al. 2020; Dosovitskiy et al. 2021; Zhang et al. 2021;
Qin, Zhang, and Tang 2023). Parameter initialization is a piv-
otal step prior to training and wields a critical influence over
the ultimate quality of the trained network (Glorot and Ben-
gio 2010; He et al. 2016; Arpit, Campos, and Bengio 2019;
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Figure 1: Left: the relationship between the layer’s posi-
tion and its corresponding weight value of different methods.
Right: our empirical observation of such relationship based
on ViT-B, which shows approximate linear relationship.

Huang et al. 2020; Zhang, Bao, and Ma 2021; Czyzewski,
Nowak, and Piechowiak 2022). Nowadays, large-scale pre-
training on massive curated data brings huge foundation mod-
els, which furnishes a superb starting point for fine-tuning
across diverse downstream tasks (Liu et al. 2021; Oquab et al.
2023). However, the parameters of original whole model are
required storing and updating separately for each downstream
task during the popular pre-training and fine-tuning process,
which is prohibitively expensive and time-consuming for the
current ever-increasing capacity of vision models. Further-
more, this approach lacks the flexibility to initialize models
of varying scales to meet diverse scenario demands, such
as edge and IoT devices with constrained computational re-
sources. Therefore, in different application scenarios, a fun-
damental research question naturally arises: how to efficiently
produce and initialize individual models considering both
the model performance and resource constraint?

Mimicking the behaviour of the organismal gene, (Wang
et al. 2022a, 2023) proposed an innovative learning frame-
work known as Learngene which firstly learns the condensed
knowledge termed as learngene from the ancestry model,
and then inherits this small part to initialize descendant/-
downstream models. The existing work He-LG (Wang et al.
2022a) extracts a few integral layers as learngene based on
the gradient information of the ancestry model, after which
the descendant models are constructed by stacking the ran-
domly initialized low-level layers with the extracted learn-
gene layers. Nevertheless, there are three major limitations
existed in (Wang et al. 2022a). Firstly, the strategies of ex-
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Figure 2: (a) Learning from scratch randomly initializes dif-
ferent networks in varied applications, where the training and
storage costs increase linearly with the number of possible
cases. (b) Pretrain-Finetune stores and reuses the original
whole model every time facing different scenarios. (c) Dis-
tillation transfers knowledge from a large teacher net to a
smaller student one, which requires forward propagation on
teacher every time training new students. (d) Our TLEG di-
rectly extracts one compact learngene from an ancestry net
once and quickly initializes new descendant nets with our
linear expansion strategy, allowing adaptation to diverse re-
source constraints.

tracting and utilizing the learngene are inconsistent, yielding
diminished performance. Secondly, He-LG ignores descen-
dant models across different scales. Lastly, He-LG does not
explore Transformer-based architectures, with which the per-
formance is also unsatisfactory.

As mentioned before, Learngene is dedicated to retaining
the most generalizable part of the ancestry model, which
naturally directs our attention towards eliminating redundant
parameters. One prominent approach that exemplifies this
endeavor is weight sharing (Lan et al. 2020; Zhang et al.
2022), which shares identical parameters across all layers
to maximise parameter elimination. Despite its simplicity,
such fully-sharing method notably compromises the model
capabilities (Zhang et al. 2022). To alleviate this problem,
researchers (Zhang et al. 2022) apply weight transformation,
which imposes learnable functions on the shared weights
to increase parameter diversity. Interestingly, if we treat the
parameters of each layer as one high-dimensional tensor, we
can illustrate the relationship between the layer’s position
and its corresponding parameter value, as shown in the left
portion of Fig. 1. Specifically, weight sharing presents a
“horizontal line” as each layer shares identical parameters.
Correspondingly, weight transformation (Zhang et al. 2022)
scatters the parameters due to the layer-specific mapping
function. Upon closer observation, we wonder if there exists a
intermediate situation between them, i.e., is there any simpler
function that could approximate the relationship between the
layer’s position and its corresponding parameter value?

To obtain some empirical observations of such relationship,

we use PCA (Karamizadeh et al. 2013) to transform each ten-
sor to 1-D data point for convenience. Here we choose the
well-trained ViT-B (Dosovitskiy et al. 2021) for analyzing.
Please see more details and visualizations in the appendix. As
shown in the right portion of Fig. 1, a noteworthy observation
emerges: most data points do not exhibit irregular arrange-
ments, instead they manifest an approximately linear trend.
Among the multitude of fitting functions, the linear function
stands out as the simplest yet effective one for approximating
this trend. Inspired by this insight, we present Transformer as
Linear Expansion of learnGene (TLEG), a novel approach
for elastic Transformer production and initialization. Specif-
ically, we adopt linear expansion on two shared parameter
modules, i.e., θA and θB, both of which compose learngene
θLG , to produce the parameters of each Transformer layer θl:

θl = θB +
l − 1

L
× θA, l = 1, 2, ..., L, (1)

where L denotes the total number of layers.
To learn the learngene parameters θLG , we design an aux-

iliary Transformer network (Aux-Net) where each layer is
linearly expanded from θA and θB based on Eq. (1). To en-
sure clarity, we exemplify the construction process using a
4-layer Aux-Net as an example. The parameters of the first
layer are formulated as θ1 = θB + 1−1

4 × θA. Correspond-
ingly, the parameters of the second layer are formulated as
θ2 = θB+

2−1
4 ×θA, and so forth for subsequent layers. Then

we proceed to train the Aux-Net by employing distillation
technique (Hinton, Vinyals, and Dean 2015), which enables
knowledge condensation from a large ancestry model. De-
spite the Aux-Net containing four layers, the linear constraint
always holds during training, which means that only θA and
θB will be updated throughout the training process.

After obtaining learngene containing well-trained θA and
θB, we can produce and initialize descendant models (Des-
Net) of varying depths adapting for different resource con-
straints. For example, a shallow network can be deployed
in the lightweight edge device and a deeper one can be sup-
ported in a computation center equipped with ample computa-
tion resources. To enhance clarity, we provide an example of
initializing a 6-layer Des-Net. In this instance, the parameters
of the first layer can be initialized as θ1 = θB + 1−1

6 × θA,
similarly the parameters of the second layer would be θ2 =
θB + 2−1

6 × θA, and so forth. Notably, we only employ linear
expansion strategy to initialize these Des-Nets, after which
they undergo standard fine-tuning procedure. Our main con-
tributions are summarized as follows:
• We empirically discover an approximately linear relation-

ship between the position of a layer and its corresponding
weight value within well-trained Transformer models.

• Taking inspiration from above observations, we propose
a coherent approach termed TLEG for efficient model
construction, which linearly expands learngene to produce
and initialize Transformers across a spectrum of scales.

• Extensive experiments demonstrate the effectiveness and
efficiency of TLEG, e.g., compared to training different
models from scratch, training with a compact learngene
can obtain on-par or better performance while reducing
large training costs.
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Figure 3: In the first stage, we construct an auxiliary model wherein each layer is linearly expanded from learngene. Subsequently,
we train it through distillation. After obtaining learngene with well-trained θA and θB, in the second stage, we initialize
descendant models of varying depths via adopting linear expansion on θA and θB, enabling adaptation to diverse resource
constraints. Lastly, the descendant models are fine-tuned normally without the restriction of linear expansion.

Related Work
Parameter Initialization
Parameter initialization constitutes an important step prior to
model training and plays a crucial role in boosting the model
quality (Arpit, Campos, and Bengio 2019; Huang et al. 2020;
Czyzewski, Nowak, and Piechowiak 2022). Proper initializa-
tion has been proved to improve the efficiency of model train-
ing (LeCun et al. 2002), whereas arbitrary initialization may
impede the optimization process (Mishkin and Matas 2015).
Extensive initialization approaches have been proposed for
models trained from scratch, such as random initialization,
xavier initialization (Glorot and Bengio 2010), kaiming ini-
tialization (He et al. 2016) and self-distillation (Zhang, Bao,
and Ma 2021). Nowadays, large-scale pre-training on mas-
sive curated data provides an excellent initialization for fine-
tuning models across a spectrum of downstream tasks (Jia
et al. 2021; Radford et al. 2021; Oquab et al. 2023). However,
such scheme needs to reuse the original whole model every
time facing different downstream tasks regardless of the re-
sources available to those tasks, as shown in Fig. 2(b). More
importantly, we need to pre-train again when meets another
model with different scales, which is extremely time consum-
ing and computationally expensive. In contrast, we propose
training learngene once which can be linearly expanded to
cover a fine-grained level of model complexity/performance
for a wide range of deployment scenarios.

Knowledge Distillation
There exists extensive literature studying knowledge distil-
lation (Jiao et al. 2020; Wang et al. 2020; Gou et al. 2021;
Wu et al. 2022; Ren et al. 2023; Ji et al. 2023; Li et al. 2023).
DeiT (Touvron et al. 2021) introduces a distillation token
to allow the vision transformer to learn from a ConvNet
teacher. MiniViT (Zhang et al. 2022) applies weight dis-
tillation to transfer knowledge from large-scale models to

weight-multiplexed models. TinyMIM (Ren et al. 2023) stud-
ies the distillation framework for masked image modeling
pretrained vision transformers. What they have in common
is that distillation requires additional forward passes through
a pretrained teacher every time training a new student, which
inevitably consumes extra resources for storage and compu-
tation of teacher models, as shown in Fig. 2(c). In contrast,
we distill rich knowledge from the pretrained ancestry model
to learngene once, after which we can produce models of
diverse scales while getting rid of the ancestry model.

Weight Sharing
Weight sharing is a simple but effective strategy to solve over-
parameterization problem (Bai, Kolter, and Koltun 2019;
Kovaleva et al. 2019) in large pretrained Transformers (De-
vlin et al. 2018). By contrast, our proposed linear expansion
strategy promotes parameter diversity of each layer while
preserving parameter efficiency.

Approach
Fig. 3 depicts the pipeline of TLEG. In stage 1, an auxil-
iary model is constructed to help learn learngene parameters
θLG = {θA, θB}, where each layer is linearly expanded from
θA and θB. The auxiliary model is trained by distilling knowl-
edge from the ancestry model and note that during training,
the linear constraint always holds in the auxiliary model, i.e.,
only θA and θB are trained. In stage 2, the well-trained θA
and θB are linearly expanded to initialize descendant models
of varying depths. Lastly, the descendant models are fine-
tuned normally without the restriction of linear expansion.
Next, we briefly introduce some preliminaries.

Preliminaries
Witnessing the remarkable performance of vision transformer
(ViT) (Dosovitskiy et al. 2021) and its variants in diverse
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vision tasks (Bao et al. 2022; Wang et al. 2022b), we ex-
plore learngene based on ViT. ViT firstly splits an image
into a few patches and maps them into D-dimensional patch
embeddings. Then position embeddings are added to them
to get N input embeddings Z0 ∈ RN×D. A ViT encoder
stacks a few layers each containing multi-head self-attention
(MSA) and multi-layer perceptron (MLP). Let h denote the
number of heads where each head performs self-attention.
In the kth head, we linearly generate the queries Qk, keys
Kk and values Vk ∈ RN×d with parameter matrices WQ

k ,
WK

k and WV
k ∈ RD×d, where d is the projected dimen-

sion of each head. We denote the attention output of head
k as Ak(Q,K, V ) = softmax(QKT

√
d
)V . MSA jointly deals

with information from different embedding subspaces as
MSA(Q,K, V ) = Concat(head1, ..., headh)W

O, where
headk = Ak(Qk,Kk, Vk), WO ∈ Rhd×D and Concat(·)
means the catenation of the outputs of all heads.

Besides, each layer contains a MLP block which con-
sists of two linear transformations with a GELU (Hendrycks
and Gimpel 2016) activation. We denote the MLP output as
MLP (x) = σ(xW 1 + b1)W 2 + b2, where W 1 ∈ RD×Dh ,
b1 ∈ RDh , W 2 ∈ RDh×D and b2 ∈ RD represent the
weights and biases for the two linear transformations, respec-
tively. σ(·) denotes the activation function. Usually we set Dh

>D. Layer normalization (LN) (Ba, Kiros, and Hinton 2016)
and residual connections are employed before and after every
block. We denote the LN output as LN(x) = x−µ

δ ◦ γ + β,
where µ and δ are the mean and standard deviation of the em-
beddings respectively, ◦ means the element-wise dot, γ ∈ RD

and β ∈ RD are learnable transform parameters.

Linear Expansion of Learngene
As mentioned before, we adopt linear expansion on the two
shared parameter modules, namely θA and θB, each of which
contains the parameters of an entire Transformer layer. Since
the learngene θLG comprises θA and θB, it inherently encom-
passes the parameters of two complete Transformer layers.
Take the 12-layer ViT-B (87M) (Dosovitskiy et al. 2021) as
an example, θLG comprises approximately 14.7M parame-
ters which is equivalent to the number of parameters of two
layers. Next, we elaborate on the linear expansion of each
component, i.e., MSA, MLP and LN, within one layer.
Linear Expansion of MSA. Based on our empirical observa-
tions, we linearly expand the learnable parameter matrices in
MSA module. Formally, we linearly expand parameter matri-
ces WQ

k , WK
k , WV

k and WO through Eq. (1). Take WQ
k as

an example, its linearly expanded version is:

WQ
k = WQ

k(B) +
l − 1

L
×WQ

k(A), l = 1, 2, ..., L, (2)

where WQ
k(A) and WQ

k(B) are the corresponding learngene
parameters of MSA in θA and θB respectively, L denotes
the total number of layers. Such linear expansion can make
parameters linearly different across layers while preserving
the common knowledge during the training process.
Linear Expansion of MLP. We further impose linear ex-
pansion on MLP to preserve the common knowledge while

improving parameter diversity. In particular, we linearly ex-
pand parameter matrices W 1, b1, W 2 and b2 to obtain the
linearly expanded version through Eq. (1), e.g., the linearly
expanded version of W 1 is:

W 1 = W 1
(B) +

l − 1

L
×W 1

(A), l = 1, 2, ..., L, (3)

where W 1
(A) and W 1

(B) are the corresponding learngene pa-
rameters of MLP in θA and θB.
Linear Expansion of LN. Lastly, we linearly expand learn-
able parameters γ and β through Eq. (1). Take γ as an exam-
ple, its linearly expanded version is:

γ = γ(B) +
l − 1

L
× γ(A), l = 1, 2, ..., L, (4)

where γ(A) and γ(B) are the corresponding learngene param-
eters of LN in θA and θB.

Learning Strategy of Learngene
The learngene θLG is used to construct the MSA, MLP and
LN blocks by Eq. (2) to Eq. (4), while an integral Transformer
model also requires some other components like the patch
projection and task-specific head. Thus we also add them to
build the auxiliary model (Aux-Net), after which we train
it through employing distillation. For simplicity, we only
consider penalizing output discrepancy (Hinton, Vinyals, and
Dean 2015) between the ancestry model and auxiliary model.
Additional distillation techniques (Zhang et al. 2022; Ren
et al. 2023) can also be seamlessly integrated into our training
process, thereby further boosting the quality of the trained
learngene. Noteworthy, the linear constraint in Eq. (2) to
Eq. (4) always exists during training. For example, the update
of WQ

k in Eq. (2) of each layer finally leads to the update of
WQ

k(B) and WQ
k(A). Therefore, although Aux-Net contains L

layers, only θA and θB are trained during distillation.
Soft Distillation. (Hinton, Vinyals, and Dean 2015) proposes
to minimize the KL-divergence between the probability dis-
tributions over their output predictions of the teacher model
and that of the student one. We leverage such strategy to
introduce one distillation loss:

LD = KL(ϕ(zs/τ), ϕ(zt/τ)), (5)

where zt means the logits output of the pretrained ancestry
model (e.g., Levit-384 (Graham et al. 2021)), zs means the
logits output of the auxiliary model, τ means the temperature
for distillation, ϕ means the softmax function and KL(·, ·)
means KL-divergence loss function. Combined with the clas-
sification loss, our total training loss is defined as:

L = (1− λ)CE(ϕ(zs), y) + λLD, (6)

where y means ground-truth label, CE(·, ·) means cross-
entropy loss function and λ means the trade-off coefficient.

Initialization with Learngene
After obtaining learngene consisting of well-trained θA and
θB, we can produce multiple descendant models (Des-Net)
of varying depths, catering to diverse deployment scenarios.
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Model D Lds Params FLOPs Scratch TLEG
(M) (G) Top-1(%) Top-1(%)

Des-Ti 192

3 1.7 0.3 45.0 46.6 (+1.6)
6 3.1 0.6 56.9 58.2 (+1.3)
9 4.4 0.9 62.3 62.5 (+0.2)

12 5.7 1.3 65.2 65.4 (+0.2)

Des-S 384

3 6.1 1.2 56.2 57.1 (+0.9)
4 7.9 1.6 62.0 63.7 (+1.7)
5 9.6 1.9 67.3 67.5 (+0.2)
6 11.4 2.3 68.7 69.5 (+0.8)
7 13.2 2.7 70.6 71.1 (+0.5)
8 15.0 3.1 71.7 72.3 (+0.6)
9 16.7 3.5 73.0 73.2 (+0.2)

10 18.5 3.8 73.8 73.9 (+0.1)
11 20.3 4.2 75.5 75.4 (-0.1)
12 22.1 4.6 75.0 75.1 (+0.1)

Des-B 768

3 22.8 4.5 65.3 66.3 (+1.0)
4 29.9 5.9 70.4 71.6 (+1.2)
5 37.0 7.4 73.5 74.4 (+0.9)
6 44.0 8.8 75.4 76.2 (+0.8)
7 51.1 10.3 76.5 77.3 (+0.8)
8 58.2 11.7 77.2 78.1 (+0.9)
9 65.3 13.1 78.0 78.7 (+0.7)

10 72.4 14.6 78.2 79.1 (+0.9)
11 79.5 16.0 79.0 79.6 (+0.6)
12 86.6 17.5 78.6 79.9 (+1.3)

Table 1: Performance comparisons on ImageNet-1K between
models trained from scratch and those initialized via TLEG.

Benefiting from the flexibility of our proposed linear expan-
sion strategy, we can initialize descendant models of different
Lds by Eq. (1). Notably, different from the Aux-Net trained
under the linear constraint, the descendant models are only
initialized using Eq. (2) to Eq. (4). After initialization, this
constraint is removed and all the parameters of the descen-
dant models will be updated. For example, WQ

k in Eq. (2) of
different layers will be updated normally according to their
corresponding gradients irrespective of the linear constraints.

Experiments
Experimental Setup
We conduct experiments on ImageNet-1K (Deng et al.
2009) and several middle/small-scale datasets including
iNaturalist 2019 (iNat 19) (Zhou et al. 2020), Mini-Imag-
eNet (Mi-INet) (Vinyals et al. 2016), Tiny-ImageNet (Ti-
INet) (Le and Yang 2015), CIFAR-10 (C-10), CIFAR-
100 (C-100) (Krizhevsky, Hinton et al. 2009) and Food-
101 (F-101) (Bossard, Guillaumin, and Van Gool 2014).
Model performance is measured by Top-1/5 accuracy (Top-
1/5(%)). Furthermore, we report the FLOPs(G), Params(M)
and S-Params(M) as indicators of theoretical complexity,
the number of individual model parameters and param-
eters transferred/stored to initialize, respectively. We de-
note Aux-Ti/S/B as the variants of Aux-Net, in which we

adopt linear expansion on MSA, MLP and LN compared
to DeiT-Ti/S/B (Touvron et al. 2021). For Des-Net, we in-
troduce Des-Ti/S/B where we change the number of lay-
ers based on DeiT-Ti/S/B. We firstly train Aux-Ti/S/B on
ImageNet-1K to obtain learngenes, during which we choose
Levit-384 (Graham et al. 2021) as the ancestry model to
employ distillation. Then we initialize Des-Ti/S/B with
learngenes and fine-tune them. Source code is available at
https://github.com/AlphaXia/TLEG.

Main Results
TLEG achieves on-par or better performance with much
less training efforts compared to training from scratch
on ImageNet-1K. To validate the robustness of this claim,
we conduct extensive experiments where different model
settings, e.g., different embedding dimensions and model
depths are adopted. The ImageNet-1K classification per-
formance of 24 different Des-Nets are reported in Table 1,
where “TLEG” denotes the models initialized with our learn-
genes and “Scratch” denotes the randomly initialized models
trained from scratch. As shown in Table 1, TLEG can cover
a fine-grained level of model complexity, while achieving
comparable or better performance and significantly improv-
ing training efficiency. For Aux-S and Des-S of 10 different
depths, we train Aux-S for 150 epochs and each Des-S for
35 epochs, except that we train 11-layer Des-S for 45 epochs.
From Table 1, we observe that TLEG achieves competitive
performance and reduces around 2× training costs (10×100
epochs vs. 150+9×35 epochs+1×45 epochs), in contrast to
training each Des-S from scratch for 100 epochs. For Aux-B
and Des-B of 10 different depths, we train Aux-B for 100
epochs and each Des-B for 40 epochs. From Table 1, we find
that TLEG achieves better performance and reduces around
2× training costs (10×100 epochs vs. 100+10×40 epochs),
compared to training each Des-B from scratch for 100 epochs.
For Aux-Ti and Des-Ti of 4 different depths, we train Aux-Ti
for 150 epochs and each Des-Ti for 50 epochs. From Table 1,
we observe that TLEG achieves better performance and re-
duces a few training costs (4×100 epochs vs. 150+4×50
epochs), contrary to training each Des-Ti from scratch for
100 epochs. Overall, the efficiency of TLEG becomes more
evident with the number of Des-Nets increasing as we only
need to train our learngenes once.
TLEG provides competitive results when transferring to
a wide range of downstream classification datasets. We
compare TLEG against training from scratch and pre-training
method whose performance is regarded as upper-bound on
6 classification datasets. Moreover, we adopt state-of-the-art
compression methods to our setting. Specifically, (1) Scratch.
We train Des-Nets from scratch on the downstream datasets.
(2) Pre-Fin(U). We pretrain each Des-Net on ImageNet-1K
with 100 epochs. (3) Mini-Init (Zhang et al. 2022). We pre-
train Mini-DeiT on ImageNet-1K with 100 epochs, where
the number of shared part is 6. Then we use the shared parts
to initialize Des-Nets. (4) Share-Init (Lan et al. 2020). We
pre-train DeiT (Touvron et al. 2021) on ImageNet-1K with
100 epochs, where we share the parameters of each layer.
Then we use the shared part to initialize Des-Nets. (5) He-
LG (Wang et al. 2022a). We extract last 3 layers of pretrained
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Model Params(M) Method S-Params(M) iNat 19 Mi-INet Ti-INet C-100 C-10 F-101

Des-Ti 3.0

Pre-Fin(U) 2.9 58.12 77.00 66.32 80.81 96.65 83.24
Scratch 0 37.16 60.37 58.24 67.44 88.30 61.54
He-LG 1.4 41.55 65.74 63.11 70.19 91.66 72.54

Share-Init 0.6 42.58 63.88 60.98 71.23 92.56 67.44
Mini-Init 2.8 51.22 70.26 61.51 74.01 93.07 77.36

TLEG(ours) 1.0 55.64 74.07 65.02 78.66 95.32 82.80

Des-S 11.3

Pre-Fin(U) 11.0 68.48 81.78 72.24 84.43 97.59 87.80
Scratch 0 50.79 55.73 61.24 73.32 92.49 74.64
He-LG 5.3 53.21 59.87 62.37 78.13 93.12 77.09

Share-Init 2.1 54.14 61.64 63.12 74.08 94.15 78.11
Mini-Init 11.0 59.83 73.39 64.56 75.98 93.67 81.79

TLEG(ours) 3.9 66.70 80.92 71.32 83.64 97.68 87.27

Table 2: Performance comparisons on middle/small-scale datasets when transferring pretrained parameters (S-Params(M)) to
initialize 6 layer Des-Ti/S. Here, Params(M) means the average number of individual model parameters on different datasets.

Model Lds Params Pre-Fin(U) TLEG
(M) S-P(M) Top-1(%) S-P(M) Top-1(%)

Des-B

4 29.2 28.8 87.01

14.7

86.52
6 43.3 43.0 87.45 87.03
8 57.6 57.1 88.03 87.96
10 71.7 71.3 88.12 88.21
12 85.9 85.5 88.62 88.34

Table 3: Comparisons on C-100 of Des-B with different layer
numbers. For Pre-Fin(U), S-P(M) means the number of pre-
trained parameters used to initialize, which totally requires
285.7M. However, TLEG only preserves 14.7M parameters
to initialize all listed Des-B, which reduces the number of pa-
rameters stored for initialization by 19× (285.7M vs. 14.7M).

DeiTs and stack them with randomly-initialized low-level lay-
ers to produce Des-Nets. For (2)-(5), we finetune Des-Nets
on the downstream datasets. As shown in Table 2, TLEG
achieves performance gains compared with several baselines,
which verifies the effectiveness of initialization with learn-
genes. For example, we observe that TLEG outperforms
Mini-Init by 7.53%, 6.76%, and 7.66% respectively on
Mi-INet, Ti-INet and C-100 with Des-S, whereas TLEG re-
duces 2.8× parameters used to initialize (11.0M vs. 3.9M).
Moreover, TLEG achieves comparable performance com-
pared with upper-bound method Pre-Fin(U), showing that the
common knowledge, i.e., learngene, is satisfactorily learned
and used to initialize Des-Nets.
TLEG significantly reduces the parameters stored to ini-
tialize and pre-training costs compared with Pre-Fin(U)
when initializing diverse models. We compare 5 different
Des-B initialized from learngenes to those initialized via Pre-
Fin(U), where the performance of latter is regarded as upper-
bound. In Table 3, TLEG achieves comparable performance
and efficiently initializes diverse models with fewer storage
costs. Specifically, TLEG substantially reduces 19× (285.7M
vs. 14.7M) parameters stored to initialize, compared to Pre-
Fin(U). Moreover, Pre-Fin(U) needs to pretrain each different

Method # MSA MLP LN Top-1 (%) Top-5 (%)

Pre-Fin(U) 1 84.43 96.39

TLEG

2 ✓ 79.16 95.17
3 ✓ 77.26 94.29
4 ✓ ✓ 82.03 95.74
5 ✓ ✓ ✓ 83.64 96.53

Table 4: Performance of 6-layer Des-S on C-100 when we
employ linear expansion strategy on different modules in
the 6-layer Aux-S. #1 means the pre-training and fine-tuning
scheme, which transfers the parameters of the total model to
initialize Des-S. #2/#3/#4/#5 means linearly expand MSA /
MLP / MSA and MLP / MSA, MLP and LN respectively.

Des-B individually, while TLEG only requires training learn-
gene once, thus substantially reducing the pre-training costs.
Specifically, TLEG reduces 5× (5×100 epochs vs. 1×100
epochs) pre-training costs compared to Pre-Fin(U) when fac-
ing 5 different Des-Nets. Notably, the efficiency of TLEG
becomes more obvious because the pre-training costs of Pre-
Fin(U) increase with the number of different Des-Nets.
TLEG presents better performance and flexibility when
initializing models of different scales with a fixed set of
parameters. Specifically, we have three 6-layer model of dif-
ferent embedding dimensions pretrained on Imagenet-1K via
Pre-Fin(U) with 57.4M (2.9+11.0+43.5M) parameters and
relatively smaller learngenes with 19.6M (1.0+3.9+14.7M)
parameters. Now we need to initialize the 4-layer, 8-layer
and 12-layer Des-Ti/S/B. For TLEG, we initialize them via
linearly expanding the learned learngenes conveniently. For
Pre-Fin(U), we have several intuitive choices: For the 8-layer
and 12-layer Des-Ti/S/B, Pre-Fin #1/#2/#3 means we initial-
ize the first/last/middle 6 layer of them with the pretrained
6-layer models. For the 4-layer Des-Ti/S/B, Pre-Fin #1/#2/#3
means that we use the first/last/middle 4 layer of 6-layer pre-
trained models to initialize them. As shown in Fig. 4, we
observe that TLEG achieves comparable or even superior
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Figure 4: Performance on C-100 when initializing diverse Des-Nets of different scales with a fixed set of parameters.

Model Part Top-1 (%) Top-5 (%)

Des-Ti
1 - 3 74.29 93.58
4 - 6 72.00 92.55
1 - 6 78.66 95.35

Des-S
1 - 3 74.88 93.59
4 - 6 74.33 93.33
1 - 6 83.64 96.53

Table 5: Performance of 6-layer Des-Ti/S on C-100 under
partially initialization.

performance over Pre-Fin(U) while reducing around 2.9×
(57.4M vs. 19.6M) parameters stored to initialize. For ex-
ample, TLEG outperforms the best variant of Pre-Fin(U) by
0.63%, 0.09% and 0.88% respectively on 4-layer, 8-layer
and 12-layer Des-S. Overall, when initializing different mod-
els with a fixed set of parameters, TLEG demonstrates better
flexibility and performance, showing that learngene contains
generalizable knowledge and serves as a great starting point
for training Des-Nets of diverse scales.

Ablation and Analysis
We investigate the performance of Des-Nets when we (1)
adopt linear expansion on different modules in Aux-Nets, (2)
initialize partial layers of Des-Nets, (3) adopt linear expan-
sion on partial layers in Aux-Nets.
The effect of different linearly expanded modules. We
apply linear expansion strategy on different modules of Aux-
S to achieve several variants. Then we utilize the linearly
expanded module to initialize corresponding module in Des-
S and randomly initialize other modules. As shown in Table 4,

Model Type Top-1 (%) Top-5 (%)

Des-Ti All 78.66 95.35
Partial 79.02 96.12

Des-S All 83.64 96.53
Partial 84.13 96.72

Table 6: Performance of 6-layer Des-Ti/S on C-100 with
different linear expansion strategies.

we can observe that #5 achieves the best accuracy, which is
comparable against Pre-Fin(U).
The effect of initializing partial layers of Des-Nets. We
initialize partial layers of 6-layer Des-S. As shown in Table 5,
we choose to initialize first half (1-3), second half (4-6) and
all (1-6) of the layers. We observe that initializing all layers
achieves the best performance.
The effect of partial linear expansion. We adopt linear
expansion on partial layers, i.e., from the 3rd layer to the last
layer, in 6-layer Aux-Ti/S to learn learngene. As shown in
Table 6, we observe that adopting partial linear expansion
achieves slightly better performance. Nevertheless, we adopt
linear expansion on all layers in our main experiments. More
variants of linear expansion strategies are left for future work.

Conclusion
In this paper, we proposed a new approach termed TLEG
to produce and initialize Transformers of varying depths via
linearly expanding learngene, enabling adaptation to diverse
real-world applications containing different resources. Ex-
perimental results under various model initialization settings
demonstrated the effectiveness and flexibility of TLEG.
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