The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

Transportable Representations for Domain Generalization

Kasra Jalaldoust and Elias Bareinboim

Causal Artificial Intelligence Laboratory
Columbia University
{kasra,eb} @cs.columbia.edu

Abstract

One key assumption in machine learning literature is that the
testing and training data come from the same distribution,
which is often violated in practice. The anchors that allow
generalizations to take place are causal, and provenient in
terms of the stability and modularity of the mechanisms un-
derlying the system of variables. Building on the theory of
causal transportability, we define the notion of “transportable
representations”, and show that these representations are suit-
able candidates for the domain generalization task. Specif-
ically, considering that the graphical assumptions about the
underlying system are provided, the transportable represen-
tations can be characterized accordingly, and the distribution
of label conditioned on the representation can be computed
in terms of the source distributions. Finally, we relax the as-
sumption of having access to the underlying graph by prov-
ing a graphical-invariance duality theorem, which delineates
certain probabilistic invariances present in the source data as
a sound and complete criterion for generalizable classifica-
tion. Our findings provide a unifying theoretical perspective
over several existing approaches to the domain generalization
problem.

1 Introduction

Generalizing findings across settings is central throughout
human experience. The discussion about the conditions un-
der which induction can be formally justified can be traced
back at least to Scottish philosopher David Hume circa the
18th century. Hume acknowledged that humans perform in-
ferences from observed and particular experiences to more
general and unobserved situations, but disputed its rational
basis (Hume 1739). This challenge is called the problem
of induction (Henderson 2018), and have puzzled genera-
tions of philosophers and mathematicians, from Kant to Pop-
per, Goodman to Russell (Popper 1971, 1953; Russell 1912;
Watkins et al. 2005).

The generalization problem plays a fundamental role in
artificial intelligence and machine learning as well (Mitchell
1997; Russell and Norvig 2010), where it appears in differ-
ent forms. For instance, one of the most well-studied tasks in
the field is classification, where one tries to predict the label
and generalize from something observed and specific (e.g.,
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finite samples) to something unobserved and general (e.g.,
a probability distribution, a classifier). Tom Mitchell, one of
the precursors of the field, noted (Mitchell 1997, p. 44): “a
fundamental property of inductive inference: a learner that
makes no a priori assumptions regarding the identity of the
target concept has no rational basis for classifying any un-
seen instances.”, refining Hume’s observation. The question
then becomes how to link the data collected from the dis-
tribution to the distribution itself. One of the fundamental
approaches in the field is known as empirical risk minimiza-
tion, due to Vapnik, which tied the risk between hypothetical
and empirical distributions under some very general condi-
tions (Vapnik 1991, 1998).

Despite the power of these ensuing results, we note that,
in practice, the domains where the data is collected (called
sources) are related to, but not necessarily the same as the
one where the predictions are intended (target), violating
a key assumption underlying many of the prior results. In
fact, if the target domain is arbitrary, or drastically differ-
ent from the source domains, no learning could take place
(David et al. 2010; Bareinboim et al. 2022). However, the
fact that we generalize and adapt relatively well to a new
domain suggest that certain domains share common charac-
teristics and that, owing to these commonalities, statistical
claims can be generalized even to domains where no data is
available (Pearl 2000; Spirtes, Glymour, and Scheines 2000;
Bareinboim and Pearl 2016). How could one described the
shared features across domain that allow this inferential
leap? The anchors of knowledge that allow generalization to
take place are eminently causal, following from the stability
of the mechanisms shared across settings (Aldrich 1989). !
The systematic analysis of these mechanisms and the con-
ditions under which generalizations could be formally justi-
fied has been studied in the causal inference literature under
the rubric of transportability theory (Bareinboim and Pearl
2014, 2016; Bareinboim et al. 2013; Pearl and Bareinboim
2011; Correa and Bareinboim 2020, 2019; Lee, Correa, and
Bareinboim 2020).

In modern machine learning literature, the challenge of
predicting in an unseen target domain is acknowledged and

'While arguing in response to Hume’s skepticism, Kant noted
that some a priori knowledge of concepts such as causation could
be available before the inductive step (Kant 1781); for further dis-
cussion on this point, refer to (De Pierris and Friedman 2018).
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broadly referred to as domain generalization problem. In this
task, we have access to labeled data from the source do-
mains, while no data in the target domain is available (Gulra-
jani and Lopez-Paz 2020). The theoretical proposals in this
area rely on assumptions to define the target domains com-
patible with the source data such as the covariate shift as-
sumption (Sugiyama and Miiller 2005; Subbaswamy, Schu-
lam, and Saria 2019; Subbaswamy and Saria 2020; Xu et al.
2021), or use of distance measures to relate the source and
target distributions (Ben-David et al. 2006; Hanneke and
Kpotufe 2019). Even under restrictive assumptions tying the
source and target distributions, generalizing to the target do-
main might still be impossible (David et al. 2010). Another
line of work takes into account the fact that the source and
target domains are linked through the shared causal mech-
anisms, as alluded to earlier, which might entail probabilis-
tic criteria that relates aspects of the source and target dis-
tributions. The invariance-based approaches then view the
probabilistic invariances across the source data as proxies
to the causal invariances across the source and target do-
mains (Magliacane et al. 2018; Rojas-Carulla et al. 2018;
Arjovsky et al. 2019; Rothenhiusler et al. 2021; Wald et al.
2021; Chen and Biihlmann 2021; Lu et al. 2021). Theoret-
ical guarantees provided for these methods are contingent
on assumptions such as linearity, additivity, markovianity
(i.e., no confounders), yet there exists subtleties that limit the
effectiveness and practicality of these methods (Rosenfeld,
Ravikumar, and Risteski 2021). Another important ingredi-
ent present in modern machine learning methods is the use
of representations. Those methods extract useful informa-
tion to feed into the learning algorithm, which is particularly
useful in high-dimensional and unstructured tasks (Bengio,
Courville, and Vincent 2013). It has been noted both theoret-
ically and empirically that enforcing certain restrictions to
the representation learning stage yields performance boost
for the downstream prediction tasks (Ben-David et al. 2006;
Ganin et al. 2016; Long et al. 2018; Li et al. 2018; Zhang,
Gong, and Schoelkopf 2015; Zemel et al. 2013). In some
work, causal features have been used in constructing repre-
sentations while filtering out the spurious correlations that
might be unstable across domains (Wang and Jordan 2021;
Scholkopf et al. 2021; Mao et al. 2022; Krueger et al. 2021).
Considering this background, we note that solving the do-
main generalization problem can be seen as a two-step pro-
cess:

1. Evaluation: for a fixed a representation, approximate the
distribution of the label conditional on the representation

in the target domain.

Search: find a representation that achieves maximal ac-
curacy by using an evaluation method as a subroutine to
assess the accuracy.

The above breakdown is natural, and is followed in several
theoretical works on domain generalization. For instance, in
the work by Ben-David et al. (2006), Theorem 1 provides
an upper-bound to the risk in the target domain (step 1), and
next, the authors treat this upper-bound as a proxy for the
actual risk. They then propose an optimization procedure for
finding the representation that minimizes it (step 2).
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In this paper, we study the evaluation step through trans-
portability lenses. In particular, we analyze the fundamen-
tal interplay between causal knowledge and the representa-
tion. For instance, we refute through formal analysis the be-
lief that causal features are always desirable while spurious
ones should be discarded. Moreover, throughout this paper
we treat the true distributions as proxies for having access
to samples drawn from them, thus, the challenges tied with
finite/small sample size are considered outside the scope of
this work. Our contributions are as follows:

* (Section 2) We formalize the domain generalization task
by introducing the notion of transportable representations
(Def. 5), and we develop a procedure to decide whether
a representation is transportable given the structural as-
sumptions encoded by a graph (Thm. 1). We demonstrate
finite-sample performance of a transportability-based clas-
sifier via synthetic experiments, and show its superiority to
vanilla ERM and the invariance-based method.

(Section 3) We prove that the so-called invariance prop-
erty, i.e., when the distribution of label conditioned on the
representation is invariant across the source domains, is
in fact a sound and complete criterion for transportabil-
ity once we relax the assumption of having access to the
graphs (Thm. 2). Also, this result provides a dual view on
the graphical-invariance dichotomy, which highlights un-
der what set of assumptions they coincide, and what are
the limitations of operating graph-free.

Preliminaries. We use upper-case letters (e.g. X or 2)
to denote random variables; The regular letter is used for
univariate random variables, bold letter is used for multi-
variate ones. Support of random variables Z is denoted as
supp(Z), and values in the support are denoted by the cor-
responding lowercase letter, e.g., z € supp(Z). To denote
P(A = a | B = b), we use the shorthand P(a | b). The
notion L ; denotes d-separation in graphs.

We use semantics of Structural Causal Models (Pearl
2000), which will allow the formal articulation of the in-
variances needed to extrapolate findings across settings, as
defined next.

Definition 1 (Structural Causal Model (SCM)) A struc-
tural causal model M is a 4-tuple (U, V, F, P(u)), where
U is a set of exogenous (unobserved) variables that are
jointly independent; 'V is a set of endogenous (observed)
variables; F represents a collection of functions F = { fv }
such that each endogenous variable V € 'V is determined by
a function fy € F, where fy : supp(Uy ) x supp(Pay ) —
supp(V) with Uy C U, and Pay C 'V \ {V'}; The uncer-
tainty is encoded through a distribution over the exogenous
variables, P(u).

Every SCM M induces a causal diagram, which is a di-
rected acyclic graph where any variable V' € V is a vertex,
and there exists a directed edge from every variable in Pay
to V. Also, for every pair V, V' € V such that Uy NUy #
(), there exists a bidirected edge between V and V'. We de-
note this causal diagram with the letter G, and we say M
is compatible with G if M induces G. A SCM M entails
a probability distribution P (v) over the set of observed
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variables V' such that PM(v) = [[ = [Ty PM(v |

pay,uy) - P(u) - du,, where each term P(v | pay,uy)
corresponds to the function fi» € F in the underlying struc-
tural causal model M. Throughout this paper, we assume
the observational distributions entailed by the SCMs satisfy
positivity, that is, P (v) > 0, for every v. We will also op-
erate non-parametrically, i.e., making no assumption about
the particular functional form or the distribution of the un-
observed variables.

2 Transportability of Representations

We study a system of endogenous variables X U{Y'}, where
Y is a binary label. SCMs M*!, M2, ... M7 defined over
X U{Y} denote the source domains, and entail the distribu-
tions P = {P!, P2 ..., PT}, while they induce the causal
diagrams G*, G2, ..., GT. Also, an unknown SCM M* rep-
resents the target domain, which entails the distribution P*,
and induces the causal diagram G*. The following example
elaborates the concepts through a well-attended instance of
the problem.

Example 1 (Covariate shift) Let X := (X7, X5,..., Xn)
be a vector of binary variables, and Y be a binary label. We
observe data from two source domains Ml, M2, and the
task is predicting Y based on X in the target domain M*.
What follows describes the SCM M? (i € {1,2, %}):

Ux ~ P'(ux) (0

Uy ~ Unif([0,1]) 2)
1 ifUy >o(a’ - X)

Yo {O otherwise. @

As seen above, the label Y in all domains M1, M2, M*
follows the conditional distribution,

Y | X ~ Bernoulli(o(a " - X)). )

Where « is a N-vector of coefﬁc1ents and o is the sigmoid
function defined as o (z) = — = + —. In words, the distribution
of X changes across the source and target domains, while
the odds of Y is determined by X, and is equal to a linear
combination of entries in X.

Based on this definition, the causal diagrams G L QQ, g*
coincide, and are depicted in Figure la. This setup is com-
monly referred to in the literature as the covariate shift
(Sugiyama and Miiller 2005; Subbaswamy, Schulam, and
Saria 2019; Subbaswamy and Saria 2020), under which ones
assumes that E[Y" | x] is invariant across the source and tar-
get domains, while the distribution of the covariates P(x)
might vary. g

To describe the mismatch of mechanisms between two
SCMs, we adapt the following notion introduced in (Lee,
Correa, and Bareinboim 2020).

Definition 2 (Domain discrepancy) For every pair of
SCMs MU M7 (i, € {x,1,2,...,T}) defined over
X U {Y}, the domain discrepancy set A;; C 'V is defined
such that for every V. A;; there might exist:
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Figure 1: (a) The causal diagram induced by the source and
targets SCMs in Example 1. All covariates might be con-
founded, which is indicated by a bidirected arrow between
every pair of them. (b) Selection diagram of Example 1;
the mechanism determining the covariates might vary across
the source and target domains, so the selection nodes are
connected to all the covariates, while the mechanism deter-
mining the label is the same across all the domains, thus no
selection node is connected to the label.

1. adiscrepancy between f{,w #* fMj, oy,

2. PM'(uy) # PM (uy). O
In other words, V' ¢ A,; is equivalent to assuming that

the mechanisms for V' across M i7 M7 are structurally in-

variant, i.e., [ = f and PM (uy) = PM (uy). We

introduce next a version of selection diagrams (Lee, Correa,

and Bareinboim 2020) to graphically represent the system

that includes multiple SCMs relative to the collection of do-
mains.

Definition 3 (Selection diagram) The selection diagram
GAii is constructed from G' (i € {*,1,2,...,T}) by adding
the selection node S;; to the vertex set, and adding the
edge Si; — V for every V. € A;j. The collection G2
{GAid Yije{s1,2,.., 7} encodes the graphical assumptions.
Whenever the causal diagram is shared across the domains,
a single diagram can be utilized to depict G™. (Il

In words, selection diagrams are parsimonious graphical
expressions of the commonalities and disparities across the
domains, which can be seen as grounding Kant’s observation
alluded to earlier.

Example 1 (Covariate shift: continued) Following Defi-
nition 2, the domain discrepancy sets are Ajo = Ay, =
Ag, = X. Thus, the in the induced selection diagram shown
in Figure 1b where the selection nodes Sia, Ss1, S« are
pointing to X nodes.

The goal of the domain generalization task is to predict Y
by observing X in the target domain M™*. We consider an
aggregation of the information in X that we call a represen-
tation, for instance:

surn

¢sum

ZXZ,

We then may try to predict Y based on the value of R.
To do so, a natural objective is to compute the quantity

(6)
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Ep«[Y | Rsum = 7] forevery r € {0,1,..., N} using the
source data collected from source domains M, M2, This
objective is well-defined only if this quantity is unique un-
der all distributions P* that can be entailed by some SCM
that can possibly govern the target domain. In causal infer-
ence literature, this concept is known as transportability. [

As in the example above, we are interested in quantities
that involve a variable, such as R computed according to Eq.
6. What follows is a formal definition of representations and
their score function.

Definition 4 (Representation and scores) The variable R
with support supp(R) is said to be a representation (of X)
if there exists a mapping ¢ : supp(X) — supp(R)) such that
R = ¢(X). The corresponding score function is defined as

lo(r) :=Ep«[Y | R =T1]. ™

For source distributions P* € P, the quantity Ep:[Y | R =
r] is called an empirical score function. (]

A representation is an aggregation of the information in
X. For example, when X is a binary vector, the represen-
tation can be the number of ones in this vector, as illus-
trated in Example 1. In a special case, one might discard
certain entries of X while keeping the rest; for instance
d(X1, Xa, X3) = (X3, X3). The latter is well-attended in
the causal inference literature, as the causal queries are usu-
ally denoted by P(y | z) where Z C X. By using a repre-
sentation R = ¢(X), we can express a much larger class of
queries of the form P(y | ¢(X) = r), where the mapping
R = ¢(X) is arbitrary but known. Throughout this work, we
consider representations that satisfy the coverage of prop-
erty, that is, P*(r) > 0 for every P* € P and r € supp(R).
Inherently, this property is testable using the data.

Motivated by Example 1, the main objective of this paper
is to compute the score function of a given representation
using the source data, and guarantee its validity given graph-
ical (sec. 2) or algebraic (sec. 3) assumptions. To this end,
we extend the notion of transportability (Bareinboim et al.
2013) to study queries involving representations.

Definition 5 (Transportable representation) The repre-
sentation R = ¢(X) is called transportable if its score
function ly(r) = Ep:[Y | R = r| can be uniquely
computed from the source distributions P, considering:

1. The assumption encoded in the selection diagrams GA,
2. The arithmetic expression for ¢. O

For the representations that are feature selection, such as
d(X1, X2, X3) = (X1, X3), the definition above coincides
with the notion of statistical transportability (Correa and
Bareinboim 2019). If a representation ¢ is not transportable,
then its score function /4 is not unique across possible tar-
get domains, and therefore, it is not possible to compute it
regardless of statistical challenges of estimation. Thus, the
task of computing the score function of a given represen-
tation is only well-defined if that representation is trans-
portable. In the rest of this paper, we focus on character-
izing transportable representations, and develop a method to
compute an expression for the score functions in terms of
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the available source distributions. This expression is a blue-
print for estimation, but some of the subtleties of using finite
samples is outside the scope of our paper. Below, we dis-
cuss a well-attended instance of the domain generalization
problem.

Example 2 (Covariate shift: not TR case) In the context
of Example 1, we argue that for the representation Ry, =
¢sum (X) in Eq. 6, the score function {4, (r) = Ep-[Y |
Reum = 7] is not unique for all compatible target domains.
Consider,

N
lpun (1) = Ep[Y | Y X; = 1]

i=1

®)

=> o(e;)- P*(Xonehoti | Roum =1). (9)
i=1

The last expression indicates that at » = 1 the score function
might vary for different choices of P*(x). In case of the
covariate shift example, the distribution of covariates in the
target domain, namely P*(x), can be any arbitrary positive
distribution. Thus, the terms P*(X = one hot at ¢ | Rgym =
1) in Eq. 9 can be any vector of positive values that sum to
one. This fact indicates that, in extreme cases, 4., (1) can
lie just below the maximum of {o(a;)}; or just above the
minimum of them. Precisely speaking, for every

¢ € (_min 0<ai)’1l<ni>§v0(ai))’ (10)

1<i<N
there exists a plausible target SCM M that is compatible
with the selection diagram in Figure 1b and the source dis-
tributions P*, P?, such that Epmx [V | Ry = 1] = c. As
long as the coefficients «; are not all equal, the interval in
Eq. 10 contains more than one value, and therefore, we can
not assure that the score function is unique across all com-
patible target domains, let alone compute it. We conclude
that ¢s,m 1S not transportable in this example. O

The above example carries an important message despite
its simplicity; in settings that involve representations, com-
puting or estimating the score function might be impossi-
ble, even when the covariate shift assumption can be ascer-
tained and access to true distributions is given (instead of
finite samples).

We introduce a graphical criterion that is useful to evalu-
ate the probabilistic invariances in the distribution motivated
by (Pearl and Bareinboim 2011).

Definition 6 (S-Admissibility) Consider the domains
MM (i5 € {%,1,2,...,T}), and sets of variables
Z,A C XU{Y} A is said to be S-admissible given Z
w.r.t. the domains M*, M7 whenever A is d-separated from
Syi given Z in GAii | In that case,

AllySij|ZinG? = P'(a|z)=Pi(a|z). (11)

In words, the s-admissibility criterion enables us to read
the probabilistic invariances across domains by evaluating
the d-separation relations in the selection diagram. Next, we
elaborate through an example the use of the S-admissibility
criterion for deciding if a representation is transportable by
computing its score function.
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Example 3 (Covariate shift: TR case) In the context of
Example 1, consider the representation

Rrand = ¢rand(x) = 5T - X,

where 3 ~ N(0, I) is drawn independently. Considering the
expression above, we can almost surely compute an inverse
function X = ¢! \(Ryana) (proof in Appendix A); Thus,
we can rewrite the score function [y, (7) as,

12)

Ep«[Y | Rrana = 7] =Ep-[Y | X = (brijqd(r)] (13)
Licensed by the s-admissibility relation Y Ll 4 S;; | X read-
able from the selection diagram in Figure 1b, the latter can
be directly obtained from either of the source distributions,
namely,

-1
rand

-1
rand

Ep-[Y | X = ¢ pna(r)] =Epi2[Y | X =¢_,4(r)].
(14)
Thus, we conclude that ¢g,y, is transportable in this exam-

ple, because,

Ep[Y | drana(X) = 1] = Ep-[Y | X = ¢ 14(r)] (15)
=Ep2[YV | X = ¢!, (r)] (16)

= Ep1,2[Y | ¢rand<X) = ’I“].
a7

As seen in Examples 2 and 3, transportability of repre-
sentations depends on the expression of the representation;
due to determinism of the mapping ¢anq, the condition
¢(X) = r could be translated to a condition about the vari-
ables X, which enabled us to use s-admissibility relations
effectively in transporting the score function. The next defi-
nition extends the results by Geiger (1990) regarding deter-
ministic relations in SCMs.

Definition 7 (Det., cons., and free) Consider a representa-
tion R = ¢(X). Variables det(¢p) = Z C X are determined
by ¢ if for every value r € supp(R) a single value for Z can
be derived from ¢(X) = r. The variables cons(¢p) = Z C
X \ Z are constrained by ¢ if they are not determined by
¢, and for at least one value r € supp(R) and at least one
value Z € supp(Z), the system of equations $(X\Z,z) =r
is inconsistent. The variables free(¢) = X\ (Z U Z) do not
depend on the representation, and are called free from ¢. [J

The notions introduced in this definition are properties of
the mapping ¢, and in principle, they can be decided given
an arithmetic expression for ¢. An example in Appendix E
elaborates on this definition. Next, we augment the selec-
tion diagrams to incorporate the knowledge of the represen-
tations into the symbolic inference pipeline.

Definition 8 (Augmented selection diagrams) Let G2 be
a selection diagram over the variables X, Y, the set of dis-
tributions P be the source distributions, and $(X) be a rep-
resentation. Let Z = det(¢) denote the variables deter-
mined by ¢, and Z = cons(¢) denote the variables con-
strained by ¢, and let the equation R = ¢(Z) obtained from
R = ¢(X) specify the constraints. We construct the aug-
mented selection diagrams and corresponding distributions
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Figure 2: selection diagram corresponding to Example 4
(black). The node Sio is removed to avoid clutter, and is
connected to all variables X. The naively augmented (with
orange) and augmented (with blue) selection diagrams.

by adding the variable R to G2, P as follows:

QaAug . add node R to all graphs in G® with arrows from

Z nodes to R (18)
Paug : {Piug = P'(X,9) - 1iz_g(2)}, for P € P}. (19)

An example in Appendix E elaborates on the Definition
above. The following result allows us to evaluate queries
involving representations, an in particular, to decide trans-
portability of representation.

Theorem 1 (Graphical transportability) Consider a rep-
resentation R = ¢(X), and the value r for it. Let Z =
det(¢) where z is its value, and Z = cons(¢) denotes the
constrained variables where the equation t = ¢(Z) speci-
fies the constraints on them. The score function can be ex-
pressed as,

l(r) = Ep-[Y | 1]

P(Y=1|Z=2zR=7t). (20)

The representation ¢ is a transportable (i.e., ly can be com-
puted in terms of P) given (G2, ¢) if the equivalent query
P*(y | z,T) is transportable from the augmented source
distributions Payg given the augmented selection diagrams
Qzﬁlg via the gTR algorithm by Lee, Correa, and Bareinboim
(2020). |

All proofs are provided in Appendix A. We elaborate on
Theorem 1 through the following example.

Example 4 (Theorem 1 illustrated) Consider the selec-
tion diagram G2 in Figure 2, over the variables Y and
X = {X;, X2, X3, X4} with supp(X;) C N. There exists
two source domains, and the goal is to compute the score
function @ : l4(r) = Ep«[Y" | r] for the representation,

X1 - X X3 X1 -Xp Xz-X3>

R = ¢(X) := ( 1)

Xy " X3 Xy X1 Xy
——— — o N——
Ry R2 R3

The expression for the representation ¢ can be viewed as a
system of equations which allows us to express X in terms
of R;

R, R, X5
X1 =4/—, X3=4/— — = -Rs. (22
1 \/R?), 3 VRQ’ X, VRz- Rz, (22)
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More elaboration on the equation solving procedure is
provided in Appendix B. In words, the variables X7, X3 are
determined by R, as they attain a unique value for every
realization R = r through the first two equation above. On
the other hand, X5, X4 cannot be uniquely determined by R,
even though they are constrained by the value of R through
the last equation. Thus, by definition 7, det(¢) = { X1, X3}
and cons(¢) = {X2, X4}

Define R < % as a new variable in the SCM with
Pap = {X5, X,}; the augmentation of the selection dia-
gram with this new variable is depicted in orange in Figure
2. For a fixed value r € supp(R) let,

I

be the values for X, X3, R, respectively. Next, we can use
this change of variables to rewrite the score function ) as
follows:

lo(r) = Ep-[V |R = 1]

=213 (23)

=P (Y =1]2f, (24)

Q/

w3, 7).

Now, we attempt to transport the query ()’ from the source
distributions given the augmented selection diagram 2. We
follow the gTR algorithm (Correa and Bareinboim 2020):

=Pl o) o5)
— 29027584 P*(y’Fr’Ian4 |7I11‘733§)
29712@4 P (y’ ’Fr7 T2, T4 |7 1{7 xg) '

QII

(26)

We factorize the query Q" as,

Q = P*(7" |y, 27, 22,25, 24) - P*(y, v, 24 | 27, 23)
- P*( ™ | (EQ,.’E4) P (y,$2,$4 | xiﬂ%) (27)
= 1{7“‘:%} - P (y,l'g,l'4 | x{axg)a (28)

Q///

where Eq. 27 is due to R 14 X1, X3,Y | Xo, X, that is
readable from the selection diagram in Figure 2, and Eq. 28
is due to the construction (Eq.19). Finally, we transport Q"
as,

Q/// (29)

(30)

= Py, w2 | @, 23) - P (24 | y, 29, 27, 23)

= Pl(y, 2 | 21, 25) - P*(24 | y, 22, 27, 25),
where Eq. 30 is licensed by the S-admissibility relations,

Y, Xo g S1s | X1, X3 (€28

Xy Wy Sou | Y, X1, Xo, X5. (32)

The derivation above allows us to express the score func-

tion solely in terms of the source distributions, which means

that the representation ¢ specified in Eq. 21 is indeed trans-
portable (Def. 5). O

Note that the covariate shift assumption does not hold in
Example 4; for instance, S,y — X4 < Y and S.o —
Xs < Y are d-connecting paths between the s-nodes and
Y conditional on X. Therefore, E[Y | r] varies across the
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Figure 3: The metric is cross-entropy under the target distri-
bution P* (the lower, the better). The horizontal axis is the
sample size from both source domains.

domains in generic instances that admit this model (Figure
2). One might limit the scope of covariate shift assumption
to X7 and argue that E[Y" | 2] is invariant across the source
and target domains. However, notice that the representation
R is richer than the covariate X alone, i.e., the o-algebra
generated by R is larger than the one generated by X7, be-
cause X; is determined by R (Eq. 22). Therefore, R has
higher predictive power (for prediction of Y') compared to
X1, even though X is “causal” to Y and the rest of the co-
variates are not. This observation indicates that predictions
based on causal features are not necessarily superior to the
predictions based on non-causal features, as the transporta-
bility machinery might license the use of some non-causal
features for better classification accuracy.

2.1 Experiments

Appendix D contains a detailed discussion on estimating the
score function in Example 4. We also implemented the de-
scribed estimator, and the results are depicted in Figure 3
for a set of randomly generated SCMs M, M2 M*. The
red line indicates the loss for a random guess. ERM stands
for empirical risk minimization (cobalt), and it simply re-
gresses Y on R using the pooled data. Despite the popular-
ity of ERM, we see that due to mismatch between the target
domain and the sources ERM performs only slightly better
than a random guess, and the performance does not improve
for larger data. INV (orange) regresses Y on the best invari-
ant representation (that is X;) using pooled data; this clas-
sifier is in fact what existing work on invariance-based do-
main generalization suggests. INV has a better performance
compared to ERM, which is consistent with our theoreti-
cal guarantees, however, the transportability-based classifier
(green) performed significantly better for larger data. In im-
plementation of TR, we used rejection sampling for the gen-
erative models, and for the likelihood models we used ran-
dom forests, and it

This experiment shows that transportability might allow
us to make a generalizable prediction superior to the so-
called causal prediction. However, having access to the ex-
pert knowledge encoded as selection diagrams is required.
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In the next section, we remove this restriction and study an
instance of the transportability problem that operates based
on no explicit graphical expert knowledge.

3 Data-Driven Transportability

The discussions so far assume that the true selection diagram
is available to us, however, it might be hard to obtain. In this
section, we provide an alternative route for articulating as-
sumptions and obtaining results on transportability. In par-
ticular, we will express the structural assumptions about the
underlying mechanisms in terms of the data itself, in the ab-
sence of the selection diagrams G2 . We impose a restriction
to the structure of the selection diagrams G2 (Assumptions
1), and assert a correspondence between source data P and
the selection diagram G2 (Assumption 2).

The means of inference in graphical setting are S-
admissibility relations, so as we remove the assumption of
having access to the selection diagrams, we need to estab-
lish a structural correspondence between the target domain
and the source domains.

Assumption 1: Stability of Mechanisms (SoM). The causal
diagram is common across source and target domains, and
for all variables V € X U {Y},

T T
Ve lJAa; = vl A

k=1

(33)

i,j=1
What follows elaborates more on this assumption.

Example 5 (SoM illustrated) Suppose the source data
contains pictures of cats and dogs in a room, and the task
is to distinguish them. Two source datasets are collected
in spring and summer. The target domain is on pictures of
cats and dogs in the same room, but during fall season. Sup-
pose, for simplicity, that the lighting condition in the room
depends solely on the natural light coming from outside,
e.g., lightOn <« —isSunny @ U. In the context of light-
ing, SoM assumption states that if the mechanism determin-
ing the lighting has been the same for both spring and sum-
mer datasets (sources), we assume that it is going to remain
unchanged in fall (target). Notice that unchanged lighting
mechanism does not translate to the same amount of to-
tal lighting, because that depends on the distribution of the
parents of lightOn as well, including isSunny, which most
probably varies across the domains. SoM, on the other hand,
asserts that if this mechanism has changed, e.g., the light
was less likely to be on due to energy preservation during
summer, then we shall not rely on stability of this mech-
anism anymore, and the lighting mechanism might change
arbitrarily in the fall (target domain). We emphasize that the
variables such as lighting are not explicitly available to the
learner; by assuming SoM we impose such stability prop-
erties to all mechanisms (such as lighting) that generate the
images through the unknown underlying SCMs. In words,
SoM requires that all stables mechanisms that have gener-
ated the source data to remain stable in the target as well.
O

As indicated through the example above, SoM imposes
a structure to the selection diagrams as a whole, while it is
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not explicit about the different variables/mechanisms in the
SCMs. Next, we define an adjusted notion of transportability
according to stability of mechanisms assumption.

Definition 9 (Transportable represent.: Data-driven) In

a data-driven setup, the representation R = ¢(X) is called
transportable if the score function ls(r) = Ep«[Y | R =r]
can be uniquely computed in terms of the source distribu-
tions P, under the SoM assumption. O

According to the definition above, when considering
transportability in the data-driven setup, we consider the
most conservative scenario. In other words, when we re-
place the graph G2 with SoM, we can only leverage it to re-
ject the possibility of scenarios that are inconsistent with it.
This conservative approach is similar to how we treat the se-
lection diagrams in graphical transportability; in that setup,
once an edge exists in a selection diagram it indicates the
possibility of a cause-effect relationship, and our inference
strategy must be correct for all possibilities that conform to
the selection diagram.

For instance, even though the selection diagram GA in
Example 4 (Figure 2) satisfies SoM, it is not the only selec-
tion diagram over these variables that is valid under SoM.
We can construct QOA by connecting all s-nodes to all covari-
ates X. Notice, g@ is still compatible with the true SCMs
while it also satisfies SoM. The selection diagram G&* con-
tains the edges present in G A and therefore, is a weaker as-
sumption. This is a critical point, because the representation
in Eq. 21 is no longer transportable given G&. This obser-
vation highlights a limitation of the data-driven approach in
comparison to the graphical approach discussed in section 2.
The above example indicates that selection diagrams offer a
more expressive language compared to SoM for describing
the knowledge about the domains. Some readers might find
it helpful to note that assuming SoM is weaker than assum-
ing the selection diagrams, while SoM implies the covariate
shift assumption. Thus, SoM lies between covariate shift and
selection diagrams in terms of expressivity.

An important consequence of SoM is that each of the
source domains is compatible as a possible target domain;
below, this property is stated formally.

Lemma 1 (Interchangeable domains) Under the stability
of mechanisms assumption, an SCM that is identical to one
of the source SCM MT (1<t <T)can be a compatible
target domain, i.e., SoM does not preclude the possibility of
M* being identical to MT . O

Lemma 1 uncovers a key limitation of the data-driven ap-
proach, as it indicates that SoM can not express a family of
possible target domains while rejecting some of the source
domains as a possible target domain. For instance, suppose
some economical data is collected from the US and China,
and the target domain is India. Even though there might be
similarities between individual mechanism across these do-
mains, it is unlikely that India’s economy is totally identi-
cal to either of the US and China, i.e., domains are likely
non-interchangeable. However, SoM does not rule out such
possibility according to Lemma 1. In contrast, the graphical
assumptions encoded in the selection diagrams might help
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us express the experts’ knowledge in finer granularity by al-
lowing us to reject more possibilities for the target domain.
On the other hand, in the context of Example 5, we have no
reason to believe that the pictures taken in the same room
during fall season (target) are generated by an SCM neces-
sarily dissimilar to that of the spring and summer seasons.
Therefore, the domains might be interchangeable in the re-
ality of Example 5.

Due to Lemma 1, M* (1 < k < T) can be the target
SCM, so the quantity Epx (Y | r) is a possible value that
the score function [, (r) might attain. If the representation
¢ is transportable (Def. 9), i.e., l¢(r) attains a unique value
across all compatible target SCMs, then [ (r) must be iden-
tical to Epx[Y | r] for all 1 < k < T. What follows is a
formal statement.

Corollary 1 (necessity of invariance) Under stability of
mechanisms assumption, if a representation R = ¢(X) is
transportable (Def. 9), i.e., Ep«[Y | r] attains a unique
value for all compatible target SCMs, then E[Y | r] is in-
variant across the source and target domains, i.e.,

Epi[Y |r]=--=Epr[Y |r] =Ep:[Y | x]. (34)
This motivates the following definition.
Definition 10 (Invariance Property) A representation

R = ¢(X) is said to satisfy the invariance property w.r.t.

the distributions P*, P7 (i,j € {x,1,...,T})if,
INV,[@] : Ep:[Y | r] =Ep;[Y | r], Vr e supp(R).
(35)
We define the source invariance property as
/\Zj=1 INV,;[¢]. Such a representation is then called
an invariant representation. U

The source invariance property is statistically testable
given sufficiently large data collected from all the source do-
mains. This activity is acknowledged in the literature, and
representations that satisfy the source invariance property
w.r.t. the source domains P are proposed for domain gen-
eralization in numerous existing work (e.g., (Rojas-Carulla
et al. 2018; Arjovsky et al. 2019; Rothenhéusler et al. 2021;
Magliacane et al. 2018; Chen and Biihlmann 2021)). In sum-
mary, Corollary 1 states that under the stability of mecha-
nisms assumption, the source invariant property is a neces-
sary condition for transportability of representations.

Is the source invariance property also a sufficient criterion
for transportability? We need to assure that the probabilistic
invariances present within the source data are not coinciden-
tal, i.e., the invariance property INV;;[¢] must necessarily
corresgonds to an s-admissibility condition in the underly-
ing G~4. This is analogous to c-faithfulness Jaber et al.
(2020), which is an extension of faithfulness assumption
(Pearl 2009) for the setting where we have access to multiple
datasets obtained from controlled soft interventions. What
follows is our proposed variation of faithfulness assumption
tailored to the problem at hand.

Assumption 2: r-faithfulness. The source distributions P

are r-faithful to the underlying selection diagrams G if for

all representations R = ¢(X) and for every i, j € [T,
INV;[¢] = Sij LaY | Z,RinGaH

aug’

(36)
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where Z. = det(¢), R = ¢(Z) denotes the constraints on

constrained variables Z. = cons(¢), and Qﬁfé is the aug-
mented selection diagram (Def. 8) O

Under r-faithfulness assumption, we can use the structure
that SoM assumption imposes to the underlying selection
diagram, and prove the source invariance property as a sound
and complete data-driven criterion for transportability; what
follows is a formal statement.

Theorem 2 (Data-driven transportability) For a repre-
sentation R = ¢(X), the score function lg(r) = Ep«[Y | 1]
can be computed in terms of the source distributions under
r-faithfulness and stability of mechanisms assumption, if and
only if ¢ satisfies the source invariance property. (|

Theorem 2 unifies some of the existing approach to domain
generalization, and shed lights on the weaknesses of some
other proposals. In appendix C, we provided a thorough dis-
cussion on the related work. Below, we consider two spe-
cial cases of invariant representations, namely balanced-rate
classifiers and multi-calibrated scores.

3.1 Balanced-rate Classifiers

A well-attended family of criteria for training generalizable
models is on balancing/equalizing different notions of pre-
diction error across the source distributions, e.g., (Wald et al.
2021; Rothenhiusler et al. 2021; Krueger et al. 2021; Pfis-
ter et al. 2021; Arjovsky et al. 2019). Below, we propose
our version of error balancing criterion that corresponds to
data-driven transportability.

For a classifier b : supp(X) — {0,1}, false omission
(FOR) rate and false discovery rate (FDR) w.r.t. the distribu-
tion P(y, x) are denoted as follows;

FORp(h) :== P(Y = 1| h(X) = 0),
FDRp(h) := P(Y =0 | e(X) = 1).

(37)
(38)

We consider classifiers that attain equal/balanced false omis-
sion rate and false discovery rate across all source domains.

Definition 11 (Balanced-rate classification) A balanced-
rate classifier is a solution to the following penalized ERM;

m}}nv . [Var({FORpi (h) ) (39)

+ Var({FDRp: (W) }2,)] + > Rpi(h). (40)

T
i=1

In the above, 7y penalizes variation among the FDR and FOR
terms, and in the extreme case v — 00, the solution coincide
with the following constrained ERM;

T
min ; Rpi(h) (41)
s.t.  FORpi(h) = FORp;(h), VP'€P (42)
FDRp:(h) = FDRp;(h), VYP'cP. (43)

It remains a future work to assess the effectivity of this
method in practice, but below we state the generalization
guarantee of balanced-rate classification.
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Proposition 1 (Balanced-rate generlization) Under r-
faithfulness and SoM assumptions, any solution to the
extreme case of balanced-rate classification such as hY® is
a generalizable classifier. Particularly,
FDRp«(hY) = FDRp:i (hY) VP € P, (44)
FORp-(hY) = FORp: (hY) VP cP.  (45)
In conclusion, balancing notions of prediction error across
the source distributions is indeed relevant to the domain gen-
eralization task (Krueger et al. 2021; Ben-Tal, Ghaoui, and
Nemirovski 2009). We formulated an optimization scheme
to seek a balance of false discovery rate and false omission
rate across the sources, as well as minimizing the predic-
tion error on the source data. Our findings on data-driven
transportability of representations theoretically justifies this
objective for the domain generalization task.

3.2 Multi-Calibrated Scores

In this subsection, we discuss the relation between multi-
calibration and domain generalization.

Definition 12 (Multi-Calibrated (MC) score) A represen-
tation (X)) with the support [0, 1] is called a score function.
It is calibrated w.r.t. the distribution P if,

Ve € [0,1] : Ep[Y | ¢(X) =¢] =e. (46)

It is called multi-calibrated if it is calibrated w.r.t. all source
distributions. O

Apparent from the above definition, the calibrated scores
serve as unbiased estimation of the empirical score function.
An MC score 1 can be viewed as a representation with sup-
port [0, 1]. Our results in Section 3 justifies MC scores for
domain generalization, as stated below.

Corollary 2 (Multi-calibrated generalization) An ~ MC
score qualifies as an invariant representation (Def.10). Due
to Theorem 2, under r-faithfulness and SoM assumptions,
MC score 1) is transportable, i.e.,
Ep-[Y [¢] =Epi[Y | Y] =--- =Epr[Y [ ¢].  (47)
This observation validates use of MC for domain general-
ization. This finding is in-line with the claims made in Wald
etal. (2021), however, the theoretical guarantees provided in
that work are limited to two linear instances of the problem.
Lemma 1 by Wald et al. (2021) shows that, in fact, invari-
ant scores (with support of [0, 1]) can be transformed into
multi-calibrated scores; we extend this result.

Lemma 2 (Source invariance & multi-calibration) If any
representation R = ¢(X) satisfies the source invariance
property, then the score 1)(x) := Ep:[Y | R = ¢(x)] (for
any of the source distributions P* € P) is MC. Moreover; for
every PP ¢ P,

Ipi(Y; 9(X)) = Ipi (Y 9(X)),
where I denotes the mutual information.

(48)

In words, Lemma 2 states a that for every representa-
tion that satisfies the source invariance property, there exists
a multi-calibrated score with equivalent prediction power.
This fact suggests that in search for invariant representations
with high prediction power, one might limit the search space
to MC scores only without a trade-off.
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Figure 4: ® denotes the set of all rep.; @y, denotes the class
of transportable rep.; ®;,,, denotes the class of invariant rep.;
W, denotes the class of calibrated score functions; H;,,, de-
notes the class of balanced-rate classifiers

3.3 Taxonomy of Representations

In section 2 we elaborated through examples the relevance
of transportable representations for domain generalization
task. Some representations are non-transportable, e.g., Eq.
6 in Example 2, and some are transportable, e.g., Eq.12 in
Example 3. The latter is not only transportable but also in-
variant, i.e., E[Y | ¢] matches across the source and target
domains. Some representations are transportable but not in-
variant, e.g., Eq. 21 in Example 4. The classifiers that have
balanced false negative and false discovery rates across the
source and target domains constitute a subset of invariant
representations that we call balanced-rate classifiers. The
class of multi-calibrated scores is another subclass of in-
variant representation, which is also equivalent to it in terms
of prediction power. Under r-faithfulness and SoM assump-
tions, the class of transportable representations collapses to
invariant representations. In conclusion, our findings suggest
the taxonomy in Figure 4 for the space of representations.

4 Conclusions

We framed the domain generalization problem within causal
transportability theory. We introduced representations into
the transportability pipeline, and developed a method to
decide transportability of queries involving representations
given structural assumptions encoded in the form of selec-
tion diagrams. Finally, we relaxed the assumption of having
access to the graphs, and showed that under r-faithfulness
and stability of mechanisms assumption, invariance of the
empirical score across the source distributions constitutes
a sound and complete data-driven criterion for generaliz-
ability. Our findings unified some of the existing ideas on
invariance-based domain generalization, and opens a new
thread of research for the graphical analysis of representa-
tions and their properties through transportability lenses.
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