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Abstract

Coresets for k-means and k-median problems yield a small
summary of the data, which preserves the clustering cost
with respect to any set of k centers. Recently coresets have
also been constructed for constrained k-means and k-median
problems. However, the notion of coresets has the drawback
that (i) they can only be applied in settings where the input
points are allowed to have weights, and (ii) in general metric
spaces, the size of the coresets can depend logarithmically on
the number of points. The notion of weak coresets, which has
less stringent requirements than coresets, has been studied in
the context of classical k-means and k-median problems. A
weak coreset is a pair (J,.S) of subsets of points, where S
acts as a summary of the point set and J as a set of potential
centers. This pair satisfies the properties that (i) S is a good
summary of the data as long as the k centers are chosen from
J only, and (ii) there is a good choice of k centers in J with
a cost close to the optimal cost. We develop this framework,
which we call universal weak coresets, for constrained clus-
tering settings. In conjunction with recent coreset construc-
tions for constrained settings, our designs give greater data
compression, are conceptually simpler, and apply to a wide
range of constrained k-median and k-means problems.

Introduction

Center-based clustering problems such as k-MEDIAN and
the k-MEANS are important data processing tasks. Given a
set of center locations F' C X, aset X C X of n points in
a metric (X, D), and a parameter k, the goal here is to par-
tition the set of points into k clusters, say X1, ..., X, and
assign the points in each cluster to a corresponding cluster
center, say cy, ..., c, € I respectively, such that the objec-
tive YF_, > wex, D(x,¢i)? is minimized. Here, z is a pa-
rameter which is 1 for k-MEDIAN and 2 for k-MEANS.! In
the past decade, there has been significant effort in designing
coresets for such settings. Given a k-MEDIAN or k-MEANS
clustering instance as above, a coreset with parameter ¢ is
a weighted subset .S’ of points in the metric space with the
following property: for every set C' of k points in the metric
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'Note that even though our results are stated for z = 1 and
z = 2, they also hold for a general value of z.
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space, the assignment cost of X to C'is within (1+¢) of that
of S. More formally, let w(x) denote the weight of a point
x € S, and for a point z € X, let D(x, C) be the distance
between = and the closest point in C. Then the following
condition is satisfied for every subset C' of k points (where
z = 1 or z = 2 depending on the clustering problem being
considered):

(1-2)) w()D(x,C)* < Y D(xz,C)*

€S reX

< (1423 w(@)D(x,C)*
zeS

Coresets are useful for several reasons: (i) There are
efficient algorithms for constructing small-sized coresets.
Hence, some of the fastest known algorithms for k-MEANS
and k-MEDIAN problems proceed in a two step fashion: first,
find a succinct coreset, and then run a less efficient algo-
rithm on the coreset; (ii) in streaming settings, where one
cannot afford to store the entire dataset, a coreset provides
a summary of the data without compromising on the qual-
ity of clustering. Further, it is well known that coresets from
two distinct data sets can be composed to yield a new core-
set for the union of these two datasets. Hence, coresets are
amenable to settings where data arrives over time; (iii) in
scenarios where the set of k centers may change over time,
a coreset represents an efficient way of computing the clus-
tering cost.

For most applications, the requirements of a coreset may
seem too strong. Indeed, a less stringent notion of weak
coreset was defined by (Feldman, Monemizadeh, and Sohler
2007). A weak coreset, with a parameter ¢, for a point set
X as above is a pair (J,.S) of subsets of points in the metric
space, with .S being a weighted subset of points, such that (i)
the condition (1) is satisfied for all subsets C, where |C| = k
and C' C J; and (ii) there is a subset C of k centers in J such
that the assignment cost of X to C'is within (1 + ) of the
optimal clustering cost of X. The motivation for defining a
weak coreset is that one could obtain weak coresets with bet-
ter guarantees than a coreset. Indeed, this shall be the case
for the problems considered in this work.

To understand why weak coresets may have better guar-
antees than coresets, we briefly discuss coreset construc-
tion techniques. Typical constructions use random sampling-
based ideas. One starts with an initial set of O(k) centers ob-
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tained by a fast approximation algorithm. For each of these
centers ¢ € C, we partition the data into “rings” of geomet-
rically increasing size around c. From each of these rings,
one samples poly(g) points and appropriately assigns them
weights — these weighted sampled points “represent” the
points in the ring as far as c is concerned, i.e., their assign-
ment cost to cis very close to that of the original set of points
in the ring with high probability. These sampled points form
the desired coreset. However, for the coreset property to
hold, these sampled points must have near-optimal assign-
ment cost for every set of k centers. Since there are about n*
possibilities for the choice of k centers, we need to sample
(poly(%) - logn) points from each ring to ensure the core-
set property. In geometric settings, concepts such as an e-net
and e-centroid set have been used to reduce the coreset size.
However, in general metric spaces, there are lower bounds
(see (Baker et al. 2020a; Cohen-Addad et al. 2022)), sug-
gesting that the size of the coreset will have a dependency
on log n.

Weak coresets allow us to remove the dependency on
log n even in general metric spaces. Since the near-optimal
clustering guarantees need to hold with respect to k centers
chosen from J only, the set of such possibilities reduces to
|J|*. Thus, a small-sized .J would typically imply a small-
sized sample S as well. Further, weak coresets allow us to
maintain a near-optimal clustering in streaming setting. In-
deed, the sets J and S can be constructed in a streaming
setting. Since the set of k centers needs to be selected from
J only, and each can be tested with respect to S, we can
also maintain a set of near-optimal k centers in a streaming
setting.

So far, our discussion has focused on the classical k-
MEDIAN and k-MEANS settings. However, there has been
significant recent activity in the more general class of con-
strained clustering problems. A constrained clustering prob-
lem specifies additional conditions on a feasible partition-
ing of the input points into k clusters. For example, the r-
gathering problem requires that each cluster in a feasible
partitioning must contain at least r data points. Similarly,
the well-known capacitated clustering problem specifies an
upper bound on the size of each cluster. Constrained cluster-
ing formulations can also capture various types of fairness
constraints: each data point has a label assigned to it, and we
may require upper or lower bounds on the number (or frac-
tion) of points with a certain label in each cluster. Some of
these constrained problems are discussed in the Applications
section.

Coresets for constrained clustering settings were recently
constructed by (Bandyapadhyay, Fomin, and Simonov
2021; Braverman et al. 2022). Note that the standard no-
tion of coreset is meant to preserve the cost of an assign-
ment where points get assigned to the closest center. This
prevents using standard coresets in constrained clustering
settings where a point may not necessarily get assigned to
its closest center. Recent work (Bandyapadhyay, Fomin, and
Simonov 2021; Braverman et al. 2022) design “assignment-
preserving” coresets that allow their use in constrained set-
tings. In this work, we generalize the notion of weak coresets
to universal weak coresets for constrained clustering set-
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tings. The underlying idea is the same as that of a weak core-
set, i.e., we need a weighted subset .S of points along with a
set J of potential center locations. But now, this pair has the
same guarantees as a weak coreset for any constrained clus-
tering problem. This universal guarantee has a feature that
we need not know in advance the actual constrained cluster-
ing problem being solved.

The notion of a universal weak coreset also has the fol-
lowing subtle application. In some specific settings, there
is a distinction between known algorithms for weighted
and unweighted settings. More specifically, there exist con-
strained clustering problems, where even if we are given a
small-sized set S’ of points, efficient algorithms for a near-
optimal set of k centers with respect to .S are known only if
the point set S is unweighted. For example, a recent devel-
opment (Chakraborty, Das, and Krauthgamer 2023) for the
k-MEDIAN problem in the Ulam metric has broken the 2-
approximation barrier. However, their (2— §)-approximation
algorithm works only on unweighted input permutations. In
such settings, we may not be able to efficiently find a good
set of centers even if S is a coreset. However, when given
a weak coreset (J,.5), we know that we need to look for
centers that are subsets of J only, and we can use the cost
preservation property of the weighted set .S to find good cen-
ters from J. This allows us to efficiently handle such con-
strained clustering problems as well.

Breaking the coreset logn barrier Since it is known
(Baker et al. 2020a) that the log n factor in the size of a core-
set is unavoidable in general metric spaces, we must relax
the notion of a coreset to break the log n barrier. Our notion
of a universal weak coreset provides a framework for an ap-
propriate relaxation that allows us to break the log n barrier.
More specifically, we relax the condition on the set .J to:
there exists a subset C of k centers in .J such that the assign-
ment cost of X to C'is within (« + €) of the optimal cluster-
ing cost of X, where « is allowed to be > 1. Moreover, the
universal property on J says that this («+ ¢)-approximation
holds with respect to any target clustering (not only the op-
timal Voronoi partitioning). The property on the set S re-
mains unchanged. We call this an a-universal weak core-
set. Note that a a-universal weak coreset helps to find an a-
approximate solution. The relaxation from (1+¢) to (a+¢)
guarantee is not a significant compromise if « is the best
approximation guarantee known for a constrained clustering
problem, which is indeed true for several constrained prob-
lems we discuss in this paper. On the other hand, this relax-
ation allows the universal weak coreset size, (|.J| + |S]), to
be poly(g), i.e., independent of n. Our main results include
constructions of such universal weak coresets:

Informal result: There is a 3-universal weak coreset for
the k-MEDIAN and a 9-universal weak coreset for the k-
MEANS problem in general metric spaces (the 3,9 factors
improve to 2,4 for the special case when X C F). Fur-
ther, there is a 1-universal weak coreset construction for k-
MEDIAN/k-MEANS in the Euclidean setting. All these weak
coresets have poly(f) size.

Since the above-mentioned coresets work for constrained
settings, we can use an a-universal weak coreset to obtain an
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a-approximate solution for an arbitrary version of the con-
strained clustering problem. These include balanced clus-
tering, fair clustering, [-diversity clustering, and potentially
many more.

Related work Two decades ago, coresets were introduced
(Har-Peled and Mazumdar 2004) primarily as a tool to
design streaming algorithms for the k-MEDIAN/k-MEANS
problems. Subsequently, it became an independent compu-
tational object of study, and some remarkable techniques
and results (Har-Peled and Kushal 2007; Chen 2009; Feld-
man, Monemizadeh, and Sohler 2007; Langberg and Schul-
man 2010; Feldman and Langberg 2011; Feldman, Schmidt,
and Sohler 2020) have been obtained. More recent devel-
opments (Sohler and Woodruff 2018; Huang et al. 2018;
Becchetti et al. 2019; Huang and Vishnoi 2020; Baker et al.
2020b; Braverman et al. 2021; Cohen-Addad, Saulpic, and
Schwiegelshohn 2021) have focused on improvements on
the size of coresets in various metrics. Recent developments
have also been on coresets for constrained settings (Huang,
Jiang, and Vishnoi 2019; Schmidt, Schwiegelshohn, and
Sohler 2020; Bandyapadhyay, Fomin, and Simonov 2021;
Braverman et al. 2022), with (Bandyapadhyay, Fomin, and
Simonov 2021; Braverman et al. 2022) being most relevant
to our work. The idea of designing a coreset that works for
more than one problem has also been explored in a recent
work (Maalouf et al. 2023).

Organization In the next section, we define the notion of
a universal weak coreset. In the subsequent section, we give
constructions of such coresets. Finally, in the Applications
section, we describe applications of universal weak coresets
in finding approximate solutions to several constrained clus-
tering problems.

Universal Weak Coreset

We define the notion of universal weak coreset formally in
this section. We shall use [k] to denote the set {1,...,k}. In
the discussion, ‘with high probability’ should be interpreted
as ‘with probability at least 0.99’. Let X denote a metric
space with metric D defined on it. We now formally define
a constrained clustering problem. While describing an in-
stance Z, we would like to separate the actual constraints on
feasible clusterings and the underlying clustering instance.
A clustering instance Z’ is given by a tuple (X, F,w, k),
where X is the set of all input points with a corresponding
weight function w : X — R™, a set F of potential center lo-
cations and a value k, which denotes the number of clusters.
A constrained clustering instance consists of a tuple
(X, F,w, k) as above and a k-tuple " = (¢4, ..., tx) of non-
negative real values such that >, b = >0 cx w(2)
Intuitively, the value ¢; denotes the total weight of the points
assigned to the i cluster. However, a point in X can be par-
tially assigned to several clusters, but the sum of these par-
tial weight assignments should equal w(z). In other words,
an assignment is given by a mapping o : X x [k] — RT,
such that 3,y 0(2,9) = w(z) for each z € X. An as-
signment o is said to be consistent with T’ = (t1,...,tg),
denoted 0 ~ T, if Y  _yo(x,i) = t; forall i € [K].

(A) J contains a subset (c1, ..., ¢y,
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Thus, the k-tuple I' denotes how the weights of the points
in X get partitioned into the k clusters. Given an instance
T = ((X, F,w,k),T") of constrained clustering, and an or-
dered set C' C F of k centers, the clustering cost, denoted
cost, (X, w,C,T), where z = 1 or 2, is defined as follows

(here C = (c1, ..., ¢k)):
{ D(x ci)z}.

Now, the optimal cost of clustering over the choice of centers
C'is denoted as follows:

opt. (X, w,T) =

cost, (X, w,C,T") = min

o~

SN o)

i=1 zeX

min

t. (X, w,C,T)}.
c:ch,\C\:k{cos (X, w, G, T)}

We are now ready to define the notion of weak coresets. The
parameter z shall be either 1 or 2 in the following. We shall
also fix a parameter ¢ > 0 for the rest of the discussion.
This should be treated as an arbitrarily small but positive
constant.

Definition 1 (a-Universal Weak Coreset). Given a cluster-
ing instance T = (X, F,w, k), an a-universal weak coreset
is a tuple (J, S, v), where J C F is a subset of potential cen-
ter locations, and S C X is a weighted subset of points with
weight function v : S — RT such that for any assignment
o : X x [k] = RT: the following conditions hold with high
probability:

) with

D(Z‘, Ci>z S

k
ZZU(JU,Z’)-
=1 xeX
k
(a+¢) ZZ D(x
i=1zeX

the
ie.,

*

C;

ki3

).

is center

g,

where
set

(cf, . ¢5) optimal
that  respects (e, ..., cp)

. k . »
argmin g, . s, {Zi:l > wex 0(x,4) - D(z,s) }
=k and everyI':

(1+e¢)-cost,(S,v,C,T).

cost, (X, w,C,T) €
The size of a weak coreset (J, S, v) is defined as (|J| + |S|).

An «-universal weak coreset allows us to summarise the
dataset so that this summary is sufficient to obtain an (a+¢)-
approximate solution to any constrained version of the clus-
tering problem in time that is dependent only on the size
(IJ] + |S]) of the coreset. This could lead to fast approx-
imation algorithms if the universal coreset construction is
efficient and its size is independent of the data size, namely
n = |X| + |F|.? In the next section, we shall see that this
is indeed possible. Let us see a canonical approximation al-
gorithm that finds an (« + €)-approximate solution from an
a-universal weak coreset.

Mt is sufficient to consider the k nearest facility locations for
every point in X . This takes care of scenarios where F' is infinite.
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Theorem 1. Consider a clustering instance (X, F,w,k)
and let (J, S,v) be an a-universal weak coreset for it. Given
a constrained clustering instance (X, F,w, k),T’), there is
an algorithm A that, with high probability, outputs a set of
k centers C C F such that:

cost,(X,w,C,T') < (a+¢€) - opt, (X, w,T).

Moreover, the running time of A is O(|.J|* - |S|).

Proof. The algorithm tries out all ordered subsets C
(c1,...,ck) of size k of J. For each such subset, one can
find an assignment o : S x [k] — R that is consistent with
I" and minimizes cost. (S, v, C,I"). This can be done by set-
ting up a suitable min-cost flow network. Thus, we can ef-
ficiently compute cost, (X, w, C,T"). Finally, we output the
subset C' for which cost, (X, w, C,T") is minimized. The de-
sired result follows easily from the properties of a universal
weak coreset. O

Note that if the coreset construction is efficient (i.e., poly-
nomial in n, k,1/¢) and the coreset size is f(k, ), for some
function f, then the above theorem gives an FPT (Fixed-
Parameter Tractable) approximation algorithm with param-
eter k. This means that as long as k is a fixed constant, the
algorithm runs in polynomial time. We now give efficient
constructions of universal weak coresets.

Universal Weak Coreset Construction

As described in the previous section, a universal weak core-
set is a pair (J, S) of sets. The set J comes with the guar-
antee that for any constrained clustering instance, J con-
tains a near-optimal center set for that clustering with high
probability. Our construction of the set J uses the results
of (Goyal, Jaiswal, and Kumar 2020). The main idea is to
use D?-sampling (with respect to a center set that gives
constant factor approximation for the unconstrained clus-
tering problem on the dataset) to sample sufficiently many
points from the dataset. This ensures that each cluster has a
good representation in the sample. This is sufficient to guar-
antee an approximation guarantee since a uniformly sam-
pled point from every cluster will be a good center in ex-
pectation. The set S, on the other hand, is constructed us-
ing the algorithm of (Braverman et al. 2022). The construc-
tion works by partitioning the points into poly(k/e) “rings”
based on the distance of the points from the nearest center
in a good k-center set for the unconstrained problem. It uni-
formly samples from rings with abundant points and read-
justs the weight of the chosen points. The sparse rings are
combined into groups, and two weighted points represent-
ing the entire group are given for each such group. More
details about the construction of these sets are given in the
subsequent discussions.

We now give an algorithm for constructing coresets. Re-
call that there are two sets in the definition of a universal
weak coreset: J and S. The set S represents the input points
that need to be clustered, whereas the set J represents the
potential center locations. We will construct these two sets
independently using two known lines of results.
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Constructing J: Let us first see the construction of the
set J that follows from developments on D?-sampling based
algorithms for the list-k-median/means problems (Goyal,
Jaiswal, and Kumar 2020; Bhattacharya et al. 2020) — the
idea of list k-MEDIAN or k-MEANS gave a unified way of
handling a large class of constrained clustering problems.

The following problem is addressed by (Goyal, Jaiswal,
and Kumar 2020; Bhattacharya et al. 2020). Given a cluster-
ing instance (X, F,w, k), and a parameter ¢ > 0, output a
list L = {C,...,C,}, where each C; C F is an ordered set
of k centers such that the following property is satisfied: for
any partition P, ..., Py of the point set, there exists a set of
k centers C' = (¢}, ..., ¢},) € L such that

>3 D) <(ate)d D D),

i€[k] x€EP; iclk] z€P;

where ¢} is the optimal center for P;. The goal is to mini-
mize the size ¢ of £ (the above property needs to hold with
high probability). To solve this problem, (Goyal, Jaiswal,
and Kumar 2020; Bhattacharya et al. 2020) find a suitable
set M C F (using a D?-sampling technique) and then it-
erate over all subsets of size k of M to generate the list L.
We state the relevant result from (Goyal, Jaiswal, and Kumar
2020) that we shall use to construct the set J.3

Theorem 2 ((Goyal, Jaiswal, and Kumar 2020)). There is
a randomised algorithm, that outputs a set M C F of size
(0] (poly(f)) with the following property: For any assign-
ment o : X x [k] — R, with high probability, there is a set
of k centers C := {cy,...,ck} € M such that:

k
> o(wi)- D@, e;)* <

i=1zeX
k
(3% +e)- Z Z o(z,1) - D(=, c})?,
i=1xeX
where (c},...,ct) is the optimal set of cen-
ters  that  respect o, ie, (c},...cp) =
. k .
argming, o) 2 im1 Dozex O(@,4) - D(x,5:). The

running time of this algorithm is O(n|M|).

It is not difficult to see that the set M in the above the-
orem is precisely the set J that we need for a 3%-universal
weak coreset. For the special case of X C F' (i.e., a center
can be located at any of the input points), (Goyal, Jaiswal,
and Kumar 2020) gave an improved guarantee of (2% + ¢)
instead of (3% + ¢). So, the same improvement transfers to
the universal weak coreset. For the Euclidean metric, (Bhat-
tacharya et al. 2020) used sampling ideas similar to (Goyal,
Jaiswal, and Kumar 2020) to give a result similar to Theo-
rem 2. However, the approximation guarantee here is (1+4¢)

and the size of M is (g)o(%). This gives a 1-universal weak
coreset property for the set J in the Euclidean setting.

*Note that the result in this particular form is not explicitly
stated in (Goyal, Jaiswal, and Kumar 2020) since this was not the
primary goal of that work. In particular, the result stated here is
a weighted version of the results in (Goyal, Jaiswal, and Kumar
2020). However, it follows from their analysis.
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Constructing the set S: Now we show how to con-
struct the desired set S. Here, we build on the recent
work of (Braverman et al. 2022) in designing “assignment-
preserving coresets” for k-MEDIAN and k-MEANS. Their
construction works by partitioning the points into O (k2e~%)
“rings” and then finding suitable (weighted) representatives
from each of these rings. The latter procedure requires clever
random sampling techniques. The selected representatives
Sg from a particular ring R satisfy the following condition:
for any set of k centers C, the total assignment cost to C' of
all the points in the ring R is close to that of Si. But one
would like this property to hold for all n* possible ways of
choosing C'. Thus, one needs to apply union bound over all
such possibilities, which results in a multiplicative factor of
klogn in the representative size from each ring.* As men-
tioned earlier, one hopes to avoid this barrier by constructing
weak coresets. Here, the number of possible choices for the
set C' reduces to |.J|* instead of n*. So, the klogn factor
needed in the size of the sampled set Sy from each ring R
gets replaced by k log |.J|. The trade-off is that instead of the
classical coreset allowing a (14-¢)-approximate solution, the
a-universal weak coreset only allows a (« + €)-approximate
solution. This is not a significant compromise if « is the best
approximation guarantee known for a constrained clustering
problem, which is true for several cases. We formally state
the result from (Braverman et al. 2022) that we shall use to
construct the set .S for our universal weak coreset.

Theorem 3 ((Braverman et al. 2022)). Consider a clus-
tering instance (X, F,w, k) and a parameter 6 € (0,1).
There is a randomised algorithm to construct a weighted
set T C X of size O (poly(g) -log %) with weight func-
tionv : T — R that satisfies the following property: given
a set C of k centers®,

VT, cost, (X, w,C,T) € (1te¢) - cost,(T,v,C,T),

holds with probability at least (1—0). Moreover, the running
time of the algorithm is O(n|T).

The construction of the desired set S using the above re-
sult follows from a direct application of union bound over
the choice of k center sets in the set .J.

Theorem 4. Consider a clustering instance (X, F,w, k).
There is a randomized algorithm for constructing a weighted
set S C X of size (poly(%) -log |J|) with weight function
v : S — RT such that the following event happens with high
probability: for every choice of C centers from J, |C| = k,
and every I':

cost, (X, w,C,T") € (1 £¢)-cost,(S,v,C,T).

Moreover; the running time of the algorithm is O(n|S)|).

The following results now follow from Theorem 4 and the
discussion after Theorem 2:

4Coreset constructions prior to (Braverman et al. 2022) (e.g.,
(Bandyapadhyay, Fomin, and Simonov 2021)) had another logn
factor coming from the number of rings. This bottleneck was re-
moved in (Braverman et al. 2022).

3Note that the statement is for a single set C' of centers and not
for every set of k centers.
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Theorem 5 (Main theorem: Metric k-MEDIAN). There is a
3-universal weak coreset (J, S,v) of size (poly (%)) for k-
MEDIAN (i.e., 2 1) objective in general metric spaces.
The time to construct such a coreset is O(n - (|J| + |S|)).

For the special case X C F', the guarantee in the above
theorem improves from 3 to 2.

Theorem 6 (Main theorem: Metric k-MEANS). There is a
9-universal weak coreset (J,S,v) of size (poly(g)) for k-
MEANS (i.e., z = 2) objective in general metric spaces. The
time to construct such a coreset is O(n - (|.J| +|S|)).

For the special case X C F, the guarantee in the above
theorem improves from 9 to 4.

Theorem 7 (Main theorem: Euclidean
k-MEDIAN/K-MEANS). There is a 1-universal weak
coreset of size (poly(g)) for k-MEDIAN and k-MEANS
objectives in the Euclidean metric. The time to construct

such a coreset is O (n(k/é)o(é)).

In the following section, we see applications of the results
above.

Applications

In this section, we apply the universal weak coreset con-
structions to solve constrained versions of the k-MEDIAN
and k-MEANS problems. As mentioned earlier, we can view
a universal weak coreset as a compression of the original
dataset. There are two ways of applying universal weak
coresets : (i) Execute a known algorithm for the specific
constrained problem on the compressed instance (J, S, v, k)
instead of (F, X, w, k), and (ii) Use the meta-algorithm de-
fined in Theorem 1 with appropriate modifications. We now
discuss some specific examples.

Clustering With Size-Based Constraints

We consider constrained clustering problems where, besides
optimizing the objective function, there are constraints on
the size of the clusters. For example, the r-gathering prob-
lem requires a lower bound of  on the size of every cluster.
Similarly, the capacitated clustering problem has an upper
bound on cluster size. These constraints try to capture a “bal-
ance” property that limits the variance in the cluster sizes.
We can model such size-constrained problems using the bal-
anced k-MEDIAN or k-MEANS problem. Here, in addition
to (F, X,w, k), an instance also specifies tuples (I1,...,{x)
and (uq, ..., ux); where I; and u; are the lower and upper
bound on the total weight of the i*" cluster, respectively.
For example, the r-gathering problem is obtained by setting
l; = r,u; = coforall i € [k]. Let us see how the 3-universal
weak coreset for k-MEDIAN objective from Theorem 5 im-
plies a 3-approximation algorithm for any instance of the
balanced k-MEDIAN problem (the extension to balanced k-
MEANS is analogous).

Theorem 8. Ler (J,S,v) be a 3-universal weak core-
set for an input instance (F,X,w,k). Let T
(F, X, w, k, (1, ..., k), (u1, ..., ux)) be an instance of the
balanced k-MEDIAN problem. Then there is a randomized
algorithm A, that with high probability, outputs a k center
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set C that is a (3 + €)-approximate solution for I. The run-
ning time of A is O(|J|* - |S]).6

Proof. Consider an optimal solution to Z, and let o(z,1)
denote the weight of point x assigned to cluster ¢. Define
r':= (>,o0(x1),...,>  o(x,k)). From the 3-universal
weak coreset property, there is a subset C of J, |C| = k,
such that costy (X, w,C,T) < (3 + &)opt(X,w,T’). More-
over, the set .S has the property that cost; (X, w,C,T") and
cost (S, v, C,T") are within (1+-¢) factor of each other. This
implies that if we try all possible choices of k centers C' from
J and, for each such C, find opt, (S, v, C,T’), then we can
compute opt, (X, w, I") within (3+ ¢) approximation factor.

The remaining issue is how to compute opt, (S, v, C,T")
for a given choice of C. We do not know I here, but we can
find the tuple I for which opt; (S, v, C,T”) is minimized.
Indeed, we can set up a minimum cost flow network where
we would like to assign the points fractionally to the cen-
ters in C, and for each center in C, we can assign lower and
upper bounds (i.e., [; and u;) for the amount of weight as-
signed to it. Solving this min-cost flow problem shall yield
the optimal choice of I'V. Minimizing over C' C J, |C| = k,
we can find opt, (X, w, T").

Combining the above ideas yields a (34 ¢) approximation
algorithm. O

The (9+¢)-approximation for arbitrary balanced versions
of the k-MEANS problem in general metrics follows on simi-
lar lines using the 9-universal weak coreset from Theorem 6.
Similarly, a (1 + £)-approximation for arbitrary balanced
versions of the k-MEDIAN and k-MEANS problems in Eu-
clidean metrics can be obtained using 1-universal weak core-
set from Theorem 7.

Fair Clustering and Other Labeled Versions

We now consider constrained clustering problems where
points have labels, i.e., we are given a label set L :=
{1,...,m}, and each point x has a label ¢(z) € L associ-
ated with it. Labels can capture disparate scenarios where
every client may be part of multiple (overlapping) groups
(e.g., groups based on gender, ethnicity, age, etc.). Every
unique combination of groups gets assigned a different label,
and hence m denotes the number of distinct combinations of
groups to which a point can belong. For alabel j € L, let X;
denote the set of points that are assigned label j. Consider
a clustering instance (X, F, w, k, £), where we have also in-
corporated the label mapping. The corresponding fair clus-
tering instance 7 is specified by an additional list of k pairs,
namely, (a1, 31), ..., (ak, Bk ). An optimal solution needs to
find a set of k centers, and an assignment o : X x [k] — RT
for all z € X, such that:
(i) For every j € [m] and i € [k], % € lai, Bil,
i.e., for every group, the fraction of weights assigned to

%The overall running time of the approximation algorithm, in-
cluding the time to construct the universal weak coreset is n -

poly(g) + (f)o(k).

the i*" cluster is in the range [, (3;]. This captures vari-
ous fairness notions for points that may belong to a par-
ticular group.

(i) The assignment cost, ie, Yo, Y owex o(x,1)
D*(x, ¢;), is minimized.

Our definition of universal weak coreset is for the case
m = 1, i.e., points have only one label, which may be in-
terpreted as the unlabeled case. However, we can extend the
notion of universal weak sets to multi-label settings.

Towards this, we recall that the set J constructed in the
previous section (Theorems 5 and 6) satisfies the following
property: for any assignment o : X x [k] — R™, there is a
(3% 4+ ¢)-approximate center set in J with respect to . More
specifically, let o0* denote the optimal assignment and let
C* = (cf, ..., ¢}) denote the optimal k centers that respects
o*. The property on set .J says that there exists k centers
C = (c1,....,cx) such that Y~ %" o*(x,4) - D(x,¢;)* <
(3% +¢e)- >, >, 0"(x,1) - D(x,cf)?. This means that as
long as our set S has the property that for any assignment
respecting the group constraint, the corresponding assign-
ment cost to any C' C J,|C| = k is about the same as
that of the point set X, we shall have a 3*-universal weak
coreset for the fair clustering problem as well. Here, we
note that we can execute the coreset construction from The-
orem 4 separately on each group and take a union of the cor-
responding coresets obtained. This larger set acts as a core-
set for the labeled dataset. We now formalize these ideas.
First, we extend the notion of a universal weak coreset to
the multi-labeled setting. In the unlabeled version, the as-
signment of weights to centers in a set C' was character-
ized by a tuple I" of size k. Since we have m labels now,
such an assignment needs to be specified for each label. In
other words, we now consider tuples I' of length mk, i.e.,
I = (tl,la ceey th, t271, ceey t27m, ceny tk,l; ceey tk,m), where
t;,; is meant to denote the total weight of points with label
j assigned to the i cluster. We can define an assignment
o analogously as a map X x [k] — RT. We say that o is
consistent with I, i.e., o ~ I if for every label j and cluster
7, erxj o(z,i) = t; ;. Similarly, for a set of centers C,

define cost, (X, w,C,T") as

k
cost, (X, w,C,T) = LIlNlII} {Z Z o(x,1) .D(x,ci)Z}.

i=1xeX

Again, opt, (X, w,I") can be defined as the optimum cost
over all choices of centers C. Now, the definition of a uni-
versal coreset (J,.S,v) in this setting is analogous to that
in Definition 1 — we need to satisfy conditions (A) and (B).

Theorem 9. There is a (3% + ¢)-universal weak coreset of
size (m . poly(g)) for constrained clustering in the multi-
labeled setting.

Proof. The set J is constructed as in the section on coreset
construction. In order to construct the set S, we apply The-
orem 4 to each of the sets Xj,...,X,, independently to
obtain sets Sy, ...,S,,. Finally, S := S; U...US,,. The
desired result follows from the properties of the universal
coreset. O
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Let us now see why a (3% +¢)-universal weak coreset can
be used for obtaining a (3* + ¢)-approximate solution for
multi-labeled constrained clustering problem in FPT time
(fixed-parameter tractable time). We state the result for the
k-MEDIAN objective in general metric spaces. Similar re-
sults will hold for k-MEANS in general metric spaces (i.e.,
(9 + ¢)-approximation) and k-MEDIAN or k-MEANS objec-
tives in Euclidean spaces (i.e., (1 4 €)-approximation).

Theorem 10. Let (J, S, v) be a 3-universal weak coreset for
a multi-labeled clustering instance (F, X, w, k, ). Consider
an instance L of the constrained clustering problem speci-
fied by a set of pairs {(a1,01), ..., (o, Br) }. Then there is
a randomized algorithm A, which on input T and (J, S,v)
outputs a (3+¢)-approximate solution with high probability.
The running time of A is |J|* - (mk)©(mFk) . O,

Proof. The proof proceeds along the same line as that for the
unlabeled case. We try all |.J|¥ possible k centers (cy, ..., cx)
from J and solve the “assignment” problem: find the best
fair assignment for the given choice of (cy, ..., cx). Our 3-
universal weak coreset guarantees the existence of a (3+¢)-
approximate solution within J. So, if we can solve the
assignment problem optimally, we can find that (3 + ¢)-
approximate solution in J. Such an assignment algorithm
was given by (Bandyapadhyay, Fomin, and Simonov 2021)
(see Theorem 8.2). The running time of this assignment find-
ing algorithm is (mk)P(") . nO1), O

l-diversity clustering Another well-known constrained
clustering problem in the labeled setting is the [-diversity
problem. Here, the goal is to cluster the point set X into
clusters (X1, ..., Xj) such that each cluster has at least 1/!
fraction of the points from each label. Again, the goal is to
minimize the k-MEDIAN or k-MEANS assignment cost.

As above, we can use the universal weak coreset construc-
tion from Theorem 10 to obtain a (3% + )-approximation
algorithm for this problem. Here, we can use the algorithm
of (Ding and Xu 2020) to solve the corresponding assign-
ment problem.

Discussion and Open Problems

Classical coresets come with the promise that they help
obtain an approximate solution to the k-MEANS or the k-
MEDIAN objective in a metric space. This promise holds
for most known metric spaces. However, there are cer-
tain metrics where a specific approximation guarantee can-
not be obtained using a classical coreset. The reason is
that the approximation algorithm with such a guarantee
does not work on weighted inputs. Note that a classical
coreset is a weighted set. For example, a recent develop-
ment (Chakraborty, Das, and Krauthgamer 2023) in the k-
MEDIAN problem in the Ulam metric has broken the 2-
approximation barrier. However, their (2— §)-approximation
algorithm works only on unweighted input permutations. So,
the classical coreset framework does not help in this set-
ting. On the other hand, the universal weak coreset frame-
work may still be applicable. The reason is that even though
we cannot run the approximation algorithm on the set S to
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find a good center set, we can use S to locate a good cen-
ter set from J using the cost preservation property of .S. So,
an interesting open question is whether there is a (2 — 0)-
universal weak coreset for the Ulam k-median problem. In
general, in cases where the guarantee of the set S is lim-
ited to cost preservation, i.e., S represents the data only in
a limited sense, a universal weak coreset is a more appro-
priate object to use. It will be interesting to see if there are
problems other than the Ulam k-median problem with this
property.

Note that there are one pass streaming algorithms for
constructing the set S because coresets have composability
property (Chen 2009); and there is a constant-pass streaming
algorithm for constructing the set .J (the algorithm for con-
structing M in Theorem 2 can be implemented in streaming
settings). Thus, both J and S can be constructed in a con-
stant pass streaming setting. We leave it an open problem
to design a single-pass streaming algorithm for a universal
weak coreset.

Although we give 3-universal weak coreset constructions
of size independent of any function of n for k-MEDIAN (and
a similar result for k-MEANS), it remains an open prob-
lem to construct an a-universal weak coreset for a constant
a < 3, even for general metric spaces. This will help in
obtaining a better than 3 approximation algorithm for sev-
eral constrained k-MEDIAN problems for which the best-
known approximation bound is 3 (similarly a better than 9-
approximation for k-MEANS).
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