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Abstract

In recent years, Few-shot Object Detection (FSOD) has be-
come an increasingly important research topic in computer
vision. However, existing FSOD methods require strong an-
notations including category labels and bounding boxes, and
their performance is heavily dependent on the quality of box
annotations. However, acquiring strong annotations is both
expensive and time-consuming. This inspires the study on
weakly supervised FSOD (WS-FSOD in short), which re-
alizes FSOD with only image-level annotations, i.e., cate-
gory labels. In this paper, we propose a new and effective
weakly supervised FSOD method named WFS-DETR. By a
well-designed pretraining process, WFS-DETR first acquires
general object localization and integrity judgment capabili-
ties on large-scale pretraining data. Then, it introduces ob-
ject integrity into multiple-instance learning to solve the com-
mon local optimum problem by comprehensively exploit-
ing both semantic and visual information. Finally, with sim-
ple fine-tuning, it transfers the knowledge learned from the
base classes to the novel classes, which enables accurate de-
tection of novel objects. Benefiting from this “pretraining-
refinement” mechanism, WSF-DETR can achieve good gen-
eralization on different datasets. Extensive experiments also
show that the proposed method clearly outperforms the exist-
ing counterparts in the WS-FSOD task.

Instruction
Object detection is a fundamental task in computer vision
and has achieved great success in many practical scenar-
ios. Currently, deep learning based techniques such as Faster
R-CNN (Ren et al. 2015), YOLO (Redmon and Farhadi
2018), and DETR (Carion et al. 2020) have become main-
stream. Typically, these methods rely on substantial amounts
of well-annotated data to train models that can accurately
recognize and localize the objects. Nevertheless, collecting
and annotating such data is extremely expensive and time-
consuming, which limits their applications.

In recent years, few-shot object detection (FSOD) has
emerged as a promising direction, which aims to achieve
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Figure 1: A conceptual comparison among general weakly
supervised object detection (WSOD), few-shot object detec-
tion (FSOD), and weakly supervised few-shot object detec-
tion (WS-FSOD). Here, on the left, red texts and boxes are
annotations; And on the right, yellow texts and boxes are de-
tected results.

effective object detection using only a small amount of an-
notated data of novel classes. However, to train the FSOD
model (Chen et al. 2019), we still have to collect a large
amount of strongly annotated training data for the base
classes, including the category and the bounding box of each
object of each target class in each training image, which
incurs huge annotation cost. Moreover, the performance of
FSOD models heavily relies on the quality of box annota-
tions. But, due to the complexity of images and the diversity
of object morphology, it is difficult to guarantee the quality
of the box annotations, which inevitably impacts the perfor-
mance of the models.

To alleviate the annotation problem, recently a few works
have tried to incorporate weakly supervised learning into
FSOD (Karlinsky et al. 2021; Shaban et al. 2022; Gao et al.
2019). StarNet (Karlinsky et al. 2021) stands for the first
weakly supervised FSOD (WS-FSDO) effort that utilizes a
star model to perform non-parametric geometric matching
between support and query images. However, its computa-
tional complexity will significantly increase when handling
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high-resolution images, which is a critical issue in object de-
tection. Furthermore, the prediction boxes of StarNet are di-
rectly generated by off-the-shelf CAM algorithms (Selvaraju
et al. 2017), which makes it inherently face the discrimi-
native region problem in weakly supervised object detec-
tion (WSOD). vMF-MIL (Shaban et al. 2022) and NOTE-
RCNN (Gao et al. 2019) still need lots of strongly anno-
tated data, so they do not strictly follow the WS-FSOD set-
ting. Fig. 1 illustrates the differences among the three tasks:
WSOD, FSOD, and WS-FSOD.

In this paper, we propose a novel WS-FSOD method
called WFS-DETR, which strictly follows the settings of
WS-FSOD, and the whole training process does not require
any box annotations. Compared with fully supervised FSOD
methods, our method is more practical for real-world sce-
narios. WFS-DETR adopts a pretraining-refinement mecha-
nism. First, an initial object localization network is trained
through pretraining. Data augmentation and knowledge dis-
tillation are employed to enable DETR to acquire gen-
eral object localization and integrity judgment capabilities.
Then, a progressive refinement network is developed for
weakly supervised training and tuning, following the Base-
training + Fine-tuning paradigm in FSOD.

Specifically, the purpose of our pretraining is to equip the
detector with the ability to locate and determine the integrity
of foreground objects. Instead of non-parametric proposal
generation (e.g. random cropping or selective-search) as in
previous works, we train an Attention-based Localization
Network (ALN) to generate more accurate proposals. With
the benefit of long-range modeling by vision transformer,
ALN can effectively localize objects in images. Then, we
utilize data augmentation to expand the diversity of propos-
als generated by ALN and jointly train ALN and DETR to
distill knowledge to the detector. In the refinement phase, we
jointly train DETR with a multiple-instance learning (MIL)
structure and perform progressive refinement. Furthermore,
we design the refinement strategy by incorporating both cat-
egory confidence and object evidence. This enhancement
provides more accurate supervision information for the re-
finement process and effectively addresses the problem of
discriminative regions.

In summary, the contributions of this paper are as fol-
lows: (1) We propose a novel WS-FSOD method, which
is the first WS-FSOD work based on DETR. Our method
can precisely detect objects of novel classes using solely
image-level label supervision. (2) We develop a pretraining-
refinement mechanism to address the discriminative region
problem in WS-FSOD. Our approach includes a Pretraining-
Distillation Localization Learning (PDLL) strategy to en-
hance the model’s object localization and integrity judgment
capabilities. Notably, PDLL stands as the first pretrain-
ing strategy tailored exclusively for WSOD. Additionally,
we introduce a Dual-factor Driven Progressive Refinement
(DDPR) strategy, leveraging semantic and visual informa-
tion to overcome local optimum challenges. (3) We conduct
extensive experiments on benchmark datasets, which show
that the proposed method significantly outperforms the state-
of-the-art methods, validating its effectiveness.

Related Work
Weakly Supervised Object Detection
Weakly supervised object detection (WSOD) tries to train
an object detector using images with only image-level cat-
egory labels. Existing WSOD methods can be mainly di-
vided into class activation map based (CAM) methods (Zhou
et al. 2016) and multiple-instance learning (MIL) (Maron
and Lozano-Pérez 1997) based methods. Recently, MIL-
based methods (Bilen and Vedaldi 2016; Tang et al. 2017,
2018; Zeng et al. 2019) have gradually become mainstream.
Although previous works have paid great efforts, there are
some problems that still have no satisfactory solution, such
as discriminative regions and missed detections. These prob-
lems may be caused by the ”enumerate-select” paradigm for
localization and rudimentary refinement strategies.

Few-Shot Object Detection
Few-shot object detection (FSOD) aims to detect objects
with only a few annotated instances. Currently, there are
two main FSOD paradigms. Inspired by few-shot learning,
most existing few-shot detection methods adopt the periodic
meta-learning paradigm to transfer knowledge from base
classes to novel classes (Kang et al. 2019; Yan et al. 2019;
Yang and Renaud 2020; Fan et al. 2020; Hu et al. 2021;
Zhang et al. 2021b,a). Recently, some approaches use a sim-
ple fine-tuning paradigm and demonstrate superior perfor-
mance (Wang et al. 2020; Sun et al. 2021; Qiao et al. 2021;
Fan et al. 2021; Wu et al. 2022; Pei et al. 2022).

Weakly Supervised FSOD
All existing FSOD methods demand full annotations for
both base and novel classes, making data collection labor-
intensive and costly. To tackle this, weakly supervised few-
shot object detection (WS-FSOD) is introduced, training
models with images labeled only at the category level. De-
spite its increased difficulty, WS-FSOD proves to be more
practical. Currently, limited related works exist in this area.
However, as we point out in the “Introduction” section, these
works (Karlinsky et al. 2021; Shaban et al. 2022; Gao et al.
2019) either cannot handle high-resolution images, or still
require a large amount of strongly labeled data, which does
not fully follow the WS-FSOD setting.

Different from existing works, our WFS-DETR strictly
follows the WS-FSOD setting and is the first work built
on Deformable DETR with an innovative pretraining-
refinement mechanism where the model shows precise
object localization capability, instead of relying on non-
parametric methods for coarse search as in previous works.

Method
Problem Formulation
Given all the classes C, which consist of base classes Cb and
novel classes Cn, we have Cb ∪ Cn = C and Cb ∩ Cn = ∅.
Different from few-shot object detection (FSOD), all train-
ing images of both base classes in Cb and novel classes in Cn
have only image-level category labels. In the whole train-
ing data Dtrain, there are abundant base class data Db, but
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Figure 2: The Framework of WFS-DETR, where PDLL means Pretraining-distillation localization learning strategy and DDPR
means Dual-factor driven progressive refinement strategy. The training process consists of a pretraining phase and a refinement
phase. During pretraining, we first train an Attention-based Localization Network (ALN) and then distill its localization ca-
pability to the detector. In the refinement phase, we refine the predictions via a progressive structure containing K refinement
layers by comprehensively utilizing class confidence and object evidence.

a small amount of novel class data Dn where each class has
only dozen of or a few training images. Db ∪ Dn = Dtrain

and Db ∩ Dn = ∅. Db and Dn are used for base-training
and fine-tuning, respectively. Additionally, box annotations
are used only for evaluating the model in the testing phase.

Framework
The framework of WFS-DETR is shown in Fig. 2, which is
based on Deformable DETR. The training process is divided
into two stages: the PDLL guided pretraining and the DDPR
guided refinement. In pretraining, we use large-scale weakly
labeled data (e.g. ImageNet (Deng et al. 2009)) to help the
model obtain general object localization capability. Con-
cretely, we first freeze the detector and train an Attention-
based Localization Network (ALN). Then, we jointly train
the localization network and the detector, distilling the local-
ization capability learned by ALN to the detector. In refine-
ment, we follow the common Base-training + Fine-tuning
paradigm in FSOD. We progressively refine the detector
by comprehensively leveraging the semantic distinction and
foreground integrity of the predictions to obtain more accu-
rate prediction results.

Pretraining-Distillation Localization Learning
WSOD faces two major problems: inaccurate object local-
ization and missed detection. The scarcity of training data in
WS-FSOD makes these problems even worse. These prob-
lems are stemmed from poor object localization. Specif-
ically, existing methods mostly follow the “enumerate-
select” paradigm to locate objects, that is, first using non-
parametric methods (e.g. selective-search or edge box) to
generate initial proposal boxes and then selecting a part of
these proposals as the object localization results. However,
the proposals generated by non-parametric methods are usu-

ally of low quality and redundancy. Considering that the
initial proposals are critical to WS-FSOD performance, the
object localization strategy in previous works actually con-
strains their performance.

In general object detection, pretraining is widely used to
improve the object localization performance of DETR de-
tectors, but in WSOD, the absence of box annotations makes
pre-training methods unsuitable (e.g. UP-DETR (Dai et al.
2021) and DetReg (Bar et al. 2022)). Without accurate box
supervision, the localization performance of detectors is dif-
ficult to be optimized. Consequently, the performance of the
WS-FSOD models trained with low-quality pseudo boxes
and without any further optimizations will be unsatisfactory.

For effective WS-FSOD, we design a Pretraining-
Distillation Localization Learning strategy (PDLL), the
first pretraining approach tailored exclusively for WSOD.
Initially, we train an Attention-based Localization Net-
work (ALN) using abundant pretraining data for initial
object localization. Then, through localization distillation
learning, we enhance and transfer the ALN’s localization
capability to the detector, endowing the model with general
object localization and integrity judgment capabilities.

Attention-based localization network. Some
works (Gao et al. 2021; Xu et al. 2022; Gupta et al.
2022) have shown that the vision transformer is able to
model the entire object well due to its long-range feature
dependence, which is ideal for locating objects in the im-
ages accurately. However, these works rely on single-scale
vision transformers like DeiT (Touvron et al. 2021). As a
consequence, they are not directly applicable to object de-
tection tasks, which demand a multi-scale feature-producing
backbone for identifying objects of varying sizes. While
the swin transformer is often used as a detector backbone,
its window attention and sliding window mechanisms
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Figure 3: The structure of ALN, which consists of K multi-
head self-attention blocks, is inserted after the 3-th stage of
the detector backbone (swin transformer).

fall short of capturing comprehensive global information
interactions, impeding thorough object modeling. Motivated
by prior research, we introduce the Attention-based Local-
ization Network (ALN). Comprising multiple multi-head
self-attention blocks, ALN serves as a plug-in module
compatible with various multi-scale ViT backbones, such as
the swin transformer. This integration produces refined pro-
posal boxes crucial for effective pretraining and ultimately
enhances object detection performance.

As shown in Fig. 3, ALN consists of K multi-head self-
attention blocks and is inserted after the 3-th stage of the
detector backbone (e.g. swin transformer). A learnable class
token tc is fed into ALN to make information interaction
with the patch tokens tns:

t∗c+n = Attnmulti([tc, tns]WQ, [tc, tns]WK , [tc, tns]WV )

= A∗
c+n[tc, tns]WV (1)

where Attnmulti is the standard multi-head self-
attention (Vaswani et al. 2017). We take the last N
columns of t∗c+n ∈ RD×(1+N) from the last block of ALN
to obtain patch tokens t∗n ∈ RD×N , and then use a FC
layer parameterized by WC = [w1, ..., wC ], wi ∈ RD×1 to
map t∗n to class-aware patch tokens. Finally, the class-aware
patch tokens are reshaped to t∗

n′ ∈ RC×W×H . By opti-
mizing ALN with LALN , we can assign class semantics to
patch tokens:

LALN = −log(
exp[GAP (T (t∗n)wj)]∑C
i exp[GAP (T (t∗n)wi)]

) (2)

where T (·) is the matrix transpose operation.
Then, we obtain the average attention map Ā∗

c+n ∈
R(1+N)×(1+N) of K blocks and get the class-agnostic at-
tention vector by taking the last N columns of the first row
in Ā∗

c+n and reshape it to Ā∗ ∈ R1×W×H . The attention
maps for different classes are generated by multiplying the
class-agnostic Ā∗ with the class-aware t∗

n′ . Finally, the lo-
calization result ResultLoc is obtained by applying thresh-
old filtering and the minimum rectangular algorithm to the
attention map:

ResultLoc = MMR(Thr(Ā∗ ⊗ t∗
n′ )) (3)

Localization distillation learning. As shown in Stage I
of Fig. 2, for a proposal box bori = [x1, y1, x2, y2] pro-
duced by ALN, we use box augmentation (Feng, Zhong, and
Huang 2021) to generate a set of augmented proposal boxes
around bori. By increasing the diversity of proposal boxes
both in shape and position, the proposal boxes are able to
cover the whole object as accurately as possible:

baug = [x1±α1∗w, y1±α2∗h, x2±α3∗w, y2±α4∗h] (4)

where w = x2 − x1, h = y2 − y1. α is a random num-
ber obtained from [0, 1

6 ]. This value range ensures that the
IoU between the augmented proposal boxes and the orig-
inal one is greater than 0.5 in all cases, effectively pre-
venting the augmented proposal boxes from deviating from
the objects. We define the augmented M proposal boxes as
y = {(bi, oi)}Mi=1, where bi and oi are the box coordinates
and the objectness score of the i-th proposal respectively.
After augmentation, y can cover different foreground ob-
jects well, and we use y as supervision to distill the object
localization ability from ALN to DETR. Specifically, first
we match the prediction results of DETR ŷ = {(b̂i, ôi)}Mi=1
to y (padded with no object ∅) via the Hungarian bipartite
matching algorithm (Carion et al. 2020):

σ̂ = argmin
σ∈SN

N∑
i

Lmatch(yi, ŷσ(i)) (5)

where Lmatch follows DETR (Carion et al. 2020). Using the
best matching sequence σ̂, we calculate the distillation loss
Ldis as follows:

Ldis =
N∑
i

λobjLobj(oi, ôσ̂(i))+1{oi ̸=∅}λboxLbox(bi, b̂σ̂(i))

(6)
where Lobj is implemented via binary cross entropy loss,
and Lbox is based on the Smooth L1 loss and the Distance-
IoU loss (DIoU) (Zheng et al. 2020). Compared with GIoU
loss (Rezatofighi et al. 2019) used in DETR (Carion et al.
2020), DIoU loss handle the common problem of discrimi-
native regions in WSOD better, i.e., the prediction box oc-
cupies only a portion of the GT box.

Dual-Factor Driven Progressive Refinement
Multiple-instance learning (MIL) paradigm is widely used in
WSOD (Bilen and Vedaldi 2016), and some WSOD works
try to apply progressive refinement structures with MIL to
optimize the detection results layer-by-layer (Tang et al.
2017, 2018). However, these methods are usually trapped by
the discriminative region problem because they focus merely
on optimizing with classification scores while ignoring the
integrity of the objects. To address this challenge, we pro-
pose a Dual-factor Driven Progressive Refinement strategy
for multiple instance learning (DDPR), which tackles this
problem by both taking both class confidence and object ev-
idence into account.

Accurate supervision mining. In order to alleviate the
discriminative region problem, WSOD2 (Zeng et al. 2019)
takes superpixel maps as object evidence into account to op-
timize object localization. However, there exist two main
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problems: (1) When being applied to different datasets, su-
perpixel maps must be regenerated, which incurs high costs.
(2) WSOD2 (Zeng et al. 2019) utilizes selective-search
to generate initial proposal boxes, while the principle of
selective-search is merging superpixels to generate proposal
boxes, which is essentially the same as superpixel maps. As
a consequence, it is difficult for superpixel maps to provide
effective object evidence for the generation of accurate pro-
posal boxes. As shown in Stage II of Fig. 2, we introduce a
novel refinement strategy that does not incur additional cost
and leverages the results of pretraining to obtain accurate
supervision effectively.

For an image I having only image-level category label
Y = [y1, ..., yC ]

T ∈ RC×1, where yc = 1 or 0 in-
dicates the presence or absence of an object class c, our
basic decoder generates a set of proposal boxes P̂0 =

{(b̂0i , ô0i , ĉ0i , d̂0i )}Ni=1, where b̂0i ∈ R1×4, ô0i ∈ R1×1, ĉ0i ∈
R1×C and d̂0i ∈ R1×C indicate the box coordinates, object-
ness score, classification score, and detection score respec-
tively. As shown in Eq. (7), we can obtain the image-level
classification result Ŷ = [ŷ1, ..., ŷC ]

T ∈ RC×1 of image
I by aggregating classification scores {ĉ0i }Ni=1 and detection
scores {d̂0i }Ni=1 of N proposal boxes together:

Ŷ =
∑N

i=1

{
eĉ

0
i∑C

k=1 e
ĉ0ik

⊙ ed̂
0
i∑N

i=1 e
d̂0
ik

}
(7)

As shown in Eq. (8), the basic MIL classifier is optimized
by Lmil:

Lmil =
∑C

c=1 {yc log ŷc + (1− yc) log(1− ŷc)} (8)

In order to produce more accurate proposal boxes, we
construct K refinement layers to generate refined predic-
tions P̂j = {(b̂ji , ô

j
i , ĉ

j
i )}

N,K
i=1,j=1 from the proposal boxes

P̂0 generated by the basic refinement decoder.
After pretraining, our detector is equipped with the class-

agnostic localization capability and is able to produce ob-
jectness scores to evaluate the completeness of the predicted
foreground object boxes. This process is of no additional
computation cost, and the objectness score has excellent
generalization. Therefore, we utilize the objectness score
as object evidence and then consider the class confidence
as well as the object evidence comprehensively to select
more precise supervision proposals. In the (k − 1)-th re-
finement layer, for proposal p̂k−1

i , we first calculate its se-
lection score Sk−1

i = ôk−1
i ∗ ĉk−1

i by using the class con-
fidence and the object evidence. And then all the proposal
boxes will be sorted by the selection scores {Sk−1

i }Ni=1. Af-
ter applying NMS (No Max Suppression) to the sorted pro-
posals, we will obtain a set of supervision proposal boxes
Pk−1
s = {(bk−1

i , ok−1
i , ck−1

i )}Ns
i=1.

Following that, we make a match between Pk−1
s and the

proposals P̂k generated in the k-th refinement layer. For a
proposal p̂ki in P̂k, if there exists a set of proposal boxes
{pk−1

j }ns
j=1 in Pk−1

s where each proposal has a IoU score
with p̂ki over the threshold ϕ, then the proposal in {pk−1

j }ns
j=1

has the highest IoU score with p̂ki will be selected as the su-
pervision proposal for p̂ki . All proposals in P̂k that success-
fully match the proposals in Pk−1

s compose the ROI pro-
posal set P̂k

r = {(b̂ki , ôki , ĉki )}
Nr
i=1. Pk−1

s acts as supervision
to P̂k

r , and the refinement loss Lk
ref is calculated between

Pk−1
s and P̂k

r to refine the k-th class predictor and object-
ness predictor:

Lk
ref = − 1

|Nr|

Nr∑
i=1

(ck−1
j ∗ ok−1

j )(CE(ck−1
j , ĉki )

+BCE(ok−1
j , ôki ))

where match(pk−1
j , p̂ki ) = 1.

(9)

With the supervision of Pk−1
s , the discriminative informa-

tion captured by the small proposals will be delivered to the
overlapping large proposals, and the object evidence of large
proposals will, in turn, be passed to the small ones simulta-
neously. This bi-directional exchange of information effec-
tively improves detection accuracy.

Experiments
Training and Inference Details
Model training. Our method follows the pretraining-
refinement mechanism. In the pretraining phase, we utilize
the pretraining dataset (e.g., ImageNet (Deng et al. 2009)) to
train the ALN and then distill its object localization and in-
tegrity judgment capabilities into the detector. The learning
target is formulated as:

LP = λPLALN + (1− λP )Ldis (10)

where λP is the hyperparameter used to control the learning
target. During the first half of pretraining, we set λP to 1 to
train the ALN alone. During the second half of pretraining,
we set λP to 0.5 to jointly train ALN and DETR, distilling
the knowledge learned by ALN to DETR. After pretraining,
our model is equipped with general object localization and
integrity judgment capabilities and is able to be generalized
to other datasets without repeating the pretraining.

In the refinement phase, we refine our model on the train-
ing dataset. The learning target is formulated as follows:

LR = Lmil + λ1

∑K
k=1L

k
ref + λ2Lbox (11)

where λ1,λ2 are the hyperparameters used to balance the
loss function, and we set λ1=1,λ2=10. Other hyperparame-
ters of the refinement structure are set following OICR (Tang
et al. 2017) (e.g., K=3).

Model inference. We use the mean of the classification
scores output by K refinement class predictors as the class
confidence result and the outputs of the box predictor as the
box prediction results.

Experimental Setting
Existing benchmarks. Following the only previous work
StarNet (Karlinsky et al. 2021) in WS-FSOD, we takes
three benchmark datasets for evaluation: ImageNetLoc-FS,
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Method Dataset 1-shot 5-shot
AP30 AP50 AP30 AP50

MetaOpt+GC (Lee et al. 2019)

ImageNetLoc-FS

32.4 13.8 51.9 22.1
MetaOpt+SS (Lee et al. 2019) 16.1 4.9 27.4 10.2

PCL (Tang et al. 2018) 25.4 9.2 37.5 11.3
CAN (Hou et al. 2019) 23.2 10.3 38.2 12.7

WSOD2 (Zeng et al. 2019) 25.8 10.9 39.8 12.8
StarNet (Karlinsky et al. 2021) 50.0 26.4 63.6 34.9

WFS-DETR (ours) 58.4 45.3 68.3 52.8
MetaOpt+GC (Lee et al. 2019)

CUB-200

53.3 12.0 72.8 14.4
MetaOpt+SS (Lee et al. 2019) 19.4 6.0 26.2 6.4

PCL (Tang et al. 2018) 29.1 11.4 41.1 14.7
CAN (Hou et al. 2019) 60.7 19.3 74.8 26.0

WSOD2 (Zeng et al. 2019) 47.8 16.2 54.6 18.7
StarNet (Karlinsky et al. 2021) 77.1 27.2 86.1 32.7

WFS-DETR (ours) 84.4 42.6 92.5 53.4
TFA(fully-supervised upper bound) PASCAL VOC - 31.4 - 46.8

StarNet (Karlinsky et al. 2021) 34.1 16.0 52.9 23.0
WFS-DETR (ours) (average over 5-way sets) 36.2 23.2 55.3 31.5

Table 1: Comparison with SOTAs on ImageNetLoc-FS, CUB-200 and PASCAL VOC. GC = GradCAM (Selvaraju et al. 2017),
SS = Selective-Search (Uijlings et al. 2013).

CUB-200 and PASCAL VOC. For ImageNetLoc-FS (Eli
et al. 2019), we divide the total 331 classes into three sets:
101 base classes for base-training, 214 novel classes for
fine-tuning and evaluation, and 16 classes for validation. For
CUB (Wah et al. 2011), we split the 200 classes into three
sets: 100 base classes for base-training, 50 novel classes for
fine-tuning and evaluation, and 50 classes for validation. For
PASCAL VOC (Everingham et al. 2010) we divide the total
20 classes into two sets: 15 base classes for base-training,
5 novel classes for fine-tuning and evaluation. In the base-
training phase, all base data are used for training. In the
fine-tuning phase, we follow the “N-way K-shot” training
paradigm in FSOD.

Implementation details. We conduct experiments on the
Deformable DETR (Zhu et al. 2020) detector with swin
transformer-s (Liu et al. 2021) as backbone. Please refer to
our supplementary material for more details.

Comparison with Existing Methods
We compare our method with the WS-FSOD SOTA Star-
Net (Karlinsky et al. 2021) and other WSOD SOTAs both
on ImageNetLoc-FS (Eli et al. 2019), CUB-200 (Wah et al.
2011) and PASCAL VOC (Everingham et al. 2010). The box
annotations in the dataset are only used for evaluation. To
mitigate the influence of randomness, we conduct numerous
5-way-1/5 shot tests and compute the average as the final
result. Please refer to our supplementary material for more
training details.

As shown in Tab. 1, our WFS-DETR method outper-
forms all the compared methods in any shot and all met-
rics, demonstrating our method’s effectiveness and superi-
ority in WS-FSOD. On ImageNetLoc-FS, for 1-shot, our
method surpasses StarNet (Karlinsky et al. 2021) by 8.4 %

and 18.9 % in terms of AP30 and AP50. With the growth
of the number of shots, our method always keeps advanta-
geous. For 5-shot, our method outperforms StarNet (Karlin-
sky et al. 2021) by 4.7 % and 17.9 % in AP30 and AP50,
respectively. Specifically, our method performs significantly
better than the previous SOTA method (Karlinsky et al.
2021) in terms of the AP50, which requires higher localiza-
tion accuracy. Experiments indicate that our method is able
to accurately detect the entire object rather than the parts, ef-
fectively tackling the most challenging discriminative region
problem in WS-FSOD.

We also compare our method with TFA (Wang et al.
2020), a representative method in fully supervised FSOD,
on PASCAL VOC. With only image-level category labels,
our approach approaches the upper performance bound set
by fully supervised TFA, outperforming StarNet.

Ablation Study
Here we conduct ablations on ImageNetLoc-FS (Eli et al.
2019). To minimize the impact of randomness, we take the
average of numerous experiments as the final result.

Effect of pretraining strategy. In this study, we inves-
tigate the impact of pretraining strategy on model perfor-
mance. As shown in Tab. 2, we compare the effects of differ-
ent pretraining strategies on the model’s performance. When
the model is pretrained by pseudo boxes generated by non-
parametric methods such as random crop, edge box (Zit-
nick and Dollár 2014), and selective-search (Uijlings et al.
2013), its performance is poor. This could be attributed to
the poor quality of the boxes generated by non-parametric
methods. The boxes generated bring excessive background
noise to the localization pretraining, hindering the detection
performance. By utilizing ALN to generate pseudo boxes for
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Pretraining Strategy 1-shot 5-shot
AP30 AP50 AP30 AP50

pretrained with RC 14.3 5.1 22.6 6.9
pretrained with EB 21.2 8.3 30.4 9.7
pretrained with SS 19.6 7.4 31.2 10.2

pretrained with ALN 58.4 45.3 68.3 52.8

Table 2: Ablation study on pretraining strategy. Here,
’RC’,’EB’,’SS’, and ’ALN’ refer to random crop, edge box,
selective-search and the attention-based localization net-
work, respectively.

CC OE 1-shot 5-shot
AP30 AP50 AP30 AP50

47.3 28.9 62.4 37.2
✓ 53.4 40.2 64.7 49.6

✓ 51.2 38.3 62.8 46.1
✓ ✓ 58.4 45.3 68.3 52.8

Table 3: Ablation study on refinement strategy. Here,
’CC’and ’OE’ mean class confidence and object evidence.

pretraining, the performance is improved significantly. This
demonstrates the importance of high-quality pretraining.

Effect of pretraining proportion. Here, we examine how
the size of the pretraining dataset impacts model perfor-
mance, considering two factors: the number of images and
the diversity of categories. As illustrated in Fig. 4, we divide
the pretraining dataset into different groups based on image
count and category variety.

From an image standpoint, different groups share the
same total categories but differ in image quantities. Regard-
ing categories, different groups have varying category num-
bers while maintaining uniform images per category. No-
tably, when the pretraining dataset reaches 40% of the total,
performance has been close to the maximum. When a sub-
set Cs of categories C is pretrained with all its images, per-
formance increases with Cs

C until 80%, when performance
peaks. This highlights the greater impact of training cate-
gories over the number of images on performance and en-
courages efficient pretraining with a subset covering all orig-
inal C categories.

Effect of DDPR. As shown in Tab. 3, we explore the ef-
fect of the two factors: class confidence CC and object ev-
idence OE. The detector trained without refinement acts as
the baseline. The results presented in Tab. 3 show that the
improvements brought by individually using the class confi-
dence or object evidence for refinement are close. While by
comprehensively considering the optimization of classifica-
tion and localization, the cooperation of the two factors is
able to make effective refinement and significantly improve
the model performance.

Visualization results. Examples of the detection results
are shown in Fig.5. Compared with other methods (Tang
et al. 2017; Karlinsky et al. 2021), WFS-DETR locates ob-
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Figure 4: Ablation study on the size of the pretraining
dataset. To strictly follow the few-shot setting, we remove
all categories contained in the training dataset.

(a) GT (b) OICR (c) StarNet (d) WFS-DETR

Figure 5: Comparison of WS-FSOD results. (a) ground
truth. (b) OICR. (c) StarNet. (d) WFS-DETR. The GT boxes
are in blue, and the prediction boxes are in red.

jects more accurately and solves the problem of discrimina-
tive regions, which proves the effectiveness of our method.

Conclusion

In summary, we propose WFS-DETR, the first WS-FSOD
work based on DETR, which leverages a pretraining-
refinement mechanism to address the problem of discrimina-
tive regions. We enhance the detector’s robustness in object
localization and integrity judgment using the vision trans-
former (ViT) with pretraining and knowledge distillation
and refine the model progressively by integrating object in-
tegrity into the multiple-instance learning (MIL) structure.
Experiments on WS-FSOD benchmark datasets show that
WFS-DETR achieves state-of-the-art performance, demon-
strating the effectiveness of our approach.
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Maron, O.; and Lozano-Pérez, T. 1997. A framework for
multiple-instance learning. Advances in neural information
processing systems, 10.
Pei, W.; Wu, S.; Mei, D.; Chen, F.; Tian, J.; and Lu, G. 2022.
Few-Shot Object Detection by Knowledge Distillation Us-
ing Bag-of-Visual-Words Representations. In Proceedings
of the European Conference on Computer Vision, 283–299.
Qiao, L.; Zhao, Y.; Li, Z.; Qiu, X.; Wu, J.; and Zhang, C.
2021. Defrcn: Decoupled faster r-cnn for few-shot object
detection. In Proceedings of the IEEE International Confer-
ence on Computer Vision, 8661–8670.
Redmon, J.; and Farhadi, A. 2018. Yolov3: An incremental
improvement. arXiv preprint arXiv:1804.02767.
Ren, S.; He, K.; Girshick, R.; and Sun, J. 2015. Faster r-cnn:
Towards real-time object detection with region proposal net-
works. Advances in neural information processing systems,
28.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

7022



Rezatofighi, H.; Tsoi, N.; Gwak, J.; Sadeghian, A.; Reid, I.;
and Savarese, S. 2019. Generalized intersection over union:
A metric and a loss for bounding box regression. In Pro-
ceedings of the IEEE/CVF conference on computer vision
and pattern recognition, 658–666.
Selvaraju, R. R.; Cogswell, M.; Das, A.; Vedantam, R.;
Parikh, D.; and Batra, D. 2017. Grad-cam: Visual explana-
tions from deep networks via gradient-based localization. In
Proceedings of the IEEE international conference on com-
puter vision, 618–626.
Shaban, A.; Rahimi, A.; Ajanthan, T.; Boots, B.; and Hart-
ley, R. 2022. Few-shot Weakly-Supervised Object De-
tection via Directional Statistics. In Proceedings of the
IEEE/CVF Winter Conference on Applications of Computer
Vision, 3920–3929.
Sun, B.; Li, B.; Cai, S.; Yuan, Y.; and Zhang, C. 2021. Fsce:
few-shot object detection via contrastive proposal encoding.
In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 7352–7362.
Tang, P.; Wang, X.; Bai, S.; Shen, W.; Bai, X.; Liu, W.; and
Yuille, A. 2018. Pcl: Proposal cluster learning for weakly
supervised object detection. IEEE transactions on pattern
analysis and machine intelligence, 42(1): 176–191.
Tang, P.; Wang, X.; Bai, X.; and Liu, W. 2017. Multiple in-
stance detection network with online instance classifier re-
finement. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2843–2851.
Touvron, H.; Cord, M.; Douze, M.; Massa, F.; Sablayrolles,
A.; and Jégou, H. 2021. Training data-efficient image trans-
formers & distillation through attention. In International
conference on machine learning, 10347–10357. PMLR.
Uijlings, J. R.; Van De Sande, K. E.; Gevers, T.; and Smeul-
ders, A. W. 2013. Selective search for object recognition.
International journal of computer vision, 104: 154–171.
Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones,
L.; Gomez, A. N.; Kaiser, Ł.; and Polosukhin, I. 2017. At-
tention is all you need. Advances in neural information pro-
cessing systems, 30.
Wah, C.; Branson, S.; Welinder, P.; Perona, P.; and Belongie,
S. 2011. The Caltech-UCSD Birds-200-2011 Dataset 1–15.
Wang, X.; Huang, T. E.; Joseph, G.; Trevor, D.; and Yu, F.
2020. Frustratingly simple few-shot object detection. In
Proceedings of the International Conference on Machine
Learning, 9919–9928.
Wu, S.; Pei, W.; Mei, D.; Chen, F.; Tian, J.; and Lu, G. 2022.
Multi-faceted Distillation of Base-Novel Commonality for
Few-Shot Object Detection. In Proceedings of the European
Conference on Computer Vision, 578–594.
Xu, J.; Hou, J.; Zhang, Y.; Feng, R.; Zhao, R.-W.; Zhang,
T.; Lu, X.; and Gao, S. 2022. Cream: Weakly supervised
object localization via class re-activation mapping. In Pro-
ceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, 9437–9446.
Yan, X.; Chen, Z.; Xu, A.; Wang, X.; Liang, X.; and Lin, L.
2019. Meta r-cnn: Towards general solver for instance-level
low-shot learning. In Proceedings of the IEEE International
Conference on Computer Vision, 9577–9586.

Yang, X.; and Renaud, M. 2020. Few-shot object detection
and viewpoint estimation for objects in the wild. In Proceed-
ings of the European Conference on Computer Vision.
Zeng, Z.; Liu, B.; Fu, J.; Chao, H.; and Zhang, L. 2019.
Wsod2: Learning bottom-up and top-down objectness distil-
lation for weakly-supervised object detection. In Proceed-
ings of the IEEE/CVF international conference on computer
vision, 8292–8300.
Zhang, G.; Luo, Z.; Cui, K.; Lu, S.; and Xing, E. P. 2021a.
Meta-DETR: Image-Level Few-Shot Detection with Inter-
Class Correlation Exploitation. arXiv:2103.11731.
Zhang, L.; Zhou, S.; Guan, J.; and Zhang, J. 2021b. Ac-
curate few-shot object detection with support-query mutual
guidance and hybrid loss. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,
14424–14432.
Zheng, Z.; Wang, P.; Liu, W.; Li, J.; Ye, R.; and Ren, D.
2020. Distance-IoU loss: Faster and better learning for
bounding box regression. In Proceedings of the AAAI con-
ference on artificial intelligence, volume 34, 12993–13000.
Zhou, B.; Khosla, A.; Lapedriza, A.; Oliva, A.; and Torralba,
A. 2016. Learning deep features for discriminative localiza-
tion. In Proceedings of the IEEE conference on computer
vision and pattern recognition, 2921–2929.
Zhu, X.; Su, W.; Lu, L.; Li, B.; Wang, X.; and Dai, J. 2020.
Deformable detr: Deformable transformers for end-to-end
object detection. arXiv preprint arXiv:2010.04159.
Zitnick, C. L.; and Dollár, P. 2014. Edge boxes: Locating ob-
ject proposals from edges. In Computer Vision–ECCV 2014:
13th European Conference, Zurich, Switzerland, September
6-12, 2014, Proceedings, Part V 13, 391–405. Springer.

The Thirty-Eighth AAAI Conference on Artificial Intelligence (AAAI-24)

7023


