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Abstract

Vision-and-Language Navigation (VLN) task aims to en-
able AI agents to accurately understand and follow natural
language instructions to navigate through real-world envi-
ronments, ultimately reaching specific target locations. We
recognise a promising opportunity to extend VLN to a com-
parable navigation task that holds substantial significance in
our daily lives, albeit within the virtual realm: navigating
websites on the Internet. This paper proposes a new task
named Vision-and-Language Navigation on Websites (We-
bVLN), where we use question-based instructions to train
an agent, emulating how users naturally browse websites.
Unlike the existing VLN task that only pays attention to
vision and instruction (language), the WebVLN agent fur-
ther considers underlying web-specific content like HTML,
which could not be seen on the rendered web pages yet con-
tains rich visual and textual information. Toward this goal,
we contribute a dataset, WebVLN-v1, and introduce a novel
approach called Website-aware VLN Network (WebVLN-
Net), which is built upon the foundation of state-of-the-art
VLN techniques. Experimental results show that WebVLN-
Net outperforms current VLN and web-related navigation
methods. We believe that the introduction of the new We-
bVLN task and its dataset will establish a new dimen-
sion within the VLN domain and contribute to the broader
vision-and-language research community. Code is available
at: https://github.com/WebVLN/WebVLN.

Introduction
Vision-and-Language Navigation (VLN) (Anderson et al.
2018) aims to seamlessly integrate visual perception and ac-
tion with language understanding, to enable AI agents to
navigate and interact effectively within real-world environ-
ments. Interestingly, the resemblance can be found in the
virtual online environment, where users might rely on AI
agents to assist them in gathering information about certain
products even when they can only offer broad and vague in-
structions such as “how much does a pair of grey and orange
striped socks cost”. This extends beyond the boundaries of
traditional VLN tasks, including not only vision and instruc-
tion (language) but also incorporating the abundant informa-
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Figure 1: An example of the WebVLN task. An agent is ini-
tiated on the homepage of a website and asked a question
Q with an auxiliary description D. To respond, the agent is
required to intelligently navigate and explore the website,
gather information through observation, and finally provide
an accurate response/answer R in a free-form sentence.

tion embedded within webpage like HTML. With this con-
sideration, we introduce an extended VLN task, denoted as
Vision-and-Language Navigation on Websites (WebVLN).

Figure 1 shows an example of the WebVLN task. In this
scenario, an agent starts its journey from a website’s front
page, presented with a question Q accompanied by an aux-
iliary description D. The agent emulates genuine user be-
haviour and navigates through the website. It processes the
current view of the webpage and engages in common web
browsing activities such as reading the images and text, and
clicking on the links to navigate to the next pages. The
agent’s objective is to efficiently traverse the website and
reach a target webpage, which contains the necessary infor-
mation to answer the question Q and produce an accurate
response R to the question.

The new task poses several new challenges. First, the
choices available to an AI agent navigating a website are
substantially more than those in traditional discrete VLN
scenarios, which are confined to adjacent navigable view-
points in physical environments. While in WebVLN, the
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range of choices for each observed webpage is significantly
broader as it contains a vast array of content, features, links,
and interactive elements. Each webpage offers multiple av-
enues for navigation, such as clicking on various links, but-
tons, and dropdown menus. Second, due to the intrinsic di-
versity of available choices on each webpage, WebVLN con-
structs a more intricate and complex navigation graph than
traditional VLN, making it nearly impossible to explore all
the content on websites by a naive heuristic trial-and-error
scheme. Thus, in the WebVLN task, an ideal method should
seek to maximise accurate choices while minimising the
need for exploration by leveraging varied information avail-
able within the webpage.

Due to the lack of an off-the-shelf dataset for WebVLN,
we have collected a new WebVLN-v1 dataset to facilitate
research in this field. It comprises 8, 990 records/paths with
14, 825 QA pairs derived from three different shopping web-
sites (aliased as SA, HB and ES). Differing from other VLN
datasets (Anderson et al. 2018; Qi et al. 2020b) that only
consider the visual inputs of the environment, our WebVLN-
v1 incorporates both visual and textual contents extracted
from the websites. Furthermore, in comparison to other web-
related datasets, such as web navigation (Liu et al. 2018;
Xu et al. 2021; Mazumder and Riva 2020; Yao et al. 2022)
and web QA (Chang et al. 2022; Hsiao et al. 2022), our
WebVLN-v1 seamlessly integrates both navigation and QA
environments with question-based instructions, resulting in
a unified benchmark.

To tackle the challenging WebVLN task, we propose
a new method called Website-aware Vision-and-Language
Navigation Network (WebVLN-Net) based on the widely
used VLN framework–VLN⟳ BERT (Hong et al. 2021).
Besides the visual input (screenshot) and instruction (ques-
tion & description), WebVLN-Net considers the underlying
HTML of each webpage and extracts elements such as click-
able buttons. Upon reaching a “stop” token, our model ini-
tiates answering the question using information from both
click history and the current “stop” webpage. The evaluation
of the model performance is based on the metrics from both
VLN and VQA domains. Specifically, for VLN, we con-
sider success rate (SR), oracle success rate (OSR), success
rate weighted by path length (SPL), and Trajectory Length
(TL), while adopting Wu-Palmer Similarity (WUPS) (Wu
and Palmer 1994) for VQA evaluation due to the open-end
setting, i.e., generating a free-form sentence as an answer.

In summary, our contributions include:

• A new task - Vision-and-Language Navigation on Web-
sites (WebVLN), where the agent emulates human web
browsing behaviours and navigates to a specified target
webpage based on the input question and its auxiliary
description, subsequently answering the question using
information extracted from the target webpage.

• A new WebVLN-v1 dataset, consisting of 8, 990 record-
s/paths, and 14, 825 question-answer (QA) pairs derived
from three different websites, covering both navigation
and QA on the web environments.

• A new method, named Website-aware VLN Network
(WebVLN-Net), which not only considers the visual in-

put (screenshot) and linguistic instruction but also uses
web-specific content (i.e., HTML of the webpage) to en-
hance decision-making precision.

Related Work
As the WebVLN is a new task, we briefly overview several
closely relevant works w.r.t. Vision-and-Language Naviga-
tion (VLN) and other web-related navigation and QA tasks.

Vision-and-Language Navigation (VLN) The VLN
task (Anderson et al. 2018) extends the vision and language
research with sequential action prediction and is one of
the most influential tasks in Embodied AI. The research
on VLN is dedicated to addressing the alignment of
linguistic instructions with visual cues and actions, some
work fine-graining the navigation instructions to achieve
sub-goal planning (Hong et al. 2020; He et al. 2021a;
Zhu et al. 2020), and some concentrate on utilizing object
information to identify landmarks from observations (Gao
et al. 2021; Qi et al. 2020a, 2021). Temporal information is
specifically designed in (Hao et al. 2020; Hong et al. 2021;
Chen et al. 2021, 2022; Qiao et al. 2022, 2023; Zhao, Qi,
and Wu 2023) to capture long-range dependencies across
past observations and actions, which are crucial during
navigation. some methods incorporate external knowledge
during navigation (Li et al. 2022; Gao et al. 2021). Recently,
several methods leverage commonsense knowledge from
LLMs and build an LLMs-as-agent pipeline to perform
zero-shot VLN (Zhou, Hong, and Wu 2023). However, the
VLN tasks require spatial awareness of agents and mainly
focus on the photo-realistic environment, which would not
consider the web-specific information (e.g., descriptions
denoted by “alt” in HTML) when directly applied to website
navigation.

Web Navigation and Question-Answering Web naviga-
tion task (Toyama et al. 2021; Yao et al. 2022; Burns et al.
2022) involves developing algorithms or models that en-
able automated agents to navigate and interact with web-
sites on the Internet. There are some related datasets (Liu
et al. 2018; Xu et al. 2021; Mazumder and Riva 2020; Yao
et al. 2022; Deng et al. 2023; Zhou et al. 2023). For exam-
ple, MiniWoB++ (Liu et al. 2018), RUSS (Xu et al. 2021)
and FLIN (Mazumder and Riva 2020) cover sites with di-
verse user instructions from simple tasks to complex ones
like booking flights. Many previous works use various meth-
ods on these datasets, which, however, depend on Document
Object Model (DOM) structure (Jia, Kiros, and Ba 2019;
He et al. 2021b) and hence hamper their flexibility. As for
web QA, it mimics the human behaviour of posing a ques-
tion, aggregating information on the webpage, and generat-
ing a response. Several benchmarks, such as WebQA (Chang
et al. 2022) and ScreenQA (Hsiao et al. 2022), have been
proposed. However, they only offer a single webpage for
each question. In contrast, we break the boundary between
web navigation and web QA by merging them into a unified
task called WebVLN, aligning more closely with human be-
haviour. Moreover, we design a framework (i.e., WebVLN-
Net) that can be easily adapted for different websites.
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WebVLN Task and Simulator
Problem Definition
As in Figure 1, the WebVLN task requires an agent to follow
natural language instructions (i.e., question & description) to
navigate from a homepage to a target webpage and answer
the question based on the information from both trajectories
and the target webpage. Formally, at the beginning of each
episode, the agent is given an input question Q and an aux-
iliary description D (e.g., details of the target item) as the
questions are often brief and may lack enough information
for locating a unique item 1. Then, the agent observes the
current webpage W (i) = ⟨I(i),B(i)⟩, where I(i) and B(i)

are the screenshot and the set of clickable buttons in the (i-
th) current page, respectively. Here, each clickable button
b ∈ B(i) is represented by its description d (i.e., “alt” in
HTML) and image e, namely b = ⟨d, e⟩. Note that if only
having either description or image, use ∅ for the other one.
In this setting, the agent must execute a sequence of actions
A, where each action at ∈ A leads to a new state st ∈ S .
Each state st contains the information derived from both the
state of current page W (i) that the agent locates on and the
state of current action at that the agent performs. Besides,
we define a special End Of Action (i.e., [EOA]) as the “stop”
token, which would be predicted if the current state refers to
the target webpage. Ideally, given question Q and auxiliary
description D, the agent should predict a response/answer R
based on the contents in the target state s[EOA].

WebVLN Simulator
In this part, we establish a WebVLN simulator on three dif-
ferent shopping websites (aliased as SA, HB, and ES), cov-
ering 1, 485 products such as socks, fossils and blankets, and
mirror the actions of humans. The details are as follows.

Observations To build the simulator, we enable an agent
to navigate within a website by interacting with various but-
tons. During the i-th webpage W (i), the simulator generates
an RGB image observation I(i) (i.e., screenshot) that cor-
responds to the agent’s viewpoint. It is worth noting that,
to prevent any instances of mismatch, we provide the entire
screenshot of the current webpage, rather than just a partial
view within the display window.

Action Space The primary difficulty in simulator imple-
mentation lies in defining the action space that depends
on the current state. Naturally, we hope that the agent
will not jump to the currently unreachable page indiscrim-
inately. Hence, during each step t, the simulator additionally
generates a subset of next-step reachable clickable buttons
Bt+1 ⊆ B, where B contains all clickable buttons present
on the website. The agent interacts with the simulator by se-
lecting a new button bt+1 ∈ Bt+1. To establish Bt+1, the
simulator constructs a directed graph for each website, de-
noted as G = ⟨B,E⟩, where the existence of an edge indi-
cates a navigable transition between two webpages, which is

1Note that if the question has sufficient information to locate
the target webpage, the auxiliary description will remain empty.

accessible by the agent. In each step, we also incorporate a
specific button b[EOA] for the “stop” action.

WebVLN-v1 Dataset Construction
Automatic Path Generation
Following the way for generating path in R2R (Anderson
et al. 2018), we sample a target webpage and subsequently
construct the shortest path from the homepage to the selected
target according to the aforementioned graph G. For each
path, we manually check it to determine its reasonability
from a human perspective and then discard the unreasonable
ones (e.g., clicking the advertisement icon multiple times in
succession). Furthermore, we remove paths with fewer than
2 webpage transitions to maintain dataset quality and diver-
sity, resulting in a total sample of 8,990 paths.

LLM-aided Question-Answer Generation
To alleviate the workload on humans, we seek to generate
QA pairs with the assistance of Large Language Models
(LLMs)2 based on the multimodal content from the web-
page. We depict the details in the following.

Image Data Handling & HTML Cleaning Firstly, we
employ BLIP-2 (Li et al. 2023), a large and powerful model
for image captioning, to transform the website images into
captions, ensuring that the LLMs are able to capture the vi-
sual information. After that, another critical step is process-
ing the word list, since the original texts directly from web-
pages are often disorganised and challenging to work with,
which also include irrelevant information, such as messy
code. Hence, we systematically adopt a rule-based filtering
approach to manually eliminate such information, which en-
hances the logic and readability of these texts.

Designing Rules for Generating QA Pairs We start to
design a series of rules for the LLM to guide its behaviour
when generating required QA pairs. The initial rules include:

• Provide 3 questions and their answers that can be di-
rectly found from the information provided in the text.

• Ask the first question about price and second about avail-
able sizes and the third about material.

• If precise answers cannot be found for those questions,
then ask the questions on colours and availability in
stock.

• Phrase your questions in a clear and concise manner to
ensure they can be accurately answered by the given con-
tent.

• Answer should be to the point without additional infor-
mation.

To mitigate the impact of negative information, we introduce
two additional rules as follows.

• The provided text is all from an online shopping website,
there is some disturbing information which is irrelevant
to the products, such as “sign in”. Make sure your ques-
tions and answers will focus on the products themselves.

2Here, we use ChatGPT with the gpt-3.5-turbo model.
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Env. Type Dataset
Environment (Env.) Instruction (Ins.)

Task NumberTemp. Image Text HTML Que. Des. Ins. Level

Embodied
R2R ✓ ✓ ✓ Low Navigation 21, 567
EQA ✓ ✓ ✓ ✓ High Navigation + QA 5, 281

REVERIE ✓ ✓ ✓ High Localise Remote Object 21, 702

Mobile App
PixelHelp ✓ ✓ ✓ ✓ Low Navigation 187

MoTIF ✓ ✓ ✓ ✓ ✓ High Navigation 1, 125
META-GUI ✓ ✓ ✓ ✓ ✓ High Dialogue 4, 707

Website

MiniWoB++ ✓ ✓ ✓ ✓ Low Navigation -
RUSS ✓ ✓ ✓ ✓ Low Navigation 741
FLIN ✓ ✓ ✓ ✓ High Navigation 53, 520

WebShop ✓ ✓ ✓ ✓ High Navigation 12, 087
MIND2WEB ✓ ✓ ✓ ✓ ✓ High Navigation 2, 350

WebQA ✓ ✓ ✓ High Question-Answer (QA) ∼ 46, 500
ScreenQA ✓ ✓ ✓ High Question-Answer (QA) -

WebVLN-v1 ✓ ✓ ✓ ✓ ✓ ✓ High Navigation + QA 14, 825

Table 1: Comparison between our WebVLN-v1 dataset and the related datasets, which cover three different types of environ-
ment, i.e., embodied scene, Mobile App, and website. To ensure a more comprehensive comparison, we evaluate the datasets
across three dimensions: the environment (Env.), the instruction (Ins.) and the target task. Here, “Temp.” refers to whether the
environment would be temporally changed. “Image”, “Text” and “HTML” are the components that environment covers. “Que.”
and “Des.” are the abbreviations of question and description, respectively, referring to the type of instruction that the dataset
contains. “Ins. Level” means whether the instruction is a high-level statement or a low-level step-by-step command.

• The provided texts may contain punctuation and symbols,
which are irrelevant to the products, you should be able
to distinguish them and make sure they won’t appear in
the generated questions and answers.

Prompt for Generating Final QA Pairs We obtain the fi-
nal prompt P by directly concatenating the three aforemen-
tioned terms, i.e., P = {“There is a picture of the product
with the caption of” + caption + “After that, here are all
the words that appear on the website:” + word list +
“Lastly, I will give the following instructions, and you will
be strictly following the instructions:” + rules}. More-
over, due to the varying lengths of these three terms – with
the word list being the longest and the caption the shortest –
it becomes necessary to appropriately adjust the weighting
of each component. It is particularly crucial given that the
caption, despite its brevity, holds rich information.

Quality Checking Due to the inherent uncertainty intro-
duced by LLMs, it is vital to perform quality checks on
every generated question-answer (QA) pair. Concretely, we
randomly select 100 QA samples for each website to assess
their quality. Our stringent quality checks adhere to the fol-
lowing criteria w.r.t. question and answer, respectively:
• The generated questions by LLM should relate to the ac-

tual products visible on the website.
• The generated answers should be correct, brief, and cor-

respond to the questions. Any answer surpassing the
scope of the question will be considered invalid.

We have undertaken multiple iterations of the constructed
prompt until all the samples are reasonable and correct. In
each iteration, a subset of samples is generated for manual
quality assessment. Each sample has undergone evaluation
by at least two assessors for a reliable evaluation.

WebVLN-v1 Dataset Analysis
WebVLN-v1 Dataset vs. Related Datasets
We compare our WebVLN-v1 dataset with the most rele-
vant datasets w.r.t. Embodied AI, Mobile App, and Web-
site. Specifically, for Embodied AI datasets, we consider
R2R (Anderson et al. 2018), REVERIE (Qi et al. 2020b)
and EQA (Das et al. 2018), where the first two are the
widely used vision-and-language navigation (VLN) datasets
while the last one is a famous embodied question answering
dataset. Regarding App-based datasets, we compare Pixel-
Help (Li et al. 2020), MoTIF (Burns et al. 2022) and META-
GUI (Sun et al. 2022). As for the website, we consider
seven datasets for a comprehensive comparison, including
MiniWoB++ (Liu et al. 2018), RUSS (Xu et al. 2021),
FLIN (Mazumder and Riva 2020), WebShop (Yao et al.
2022), MIND2WEB (Deng et al. 2023), WebQA (Chang
et al. 2022), and ScreenQA (Hsiao et al. 2022).

Table 1 demonstrates that our WebVLN-v1 dataset is
unique, covering rich information (i.e., temporal sequence,
image, text and HTML) from the environment and two dif-
ferent types of instructions (i.e., questions and description-
s/statements), while others only focus on them partially.
Moreover, our WebVLN-v1 is able to support both naviga-
tion and question-answering tasks, rather than other website-
related datasets that can only support one of them.

WebVLN-v1 Statistics
Word Cloud In Figure 2, we visualise the questions, aux-
iliary descriptions, and answers of our WebVLN-v1 dataset
as Venn-style word cloud (Coppersmith and Kelly 2014).
The size of each word is the harmonic mean of its count.

Lengths of Question, Description, Answer and Path
Figure 3 exhibits the distributions of question length, de-
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(c) Answers(a) Questions (b) Descriptions

Figure 2: Word cloud of (a) questions, (b) descriptions, and
(c) answers on the proposed WebVLN-v1 dataset.

(c) Distribution of Answer Length

N
or

m
al

iz
ed

 F
re

qu
en

cy

(a) Distribution of Question Length (b) Distribution of Description Length

N
or

m
al

iz
ed

 F
re

qu
en

cy

Figure 3: Distributions of (a) question length, (b) description
length, and (c) answer length on the WebVLN-v1 dataset.

scription length and answer length on the WebVLN-v1
dataset. Specifically, the majority of questions consist of
8 ∼ 12 words (Figure 3(a)) while most descriptions have
7 ∼ 14 words (Figure 3(b)). The answers, in Figure 3(c),
exhibit a broader range, with some extending to 30 ∼ 40
words, as they derive content from the question, description
and webpage. The average length of the paths is 3.32.

Data Splits We split 60% samples as training data, 10%
samples as validation data and 30% samples as testing data
(i.e., 8, 960/1, 262/4, 603). Notably, to prevent any informa-
tion leakage, we carefully check that the training, validation,
and testing sets cover all three websites, but their records/-
paths remain distinct and non-overlapping.

WebVLN-Net
For the WebVLN task, we propose a new model, called
Website-aware Vision-and-Language Navigation Network
(WebVLN-Net), which is based on a widely used vision-
and-language navigation framework VLN⟳ BERT (Hong
et al. 2021). As shown in Figure 4, our model contains three
main components: initialisation, navigation and answering.
Specifically, we first initialise the state and context tokens
by a pre-trained BERT model. Subsequently, we input these
initialised language tokens, along with the screenshot and
button tokens extracted from the current webpage, into the

navigation component. This process iterates until the target
webpage is reached. Last, the answering head in the answer-
ing component generates the final answer.

State and Context Initialisation In initialisation (t = 0),
our model receives a word sequence comprising the classi-
fication token [CLS], the separation token [SEP], and the
language tokens V extracted from both the question Q and
the auxiliary description D. Here, [CLS] and [SEP] are
predefined tokens in BERT. Similar to VLN⟳ BERT (Hong
et al. 2021), the [CLS] token is used to aggregate relevant
vision-language cues from the input sequence. In this con-
text, we define the embedded [CLS] token as the initial
state representation s0. We update it during the whole train-
ing phase, ensuring it could be aware of the entire navigation
and question-answering tasks. The process can be defined as

s0,V = Init([CLS], Q,[SEP], D), (1)
where the Init(·) indicates the initialisation process.

Web Navigation We adapt the model proposed in (Hong
et al. 2021) to incorporate the learning of navigation and
the concurrent selection of clickable buttons. As shown in
Figure 4, at each time step, the network takes four differ-
ent token sets as input: the preceding state token st−1, the
language tokens V , the screenshot tokens It, and the button
tokens Bt. Specifically, we “patchify” the screenshot as a set
of image patches and convert them to the tokens It by us-
ing a Transformer-based image encoder. Likewise, as each
button consists of an image and a description (i.e., “alt” in
HTML), we introduce a button encoder that contains an im-
age encoder and a text encoder to derive their corresponding
tokens. After that, we concatenate tokens associated with the
same button, followed by projecting the concatenated token
back to its original dimension using a linear projection layer.
Subsequently, we put all the tokens into a multi-layer Trans-
former to obtain an action probability pt:

st, pt = Nav(st−1,V, It,Bt). (2)
Here, the Nav(·) refers to the navigation process in each
step. Notably, the set of button tokens Bt involves an End Of
Action ([EOA]) token, selected when the agent reaches the
target webpage. The state would be updated to s[EOA].

In navigation steps (t > 0), the state token st, screenshot
tokens It, and button tokens Bt employ self-attention across
the entire input sequence, while the language tokens V only
serve as the keys and values in Transformer. We regard the
language tokens derived from the model’s initialisation step
as a good representation of both the question and auxiliary
description (Q&D), obviating the necessity for subsequent
encoding in later stages and saving computational resources.

Question Answering To generate the final answer, we in-
troduce an Answering Head, which is a M -layer Trans-
former decoder. Considering an open-ended question-
answering setting, our objective is to generate the answer
as a free-form sentence autoregressively. Mathematically,

R = Ans(s[EOA]), (3)

where Ans(·) refers to the answering process. Here, R is the
predicted answer consisting of L words (i.e., R = {wl}Ll=1)
and s[EOA] denotes the last state aforementioned above.
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Figure 4: Overall architecture of WebVLN-Net. We take an example that the question Q is “What is the price of the Courtside
Short Crew Socks?” with an auxiliary description D as “a pair of grey and orange striped socks”. The observation at each step
contains a screenshot of the current webpage and all the clickable buttons derived from its HTML.

Training For navigation, we train our network using an
imitation learning (IL) objective. Concretely, our agent nav-
igates on the ground-truth trajectory by following the teacher
actions and computes a cross-entropy loss for each decision
made. Formally, we minimise the navigation loss function,
which can be formulated for each specific sample by

Lnav = −
∑
t

at log(pt)− η
∑
t

a∗t log(pt), (4)

where at is the sampled action and a∗t is the teacher action.
Here, η represents a coefficient used to weigh the IL loss.

The training of the Answering Head employs the autore-
gressive Teacher Forcing (Williams and Zipser 1989) ap-
proach, wherein the prediction at each step should maximise
the likelihood of the subsequent token:

Lans =
L∑

l=1

− log p(wl|w<l, s[EOA]), (5)

where wl indicates the l-th token in the answer, and w<l

denotes the tokens before wl. L is the total number of tokens.
The final loss function can be defined as

L = Lnav + λLans, (6)

where λ is the weighting hyper-parameter.

Experiments
Evaluation Metrics and Baselines
Metrics for Navigation Following the evaluation metrics
in R2R (Anderson et al. 2018), we assess the shortest path
distance in the navigation graph G between the finally lo-
cated webpage of the agent and the target webpage. We con-
sider an episode to be a success if the agent stops on the tar-
get webpage, i.e., success rate (SR), and its variant – oracle

success rate (OSR). We also measure the navigation perfor-
mance by considering the path length, i.e., the success rate
weighted by Path Length (SPL) and Trajectory Length (TL).

Metrics for QA For question-answering, we follow the
open-ended setting that seeks to generate a free-form natu-
ral language sentence to answer the given question, which is
more flexible and practical than regarding QA as a classifica-
tion problem. Thus, rather than an exact accuracy between
predicted and ground-truth answers, we adopt Wu-Palmer
Similarity (WUPS) (Wu and Palmer 1994), aiming to quan-
tify the semantic differences between a predicted answer and
the ground truth. WUPS assigns a value ranging between 0
and 1, reflecting their degree of similarity. Following (Mali-
nowski and Fritz 2014), we set thresholds of the WUPS as
0.9 and 0.0 separately with a scaling factor of 0.1, whereby
scores below the threshold are proportionally adjusted.

Baselines We evaluate the performance of both navigation
and QA by comparing the results with baselines. For a com-
prehensive comparison, we consider two different types of
baselines, i.e., traditional VLN and web-related navigation.
Specifically, we employ VLN⟳ BERT (Hong et al. 2021)
(randomly initialised and initialised by LXMERT (Tan and
Bansal 2019)) as the VLN baseline, which is widely used in
the VLN task. Notably, to well evaluate the performance, we
seek to adapt VLN⟳ BERT to our task and dataset with min-
imal changes. Specifically, following its original design, we
take as inputs the linguistic instruction (question & descrip-
tion) and screenshot. The model would predict the interme-
diate navigation action and finally answer the question by
incorporating the same QA head as ours. As for the web-
related navigation, we consider a state-of-the-art (SoTA)
instruction-finetuned foundation model WebGUM (Furuta
et al. 2023), which is built upon the T5 model (Raffel et al.
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Method
Val Test

SR ↑ OSR ↑ SPL ↑ WUPS0.9 ↑ WUPS0.0 ↑ SR ↑ OSR ↑ SPL ↑ WUPS0.9 ↑ WUPS0.0 ↑
Random 0.05 0.17 0.02 0.00 0.00 0.04 0.17 0.02 0.00 0.00

VLN⟳ BERT 17.59 17.59 16.73 9.99 13.91 11.28 12.04 10.75 7.12 9.26
VLN⟳ BERT* 18.62 18.62 18.14 11.23 14.98 12.23 12.23 11.74 8.50 10.36

WebGUM 6.02 6.02 6.02 1.84 4.08 9.71 9.71 9.71 3.57 6.98
WebGUM† 31.22 31.78 31.22 18.26 24.88 29.29 29.39 29.26 17.34 23.48

Ours 39.46 39.54 39.46 24.26 31.87 34.76 34.80 34.59 22.13 28.58

Table 2: We compare our method with VLN⟳ BERTand WebGUM, which are the widely used VLN model and SoTA multi-
modal web navigation foundation model, respectively. VLN⟳ BERT and VLN⟳ BERT* are randomly initialised and initialised
by LXMERT, respectively. WebGUM and WebGUM† denote the models based on T5-small and T5-base separately.

Q D I d e SR ↑ SPL ↑ WUPS0.9 ↑
✓ ✓ 6.32 6.13 4.74
✓ ✓ ✓ 12.23 11.74 8.50
✓ ✓ ✓ ✓ 28.63 28.62 15.97
✓ ✓ ✓ ✓ ✓ 34.76 34.59 22.13

Table 3: Ablation study on the test set of WebVLN-v1
dataset. Q, D and I are the input question, auxiliary descrip-
tion and screenshot, respectively. The notations d and e are
the button description/text and the button image separately.

2020). Moreover, we evaluate the performance of a random
strategy and humans, helping to understand the lower and
upper bounds of the WebVLN task, respectively.

Comparison with Baselines We evaluate the performance
of the proposed WebVLN-Net compared with the baseline
methods. In all the experiments, we set the weighting hyper-
parameters η and λ equal to 1. In Table 2, for navigation,
we obtain the best results in SR, OSR and SPL, both when
compared to VLN methods and web-related navigation tech-
niques. As for QA metrics, our method consistently out-
performs all the baselines. All the results demonstrate the
effectiveness of our WebVLN-Net. Note that the QA met-
rics for the random method are 0 since generating a free-
form answer randomly is nearly impossible to overlap with
ground truth. WebGUM† achieves better performance than
WebGUM mainly due to the larger number of parameters
(220 million vs. 60 million).

Ablation Study To test the impact of each component in
our WebVLN-Net, we conduct an ablation study by incorpo-
rating them alternately. The basic model only considers an
input question Q and a screenshot I . From Table 3, the basic
model obtains the lowest results on both navigation and QA
evaluation metrics. While with an auxiliary description D,
our model achieves higher performance (e.g., SR: 6.32 →
12.23; WUPS0.9: 4.74 → 8.50). Moreover, the model’s per-
formance can be enhanced by using buttons (containing text
d only) from the HTML (SR: 12.23 → 28.63). After further
incorporating a multimodal button (containing text d & im-
age e), it attains the best performance across both navigation
and QA metrics.

Methods SR ↑ OSR ↑ WUPS0.9 ↑ WUPS0.0 ↑
Humans 93.94 93.94 60.55 79.94

AgentBench 6.97 11.94 1.64 4.65
NavGPT 7.46 12.94 2.43 5.23
NavGPT∗ 16.92 21.89 5.97 12.06

Table 4: Zero-shot by using LLMs. ∗ denotes using GPT4
while others are ChatGPT (gpt-3.5-turbo).

Zero-shot using LLMs To further test the difficulty of our
WebVLN task and the WebVLN-v1 dataset, we conduct a
zero-shot evaluation setting for the popular large language
models (LLMs). We randomly select 201 samples from the
validation set and test on two LLMs-as-agent pipelines,
AgentBench (Liu et al. 2023) and NavGPT (Zhou, Hong,
and Wu 2023). For AgentBench, we adopt the same prompt
from the WS (Web Shopping) task in the paper and delete
the one-shot example, test on the gpt-3.5-turbo model. For
NavGPT, we modify the VLN task description into a web
shopping task description and test on both gpt-3.5-turbo and
gpt-4 models. All the formatted observations are replaced
with the WebVLN-v1 sample observation. From Table 4, the
zero-shot performance of these methods falls short of reach-
ing human-level performance. It is necessary for the ongoing
advancement of intelligent agents, as current SoTA LLMs
are far from perfect performance in our task. Moreover, our
WebVLN can also serve as a metric to gauge such progress.

Conclusion
In this paper, we propose a novel task, Vision-and-Language
Navigation on Websites (WebVLN), extended from conven-
tional VLN. It seeks to enable an agent to answer the user’s
questions via navigating/exploring the websites and integrat-
ing useful information. To support research in this new task,
we collect a new WebVLN-v1 dataset and design a baseline
method called Website-aware Vision-and-Language Naviga-
tion Network (WebVLN-Net). The experiments demonstrate
the effectiveness of our WebVLN-Net. Moreover, we per-
form a zero-shot evaluation of LLM-based methods using
the WebVLN-v1 dataset, where the performance is far from
saturation, highlighting the utility of our WebVLN-v1 as a
benchmark to assess progress in this field.
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