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Abstract

We investigate the fair allocation of indivisible goods to
agents with possibly different entitlements represented by
weights. Previous work has shown that guarantees for ad-
ditive valuations with existing envy-based notions cannot be
extended to the case where agents have matroid-rank (i.e.,
binary submodular) valuations. We propose two families of
envy-based notions for matroid-rank and general submodu-
lar valuations, one based on the idea of transferability and
the other on marginal values. We show that our notions
can be satisfied via generalizations of rules such as pick-
ing sequences and maximum weighted Nash welfare. In ad-
dition, we introduce welfare measures based on harmonic
numbers, and show that variants of maximum weighted har-
monic welfare offer stronger fairness guarantees than maxi-
mum weighted Nash welfare under matroid-rank valuations.

1 Introduction
Fair division refers to the study of how to fairly allocate re-
sources among agents with possibly differing preferences.
Over the 75 years since Steinhaus (1948) initiated a mathe-
matical framework of fair division, the field has given rise
to numerous fairness notions and procedures for comput-
ing fair outcomes in a variety of scenarios (Brams and Tay-
lor 1996; Robertson and Webb 1998). For instance, in the
common scenario of allocating indivisible goods, the notion
envy-freeness up to one good (EF1) has emerged as a stan-
dard benchmark. An allocation of the goods satisfies EF1 if
any envy that an agent has toward another agent can be elim-
inated by removing some good in the latter agent’s bundle.
Even when agents have arbitrary monotonic valuations over
the goods, an EF1 allocation always exists and can be found
in polynomial time (Lipton et al. 2004).

The definitions of many fairness notions in the liter-
ature, including EF1, inherently assume that all agents
have the same entitlement to the resource. Recently, sev-
eral researchers have examined a more general model in
which different agents may have different weights reflect-
ing their entitlements to the goods (Farhadi et al. 2019;
Aziz, Moulin, and Sandomirskiy 2020; Babaioff, Ezra, and
Feige 2021b; Babaioff, Nisan, and Talgam-Cohen 2021;
Chakraborty et al. 2021; Chakraborty, Schmidt-Kraepelin,
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and Suksompong 2021; Suksompong and Teh 2022, 2023;
Hoefer, Schmalhofer, and Varricchio 2023; Scarlett, Teh,
and Zick 2023; Viswanathan and Zick 2023a). This model
allows us to capture settings such as inheritance division,
in which relatives are typically entitled to unequal shares of
the legacy, as well as resource allocation among groups or
organizations of different sizes. Chakraborty et al. (2021)
generalized EF1 to weighted EF1 (WEF1): for instance, if
Alice’s weight is three times as high as Bob’s, then WEF1
stipulates that, after removing some good from Bob’s bun-
dle, Alice should have at least three times as much value
for her own bundle as for Bob’s. The same authors demon-
strated that if agents have additive valuations over the goods,
a complete WEF1 allocation always exists and can be com-
puted efficiently.1 However, they provided the following ex-
ample showing that existence is no longer guaranteed once
we move beyond additivity.
Example 1 (Chakraborty et al. (2021)). Consider an in-
stance with n = 2 agents whose weights are w1 = 1 and
w2 = 2, and m ≥ 6 goods. Agent 1 has an additive valua-
tion with value 1 for every good, whereas agent 2 has value 0
for the empty bundle and 1 for any nonempty bundle.

If agent 1 is allocated more than one good, then agent 2
has weighted envy toward agent 1 even after removing any
good from agent 1’s bundle. Thus, assuming that all goods
need to be allocated, agent 2 must obtain at least m−1 goods
in a WEF1 allocation. Again, this causes weighted envy ac-
cording to WEF1, this time from agent 1 toward agent 2.
Hence, no complete WEF1 allocation exists in this instance.

The impossibility result illustrated in this example still
holds even if WEF1 is relaxed to weak WEF1 (WWEF1),
whereby an agent is allowed to either remove a good from
the other agent’s bundle or copy one such good into her own
bundle, and stands in contrast to the aforementioned EF1
guarantee in the unweighted setting (Lipton et al. 2004). In
fact, the impossibility persists even with WWEFc for any
constant c (Chakraborty et al. 2021, Sec. 8). In light of these
observations, Chakraborty et al. left open the direction of
identifying appropriate envy-based notions for non-additive
valuations. We also remark that relaxing WEF1 using a mul-
tiplicative approximation studied in the unweighted setting
by, e.g., Amanatidis, Birmpas, and Markakis (2018) and

1An allocation is called complete if it allocates all of the goods.
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Plaut and Roughgarden (2020) does not help circumvent this
counterexample either.2

Note that the valuations in Example 1 are particularly sim-
ple: both agents have binary submodular valuations, that is,
submodular valuations3 in which the marginal gain from re-
ceiving any single good is either 0 or 1. Binary submodu-
lar valuations are also known as matroid-rank valuations,
and have been studied in a number of recent fair division
papers, mostly in the unweighted setting (Babaioff, Ezra,
and Feige 2021a; Barman and Verma 2021, 2022; Benabbou
et al. 2021; Goko et al. 2022; Suksompong and Teh 2023;
Viswanathan and Zick 2023a,b).4 Such valuations arise in
settings such as the allocation of course slots to students, or
apartments in public housing estates to ethnic groups (Ben-
abbou et al. 2021). General submodular valuations have like-
wise received interest among fair division researchers, for
example in the context of a (non-envy-based) notion called
maximin share fairness (Barman and Krishnamurthy 2020;
Ghodsi et al. 2022; Ben Uziahu and Feige 2023).

In this paper, we explore weighted envy-freeness for both
matroid-rank and general submodular valuations. We pro-
pose new envy-based notions and show that they can be
satisfied in these settings, not only via extensions of ex-
isting algorithms, but also via new rules. For the sake
of generality, we define our notions based on the notion
WEF(x, 1− x) of Chakraborty, Segal-Halevi, and Suksom-
pong (2022). With additive valuations, given a parameter
x ∈ [0, 1], WEF(x, 1 − x) allows each agent i to subtract
x times the value of some good in another agent j’s bundle
from i’s value for this bundle, and add (1 − x) times the
value of this good to the value of i’s own bundle. WEF1 cor-
responds to WEF(1, 0), and higher values of x yield notions
that favor lower-weight agents. To obtain more intuition on
WEF(x, 1− x), consider the following example.

Example 2. Let n ≥ 2, and suppose that there are n identi-
cal goods with value 1 each, and n agents with additive val-
uations such that w1 = · · · = wn−1 = 1 and wn = n+1. If
one wants to ensure that each agent receives nonzero value,
the only way is to allocate one good to every agent—this is
the only WEF(1, 0) allocation. However, agent n may rea-
sonably object to this allocation, given that her weight is
larger than the weight of all other agents combined. In par-
ticular, she may demand that all goods be allocated to her—
this allocation is the unique one fulfilling WEF(0, 1). Hence,
WEF(x, 1 − x) captures the (inevitable) trade-off between
satisfying lower-weight agents and higher-weight ones.

Chakraborty, Segal-Halevi, and Suksompong (2022)
showed that for any instance with additive valuations and

2Specifically, for any r ∈ (0, 1], if w1 = r/2, w2 = 1, m >
2+2/r2, and the valuations of the two agents are as in Example 1,
one can check that there is no r-WEF1 allocation.

3See the definition of submodularity in Section 2.
4Exceptions are the recent works of Suksompong and Teh

(2023) and Viswanathan and Zick (2023a), which deal with the
weighted setting. In fact, Viswanathan and Zick (2023a) pointed
out that the “main limitation” of their approach is that it cannot be
used to achieve envy-based fairness properties; this is precisely the
issue that we address in our paper.

any x ∈ [0, 1], a complete WEF(x, 1− x) allocation always
exists; on the other hand, they proved that for any distinct x
and x′, there is an instance with binary additive valuations
and identical goods in which no complete allocation satisfies
both WEF(x, 1− x) and WEF(x′, 1− x′).

1.1 Our Contributions
In Section 2, we introduce two new families of weighted
envy-freeness notions. The first family, TWEF(x, 1 − x),
is based on the concept of transferability:5 we consider
the condition TWEF(x, 1 − x) from agent i to agent j to
be violated only if the WEF(x, 1 − x) condition between
i and j fails and i’s value for her own bundle increases
if all goods from j’s bundle are transferred to i’s bundle.
TWEF(x, 1 − x) handles instances such as the one in Ex-
ample 1, where an agent could be unsatisfied with respect to
WEF(x, 1 − x) even if she already receives her maximum
possible utility. Our second family, WMEF(x, 1 − x), is an
extension of the notion marginal EF1 (MEF1) of Caragian-
nis et al. (2019) from the unweighted setting. The idea is
that, instead of agent i considering her value for agent j’s
bundle as in WEF(x, 1− x), agent i considers her marginal
value of j’s bundle when added to i’s own bundle. While
TWEF(x, 1−x) is stronger than WMEF(x, 1−x), we show
that the former notion is suitable primarily for matroid-rank
valuations, whereas the latter can be guaranteed even for
general submodular valuations. Note that when valuations
are additive, both TWEF(x, 1−x) and WMEF(x, 1−x) re-
duce to WEF(x, 1 − x), which in turn reduces to EF1 if all
agents have equal weights.

In Sections 3 and 4, we allow agents to have arbitrary
submodular valuations. In Section 3, we investigate pick-
ing sequences, which let agents take turns picking a good
according to a specified agent ordering until the goods run
out. While previous work on picking sequences typically
assumed that agents have additive valuations, this assump-
tion may be violated in real-world applications of picking
sequences, such as the allocation of ministries to political
parties. We adjust picking sequences to submodular valua-
tions by letting agents pick a good with the highest marginal
gain in each of their turns. We show that for every x, the out-
put of the adjusted version of the picking sequence proposed
by Chakraborty, Segal-Halevi, and Suksompong (2022) with
parameter x satisfies WMEF(x, 1−x); this generalizes their
result from the weighted additive setting. As a corollary, in
the unweighted submodular setting, the adjusted version of
the commonly studied round-robin algorithm produces an
MEF1 allocation. In Section 4, we consider the maximum
weighted Nash welfare (MWNW) rule, which chooses an al-
location that maximizes the weighted product of the agents’
utilities. Although prior results rule out the possibility for
each x that MWNW implies WMEF(x, 1 − x), we show
that an MWNW allocation always satisfies a relaxation of
WMEF(x, 1− x) called weak weighted MEF1 (WWMEF1).
This extends a corresponding result of Chakraborty et al.
(2021) from the weighted additive setting, which in turn gen-

5This concept has been discussed by Benabbou et al. (2021) and
Chakraborty et al. (2021).
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eralizes the prominent result by Caragiannis et al. (2019) in
the unweighted additive setting.

Next, in Sections 5 and 6, we focus on agents with
matroid-rank valuations—as we discussed earlier, this class
of valuations has been studied in several recent papers. In
Section 5, we extend the “transfer algorithm” of Benabbou
et al. (2021) from the unweighted setting, and prove that our
algorithm returns a clean6 TWEF(x, 1 − x) allocation that
maximizes the unweighted utilitarian welfare. While Ben-
abbou et al.’s potential function argument can be general-
ized to show that our algorithm terminates, it is insufficient
for establishing polynomial-time termination in our setting
with different weights; hence, we devise a more elaborate
argument for this purpose. Finally, in Section 6, we intro-
duce new welfare measures based on harmonic numbers
and their variants.7 Perhaps surprisingly, we demonstrate
that under matroid-rank valuations, the maximum-welfare
rules based on our measures offer stronger fairness guar-
antees than MWNW. In particular, while MWNW does not
imply WEF(x, 1 − x) for any x even with binary additive
valuations and identical goods (Chakraborty, Segal-Halevi,
and Suksompong 2022), we prove that a clean maximum
weighted harmonic welfare allocation parameterized by x
satisfies TWEF(x, 1 − x) for matroid-rank valuations (and
therefore WEF(x, 1− x) for binary additive valuations).8

2 Preliminaries
Let N = [n] be the set of agents and G = {g1, . . . , gm}
be the set of indivisible goods, where [k] := {1, . . . , k}
for any positive integer k. A bundle refers to a subset of
G. Each agent i ∈ N has a weight wi > 0 representing
her entitlement, and a valuation function (or utility function)
vi : 2G → R≥0. The setting where all of the weights are
equal is sometimes referred to as the unweighted setting. For
convenience, we write vi(g) instead of vi({g}) for a single
good g. We assume throughout the paper that vi is
• monotone: vi(G′) ≤ vi(G

′′) for all G′ ⊆ G′′ ⊆ G;
• submodular: vi(G′ ∪ {g}) − vi(G

′) ≥ vi(G
′′ ∪ {g}) −

vi(G
′′) for all G′ ⊆ G′′ ⊆ G and g ∈ G \G′′;

• normalized: vi(∅) = 0.
The function vi is said to be matroid-rank (or binary sub-
modular) if it is submodular and vi(G

′ ∪ {g}) − vi(G
′) ∈

{0, 1} for all G′ ⊆ G and g ∈ G \ G′. Moreover, vi is
additive if vi(G

′) =
∑

g∈G′ vi(g) for all G′ ⊆ G, and

6An allocation is clean if no good can be discarded from an
agent’s bundle without decreasing the agent’s utility (Benabbou
et al. 2021). The term non-redundant has also been used with the
same meaning (Babaioff, Ezra, and Feige 2021a).

7The harmonic welfare measure is the basis of the proportional
approval voting (PAV) rule in the context of approval-based com-
mittee voting (see, e.g., the book by Lackner and Skowron (2023)).
To the best of our knowledge, we are the first to consider this mea-
sure in the context of fair division.

8To further exhibit the potential of harmonic welfare, we show
in the full version of our paper (Montanari et al. 2022) that, in the
unweighted additive setting, if each agent’s value for each good is
an integer, then a maximum harmonic welfare allocation always
satisfies EF1.

binary additive if it is additive and vi(g) ∈ {0, 1} for all
g ∈ G. An instance consists of the set of agents N , the set
of goods G, and the agents’ weights (wi)i∈N and valuation
functions (vi)i∈N .

An allocation A is a list of bundles (A1, . . . , An) such
that no two bundles overlap, where bundle Ai is assigned
to agent i. The allocation is complete if

⋃
i∈N Ai = G. It

is Pareto-optimal (PO) if there does not exist another allo-
cation A′ such that vi(A′

i) ≥ vi(Ai) for all i ∈ N and
the inequality is strict for at least one i ∈ N ; such an al-
location A′ is said to Pareto-dominate A. We denote by
N+

A ⊆ N the subset of agents receiving positive utility from
A. The unweighted utilitarian welfare of A is defined as∑

i∈N vi(Ai).
For a bundle G′ ⊆ G, we define the marginal gain of a

good g ̸∈ G′ for agent i as ∆+
i (G

′, g) := vi(G
′ ∪ {g}) −

vi(G
′). Similarly, the marginal loss of a good g ∈ G′ for

agent i is defined as ∆−
i (G

′, g) := vi(G
′) − vi(G

′ \ {g}).
An allocation A is called clean (or non-redundant) if for
any i ∈ N and any g ∈ Ai, it holds that ∆−

i (Ai, g) > 0. For
matroid-rank valuations, A is clean if and only if vi(Ai) =
|Ai| for all i ∈ N (Benabbou et al. 2021, Prop. 3.3). Clean
allocations are common in the study of matroid-rank val-
uations (Babaioff, Ezra, and Feige 2021a; Benabbou et al.
2021; Barman and Verma 2022; Goko et al. 2022; Suksom-
pong and Teh 2023; Viswanathan and Zick 2023a,b). While
clean allocations may be incomplete, achieving complete-
ness along with certain properties under matroid-rank valu-
ations can be surprisingly challenging—we refer to the dis-
cussion by Benabbou et al. (2021, p. 21).

We now introduce our first family of fairness notions,
TWEF(x, y).
Definition 3 (TWEF(x, y)). For x, y ∈ [0, 1], an allocation
A is said to satisfy transferable WEF(x, y) (TWEF(x, y)) if,
for each pair of agents i, j ∈ N , either vi(Ai) = vi(Ai∪Aj)
or there exists g ∈ Aj such that

vi(Ai) + y ·∆+
i (Ai, g)

wi
≥ vi(Aj)− x ·∆−

i (Aj , g)

wj
.

By submodularity and monotonicity, the condition
vi(Ai) = vi(Ai ∪ Aj) is equivalent to the requirement that
vi(Ai) = vi(Ai ∪ {g}) for every g ∈ Aj .

For any x and y, if valuations are additive, then
TWEF(x, y) reduces to the notion WEF(x, y) of
Chakraborty, Segal-Halevi, and Suksompong (2022).
Like Chakraborty et al., we will mostly be concerned with
the case where y = 1− x. As we will see, TWEF(x, 1− x)
is a useful notion for matroid-rank valuations. However,
like WEF(x, 1 − x), it can be too demanding for general
submodular valuations. For instance, in Example 1, if
agent 2 has value 1+ (|G′|− 1) · ε for any nonempty bundle
G′, where ε > 0 is a small constant, then the condition
vi(Ai) = vi(Ai ∪ Aj) becomes impotent and a complete
TWEF(x, 1 − x) allocation does not exist for any x. The
second family of notions that we propose, which is based
on the marginal EF1 (MEF1) notion of Caragiannis et al.
(2019),9 does not suffer from this shortcoming.

9In the unweighted setting, an allocation satisfies MEF1 if for
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Definition 4 (WMEF(x, y)). For x, y ∈ [0, 1], an allocation
A is said to satisfy WMEF(x, y) if, for each pair of agents
i, j ∈ N , either Aj = ∅ or there exists g ∈ Aj such that

vi(Ai) + y ·∆+
i (Ai, g)

wi

≥ vi(Ai ∪Aj)− vi(Ai)− x ·∆−
i (Ai ∪Aj , g)

wj
.

If valuations are additive, WMEF(x, y) reduces to
WEF(x, y) for any x and y. On the other hand, if all agents
have the same weight, WMEF(x, 1 − x) reduces to MEF1
only if x = 1. The following proposition, whose proof can
be found in the full version of our paper (Montanari et al.
2022), establishes an implication relationship between our
two families of notions.
Proposition 5. For all x, y ∈ [0, 1], every TWEF(x, y) allo-
cation is also WMEF(x, y).

Since the valuations that we consider in this paper are not
necessarily additive, in order to reason about the running
time of algorithms, we make the standard assumption that
an algorithm can query the value of any agent i for any bun-
dle G′ ⊆ G in constant time.

3 Picking Sequences
In this section, we investigate picking sequences, which are
procedures wherein agents take turns picking a good accord-
ing to a specified agent ordering until there are no more
goods left. For brevity, we will say that a picking sequence
satisfies a fairness notion if the allocation that it returns al-
ways satisfies that notion.

With additive valuations, Chakraborty, Segal-Halevi, and
Suksompong (2022) showed that for each x ∈ [0, 1], a
picking sequence that assigns each subsequent pick to an
agent i ∈ N with the smallest ratio ti+(1−x)

wi
, where ti de-

notes the number of times agent i has picked so far, satisfies
WEF(x, 1−x). Our main result of this section extends their
result to submodular valuations. We make the specification
that, in each turn, the agent picks a good that yields the high-
est marginal gain with respect to the agent’s current bundle,
breaking ties arbitrarily. More formally, if it is agent i’s turn,
then i chooses a good g that maximizes ∆+

i (Ai, g), where
Ai is the set of goods that i picked in previous turns.
Theorem 6. Let x ∈ [0, 1]. Consider a picking sequence πx

such that, in each turn, the pick is assigned to an agent i ∈
N with the smallest ratio ti+(1−x)

wi
, where ti denotes the

number of times agent i has picked so far, and the agent
picks a good that yields the highest marginal gain. Then,
under submodular valuations, πx satisfies WMEF(x, 1−x).

For any x and agents with equal weights, πx encom-
passes the popular round-robin algorithm where the agents
take turns in the order 1, 2, . . . , n, 1, 2, . . . , n, 1, 2, . . . , and
WMEF(1, 0) reduces to MEF1 of Caragiannis et al. (2019).
We therefore have the following corollary in the unweighted
setting, which is also new to the best of our knowledge.

all i, j ∈ N , either Aj = ∅ or there exists g ∈ Aj such that
vi(Ai) ≥ vi(Ai ∪Aj \ {g})− vi(Ai).

Corollary 7. Assume that all agents have equal weights
and submodular valuations. Suppose that in each turn of
the round-robin algorithm, the picking agent picks a good
with the highest marginal gain. Then, the algorithm returns
a complete MEF1 allocation.

As Corollary 7 admits a more direct proof, which also
illustrates the ideas that we use to show Theorem 6, we
present the proof of Corollary 7 here and leave the proof
of Theorem 6 to the full version of our paper (Montanari
et al. 2022).

Proof of Corollary 7. Let A be the allocation produced by
the round-robin algorithm, and consider any i, j ∈ N . As-
sume without loss of generality that i < j.

We first establish the MEF1 condition from i toward j. Let
k := |Aj | ≤ |Ai|, and suppose that agent j picks the goods
in the order c1, c2, . . . , ck. Let b1, b2, . . . , bk be the first k
goods picked by agent i in this order. For 0 ≤ ℓ ≤ k, let
Bℓ = {b1, . . . , bℓ} and Cℓ = {c1, . . . , cℓ} (so B0 = C0 =
∅). For 1 ≤ ℓ ≤ k, since agent i picks bℓ when cℓ is also
available, it must be that

vi(Bℓ)− vi(Bℓ−1) ≥ vi(Bℓ−1 ∪ {cℓ})− vi(Bℓ−1).

Moreover, since Bℓ−1 ⊆ Ai ⊆ Ai ∪ Cℓ−1, submodularity
implies that
vi(Bℓ−1 ∪ {cℓ})− vi(Bℓ−1)

≥ vi(Ai ∪ Cℓ−1 ∪ {cℓ})− vi(Ai ∪ Cℓ−1).

Combining the previous two inequalities yields
vi(Bℓ)− vi(Bℓ−1)

≥ vi(Ai ∪ Cℓ−1 ∪ {cℓ})− vi(Ai ∪ Cℓ−1).

Summing this over all ℓ ∈ [k], we get vi(Bk) ≥ vi(Ai ∪
Ck)− vi(Ai). Since Bk ⊆ Ai and Ck = Aj , it follows that
vi(Ai) ≥ vi(Ai ∪ Aj) − vi(Ai), and the MEF1 condition
from i to j is fulfilled.

The proof for the MEF1 condition from j toward i is al-
most identical: by ignoring the first good g picked by agent i
and applying the same argument as before, we arrive at
vj(Aj) ≥ vj(Aj ∪ (Ai \ {g})) − vj(Aj). Thus, the MEF1
condition is again satisfied.

In the full version, we provide an example showing that
the condition MEF1 in Corollary 7 cannot be strengthened
to EF1, even when agents have matroid-rank valuations.

4 Nash Welfare
In this section, we turn our attention to maximum weighted
Nash welfare (MWNW), a weighted extension of the well-
studied maximum Nash welfare (MNW). MWNW has been
examined in several recent papers (Chakraborty et al. 2021;
Garg, Husić, and Végh 2021; Garg et al. 2022; Suksompong
and Teh 2022; Viswanathan and Zick 2023a).
Definition 8 (MWNW). Given an instance, an allocation A
is a maximum weighted Nash welfare (MWNW) allocation
if it maximizes the weighted Nash welfare WNW(A) :=∏

i∈N vi(Ai)
wi . If the highest possible weighted Nash wel-

fare is 0, an MWNW allocation should maximize the num-
ber of agents receiving positive utility and, subject to that,
maximize the weighted Nash welfare of these agents.
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Chakraborty, Segal-Halevi, and Suksompong (2022)
showed that, for each x ∈ [0, 1], there exists an instance
with binary additive valuations and identical goods such
that every MWNW allocation is not WEF(x, 1 − x). As
a consequence, MWNW allocations cannot always satisfy
WMEF(x, 1 − x) for submodular valuations. On the other
hand, Chakraborty et al. (2021) proved that, under addi-
tive valuations, MWNW allocations satisfy weak WEF1
(WWEF1), which is weaker than WEF(x, 1− x) for every x
but still reduces to EF1 in the unweighted additive setting.
We extend their result to the weighted submodular setting
via a natural generalization of WWEF1.

Definition 9 (WWMEF1). An allocation A is said to sat-
isfy weak weighted marginal envy-freeness up to one good
(WWMEF1) if for each pair of agents i, j with Aj ̸= ∅, there
exists a good g ∈ Aj such that

either
vi(Ai)

wi
≥ vi(Ai ∪Aj \ {g})− vi(Ai)

wj

or
vi(Ai ∪ {g})

wi
≥ vi(Ai ∪Aj)− vi(Ai)

wj
.

Theorem 10. Under submodular valuations, every MWNW
allocation satisfies WWMEF1 and PO.

The proof of Theorem 10 can be found in the full version
of our paper (Montanari et al. 2022).

Viswanathan and Zick (2023a) showed that if agents have
matroid-rank valuations, an MWNW allocation can be found
in polynomial time. On the other hand, with equal-weight
agents and additive valuations, even approximating the max-
imum Nash welfare is computationally difficult (Lee 2017).

5 Transfer Algorithm
For agents with equal weights and matroid-rank valuations,
Benabbou et al. (2021, Algorithm 1) proposed a “trans-
fer algorithm” that computes a clean, utilitarian welfare-
maximizing EF1 allocation in polynomial time. In this sec-
tion, we extend their algorithm to the weighted setting. Our
algorithm is presented as Algorithm 1 below; we argue in
the proof of Theorem 11 that the algorithm is well-defined.

Algorithm 1: For finding a clean TWEF(x, 1−x) allocation
maximizing

∑
i∈N vi(Ai)

Compute a clean allocation A that maximizes the un-
weighted utilitarian welfare.
while there exist i, j ∈ N such that TWEF(x, 1−x) from
i to j fails with respect to A do

Find a good g ∈ Aj with ∆+
i (Ai, g) = 1.

Ai ← Ai ∪ {g}; Aj ← Aj \ {g}.
end while

Theorem 11. Suppose that all agents have matroid-rank
valuations, and let x ∈ [0, 1]. Algorithm 1 with param-
eter x returns a clean TWEF(x, 1 − x) (and therefore
WMEF(x, 1−x)) allocation that maximizes the unweighted
utilitarian welfare among all allocations in polynomial time.

Since any allocation maximizing the unweighted utilitar-
ian welfare is PO, the allocation output by Algorithm 1 is
also PO. In the unweighted setting, Benabbou et al. (2021)
exhibited polynomial-time termination of their algorithm
using the potential function Φ(A) :=

∑
i∈N vi(Ai)

2. As
Φ(A) is always an integer between 0 and m2 and decreases
with every transfer, the number of transfers made by their
algorithm is at most m2. While we can also establish termi-
nation of our weighted algorithm by modifying the poten-
tial function to Φ(A) =

∑
i∈N

vi(Ai)
2+(1−2x)·vi(Ai)

wi
, this

argument does not yield a polynomial upper bound on the
number of transfers, because the potential function may de-
crease by a very small amount depending on the weights.
Therefore, we will instead employ a different, more refined,
argument to show that our algorithm terminates in polyno-
mial time as well.

Proof of Theorem 11. By Proposition 5, it suffices to prove
the statement for TWEF(x, 1− x).

First, we claim that each transfer maintains the welfare
optimality and cleanness of the allocation. Indeed, vj(Aj)
decreases by 1 because the previous allocation is clean,
while vi(Ai) increases by 1 due to the algorithm’s choice of
the good g ∈ Aj . Hence,

∑
k∈N vk(Ak) remains the same.

Moreover, since vk(Ak) = |Ak| for all k ∈ N , the allocation
remains clean.

If the TWEF(x, 1 − x) condition from agent i to agent j
fails at some point during the execution of the algorithm, it
must be that vi(Ai) < vi(Ai∪Aj) and for every g ∈ Aj we
have

vi(Ai) + (1− x) ·∆+
i (Ai, g)

wi
<

vi(Aj)− x ·∆−
i (Aj , g)

wj

=
vi(Aj \ {g}) + (1− x) ·∆−

i (Aj , g)

wj

≤
vj(Aj \ {g}) + (1− x) ·∆−

j (Aj , g)

wj
, (1)

where the latter inequality follows from cleanness. Since
vi(Ai) < vi(Ai ∪ Aj), by submodularity, there exists g∗ ∈
Aj such that ∆+

i (Ai, g
∗) = 1; in particular, the algorithm

is well-defined. Plugging this good g∗ into (1) and using the
cleanness of A, we get

|Ai|+ (1− x)

wi
<
|Aj | − x

wj
. (2)

If the algorithm terminates, then TWEF(x, 1 − x) is sat-
isfied for all pairs of agents i, j. We will show that the al-
gorithm always terminates, and moreover does so in poly-
nomial time. The initial clean allocation A can be found in
polynomial time (Benabbou et al. 2021). Checking whether
TWEF(x, 1− x) fails for some pair i, j (and, if so, finding a
valid transfer) can be done in polynomial time. It therefore
remains to argue that the number of transfers is polynomial.
For ease of understanding, we will formulate this argument
in terms of cupboards and balls.

Associate each k ∈ N with a cupboard consisting of m
shelves at height 1−x

wk
, 2−x

wk
, . . . , m−x

wk
, respectively. For the
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clean allocationA at the beginning of the algorithm and each
k ∈ N , place one ball on each of the |Ak| lowest shelves10

of cupboard k. Whenever a good is transferred from Aj to
Ai, move the highest ball in cupboard j to the lowest shelf
without a ball in cupboard i. This means that the ball is
moved from height |Aj |−x

wj
to height |Ai|+1−x

wi
; by (2), the

height of the ball decreases. Since there are m balls and at
most mn heights of the shelves, the number of transfers is
at most m2n, which is indeed polynomial.11 This concludes
the proof.

6 Harmonic Welfare
Recall from Section 4 that an MWNW allocation maxi-
mizes the product

∏
i∈N vi(Ai)

wi , or equivalently, the sum∑
i∈N wi · ln vi(Ai). Since ln k is approximately the k-th

harmonic number Hk := 1 + 1
2 + · · · + 1

k for each posi-
tive integer k, one could also consider a maximum weighted
harmonic welfare (MWHW) allocation, defined as an allo-
cation that maximizes the sum

∑
i∈N wi · Hvi(Ai), where

H0 = 0. Interestingly, we show in this section that for
agents with matroid-rank valuations, MWHW outperforms
MWNW in terms of fairness. Specifically, even though for
each x ∈ [0, 1] there exists an instance with binary additive
valuations and identical goods in which every MWNW allo-
cation fails WEF(x, 1− x) (Chakraborty, Segal-Halevi, and
Suksompong 2022), we show that a clean MWHW alloca-
tion satisfies TWEF(0, 1) for matroid-rank valuations (and
therefore WEF(0, 1) for binary additive valuations). More
generally, we define a class of modified harmonic numbers
parameterized by x such that a clean maximum-welfare al-
location based on each x satisfies TWEF(x, 1− x).

Definition 12 (Modified harmonic numbers). Let k ∈ Z≥0.
For x ∈ [0, 1), the number Hk,x is defined by

Hk,x =

{
1

1−x + 1
2−x + · · ·+ 1

k−x if k ≥ 1;

0 if k = 0,

whereas for x = 1, Hk,x is defined by

Hk,1 =


1 + 1

2 + · · ·+ 1
k−1 if k ≥ 2;

0 if k = 1;

−∞ if k = 0.

Note that the numbers Hk,0 correspond to the canon-
ical harmonic numbers Hk, and for each x the se-
quence H0,x, H1,x, . . . is increasing. We define a maximum
weighted harmonic welfare allocation parameterized by x.
Recall that N+

A denotes the set of agents who receive posi-
tive utility from the allocation A.

10The sum of the heights of all balls is
∑

i∈N
|Ai|2+(1−2x)·|Ai|

2wi
,

which is exactly half of the potential function mentioned before the
proof.

11Note that if all agents have equal weights, the number of dif-
ferent shelf heights is only m. The number of transfers is then
bounded by m2, which matches the bound provided by Benabbou
et al. (2021).

Definition 13 (MWHWx). For x ∈ [0, 1), given an in-
stance with matroid-rank valuations, an allocation A is an
MWHWx allocation if it maximizes the sum WHWx(A) :=∑

i∈N wi ·Hvi(Ai),x.
For x = 1, A is an MWHW1 allocation if it maximizes

the number of agents receiving positive utility and, subject
to that, maximizes the sum

∑
i∈N+

A
wi ·Hvi(Ai),1.

The quantity Hvi(Ai),x is well-defined because, for
matroid-rank valuations, vi(Ai) is always a non-negative in-
teger. We now prove the efficiency and fairness guarantees
of MWHWx allocations, starting with efficiency.

Theorem 14. Let x ∈ [0, 1]. Under matroid-rank valua-
tions, every MWHWx allocation is PO.

Proof. Let A be an MWHWx allocation. For x < 1, if A is
Pareto-dominated by another allocation A′, then

∑
i∈N wi ·

Hvi(A′
i),x

>
∑

i∈N wi ·Hvi(Ai),x, a contradiction.
Consider now the case x = 1. If A were not PO, there

would exist an allocation Â such that vj(Âj) > vj(Aj) for
some j ∈ N and vi(Âi) ≥ vi(Ai) for every i ∈ N \ {j}.
If j ∈ N \ N+

A , we would have vi(Âi) > 0 for every
i ∈ N+

A ∪ {j}, contradicting the assumption that N+
A is the

largest subset of agents to whom it is possible to give posi-
tive utility simultaneously. On the other hand, if j ∈ N+

A , we
would have

∑
i∈N+

A
wi ·Hvi(Âi),1

>
∑

i∈N+
A
wi ·Hvi(Ai),1,

again a contradiction. Therefore, A is PO.

For the fairness guarantee, we will make an assumption
that the allocation is clean; we shall demonstrate later that
this assumption is necessary. We also remark that given any
MWHWx allocation, one can easily obtain a clean MWHWx

allocation in which every agent receives the same utility as
before by iteratively removing any good that does not con-
tribute to its owner’s utility until no such good exists.

Theorem 15. Let x ∈ [0, 1]. Under matroid-rank valua-
tions, every clean MWHWx allocation satisfies TWEF(x, 1−
x) (and therefore WMEF(x, 1− x)).

Proof. By Proposition 5, it suffices to prove the statement
for TWEF(x, 1− x).

LetA be a clean MWHWx allocation. Assume for contra-
diction that for some i, j ∈ N , the TWEF(x, 1−x) condition
from i to j is violated. This means that vi(Ai) < vi(Ai∪Aj)
and for every g ∈ Aj it holds that

vi(Ai) + (1− x) ·∆+
i (Ai, g)

wi
<

vi(Aj)− x ·∆−
i (Aj , g)

wj
.

By the same argument as in the proof of Theorem 11, this
implies that

vi(Ai) + (1− x)

wi
<

vj(Aj)− x

wj
. (3)

Also, since vi(Ai) < vi(Ai ∪ Aj), submodularity implies
that there exists a good g∗ ∈ Aj such that ∆+

i (Ai, g
∗) = 1.

We now consider two cases depending on whether x = 1.
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Case 1: 0 ≤ x < 1. If we transfer g∗ from Aj to Ai,
we obtain an allocation A′ in which vi(A

′
i) = vi(Ai) + 1,

vj(A
′
j) = vj(Aj) − 1, and vk(A

′
k) = vk(Ak) for all k ∈

N \ {i, j}. Since A is an MWHWx allocation, it must be
that

wi ·Hvi(Ai),x + wj ·Hvj(Aj),x

≥ wi ·Hvi(Ai)+1,x + wj ·Hvj(Aj)−1,x.

This is equivalent to

wj ·
1

vj(Aj)− x
− wi ·

1

vi(Ai) + 1− x
≥ 0.

Algebraic manipulation gives us

vi(Ai) + 1− x

wi
≥ vj(Aj)− x

wj
,

which contradicts (3).

Case 2: x = 1. From (3), we have that

vi(Ai)

wi
<

vj(Aj)− 1

wj
. (4)

Since vi(Ai) ≥ 0 and vj(Aj) is an integer, it must be that
vj(Aj) ≥ 2. If vi(Ai) = 0, we can transfer g∗ from Aj to Ai

and increase the number of agents with positive utility, con-
tradicting the assumption that A is an MWHW1 allocation.
Hence, vi(Ai) ≥ 1.

The rest of the argument proceeds in a similar way as in
Case 1. If we transfer g∗ from Aj to Ai, we obtain an alloca-
tionA′ in which vi(A

′
i) = vi(Ai)+1, vj(A′

j) = vj(Aj)−1,
and vk(A

′
k) = vk(Ak) for all k ∈ N \ {i, j}. Note that the

number of agents with positive utility is the same in A and
A′. Since A is an MWHW1 allocation, it must be that

wi ·Hvi(Ai),1 + wj ·Hvj(Aj),1

≥ wi ·Hvi(Ai)+1,1 + wj ·Hvj(Aj)−1,1.

This is equivalent to

wj ·
1

vj(Aj)− 1
− wi ·

1

vi(Ai)
≥ 0.

Algebraic manipulation gives us

vi(Ai)

wi
≥ vj(Aj)− 1

wj
,

which contradicts (4).

We now exhibit the necessity of the cleanness condition
in Theorem 15.
Proposition 16. There exists an instance and an allocation
such that, for every x ∈ [0, 1], the allocation is MWHWx but
does not satisfy TWEF(x, 1− x).

Proof. Consider an instance with n = 2 agents whose
weights are w1 = 1 and w2 = 2, and m = 6 goods. Agent 1
has an additive valuation with value 1 for g1 and 0 for the
remaining goods. Agent 2’s valuation v2 is given by

v2(S) =

{
min{3, |S|} if g1 ̸∈ S;

min{4, |S|} if g1 ∈ S,

for each bundle S ⊆ G. One can check that v2 is matroid-
rank; we leave the details to the full version of our paper
(Montanari et al. 2022).

Fix x ∈ [0, 1]. If x = 1, every MWHWx allocation must
give g1 to agent 1, which leaves agent 2 with a utility of at
most 3. Else, for x < 1, the maximum weighted harmonic
welfare achievable by giving g1 to agent 1 is

1

1− x
+ 2 ·

(
1

1− x
+

1

2− x
+

1

3− x

)
,

whereas the maximum achievable by giving g1 to agent 2 is

2 ·
(

1

1− x
+

1

2− x
+

1

3− x
+

1

4− x

)
.

Since 1
1−x = 2

2−2x > 2
4−x , every MWHWx allocation

must again give g1 to agent 1. In particular, for every x ∈
[0, 1], the allocation A = ({g1, g2, g3}, {g4, g5, g6}) is an
MWHWx allocation.

To finish the proof, we show that A violates the
TWEF(x, 1−x) condition from agent 2 toward agent 1. Note
that v2(A2) = 3 < 4 = v2(A2 ∪ A1). Moreover, for each
g ∈ A1, it holds that

v2(A2) + (1− x) ·∆+
2 (A2, g)

w2

≤ 3 + (1− x)

2
< 3− x =

v2(A1)− x ·∆−
2 (A1, g)

w1
.

Hence, the TWEF(x, 1−x) condition from agent 2 to agent 1
is not satisfied.

By applying results from the recent work of Viswanathan
and Zick (2023a), we show in the full version of our pa-
per (Montanari et al. 2022) that, for each x ∈ [0, 1], an
MWHWx allocation (which additionally maximizes the un-
weighted utilitarian welfare across all allocations) can be
found in polynomial time.

Finally, we remark that it may be interesting to con-
sider harmonic welfare beyond binary valuations. In the full
version of our paper, we prove that for agents with equal
weights and additive valuations, if the value of every agent
for every good is an integer (in which case the harmonic
welfare is well-defined), then an allocation maximizing the
harmonic welfare is always EF1.

7 Conclusion
In this paper, we have embarked on a study of weighted
envy-freeness for non-additive valuations by focusing on the
important class of submodular valuations. We proposed two
families of envy-based notions: TWEF(x, 1 − x), which is
suitable for matroid-rank (i.e., binary submodular) valua-
tions, and WMEF(x, 1 − x), which is useful even for ar-
bitrary submodular valuations. We demonstrated that our
notions can be satisfied via procedures ranging from pick-
ing sequences to welfare maximization. To the best of our
knowledge, these are the first notions that can always be sat-
isfied in the weighted setting under submodular (or matroid-
rank) valuations and moreover reduce to EF1 in the un-
weighted additive setting. An interesting direction in light
of our work is to consider other valuation classes, e.g., su-
permodular or subadditive valuations.
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