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Abstract

We provide a definition of actual causation in the
logical framework of the causal calculus, which is
based on a causal version of the well-known NESS
(or INUS) condition. We compare our definition
with other, mainly counterfactual, approaches on
standard examples. On the way, we explore general
capabilities of the logical representation for struc-
tural equation models of causation and beyond.

1 Introduction

Studies of causation have revealed an important distinction
between general (type-level) causation that deals with causal
laws or law-like regularities, and actual (token) causation that
involves singular causal claims ‘c was a cause of e’, where
c and e are particular events. In this study we will use the
causal calculus [Giunchiglia et al., 2004; Bochman, 2003]
as a logical formalism of general causation, and provide a
formal description of actual causation in this framework.
Much recent work on actual causation is conducted within
the structural equation framework [Pearl, 2000]. It has been
shown in [Bochman and Lifschitz, 20151, however, that struc-
tural equation models are representable in the causal calcu-
lus, and we will make use of this representation for a logi-
cal translation of the examples of actual causation, described
in this literature. We will not adopt, however, the dominant
counterfactual approach to analyzing this notion. Instead, we
will return to the traditional regularity approach, an approach
“that has unjustly fallen into disfavor in some quarters” [Paul
and Hall, 2013]. Our suggested definition of actual causation
will be a particular instantiation of the INUS (or NESS) test,
though elevated to causal language of the causal calculus.
The plan of the paper is as follows. First, we briefly de-
scribe the causal calculus and how structural equation models
are representable in it. Then we provide a formal definition
of actual causation in this setting. We will show, in particular,
that the difference between general and actual causation could
even be recast as a difference in their underlying logics. Then
we proceed to some key examples and counterexamples of
actual causation discussed in the literature, and show that the
logical language of the causal calculus has representational
capabilities that go beyond structural equation models.
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2 General Causation in the Causal Calculus

The causal calculus was introduced in [McCain and Turner,
1997] as a nonmonotonic formalism for reasoning about ac-
tion and change in AL It forms a basis of the action descrip-
tion language C [Giunchiglia er al., 2004]. A logical basis
of the causal calculus was described in [Bochman, 2003],
while [Bochman, 2004] studied its possible uses as a general-
purpose nonmonotonic formalism.

In this study, we will use the causal calculus as a general
logical formalism of causal reasoning. As such, it shares a
common starting point with Pearl’s approach to causality in
that our knowledge can be stored in terms of cause-effect re-
lationships. In the causal calculus, the latter are represented
directly by causal rules of the form A= B (“A causes B”),
where A and B are classical propositions. Structural equation
models are representable using such rules, so the approach
can be viewed as a logical generalization of the latter.

Causal rules represent general (type-level) causal claims,
so they correspond to such notions as nomic or causal suffi-
ciency, causal laws and lawlike regularities. Just as the latter,
causal rules are inherently modal notions.

A plausible way of interpreting causal rules consists
in viewing them as representing (causal) mechanisms (cf.
[Pearl, 2000]). This interpretation will play an important role
in our approach to actual causation, though it will be based on
a more fine-grained understanding of mechanisms than what
is usually assumed in structural equation models.

Our basic language will be an ordinary propositional
language with the classical connectives and constants
{A,V,—,—,t,f}. E will stand for the classical entailment,
while Th will denote the classical provability operator. We
will often identify a propositional interpretation (‘world”)
with the set of propositional formulas that hold in it.

In what follows, by a causal theory we will mean an arbi-
trary set of causal rules.

2.1 Nonmonotonic Semantics

A causal theory determines the set of situations (or worlds)
that satisfy the rules of the theory. However, a distinctive
feature of causal reasoning is that the relevant situations are
determined not only by the rules that belong to the causal
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theory, but also by what does not belong to it'. Accordingly,
this principal semantic function is realized in the causal cal-
culus by assigning a causal theory a particular nonmonotonic
semantics: situations that satisfy a causal theory should also
comply with Leibniz’s Principle of Sufficient Reason - noth-
ing happens without a sufficient reason, why it should be so.
For a causal theory A and a set u of propositions, let A(u)
denote the set of propositions that are caused by u in A:

A(u)={B| A= B € A, for some A € u}

Definition 1. e A consistent set u of propositions is an ex-
act model of a causal theory A if u = Th(A(u)).

e A general nonmonotonic semantics of a causal theory is
the set of all its exact models.

o A causal nonmonotonic semantics of a causal theory is
the set of its exact models that are worlds.

An exact model is not only closed with respect to the causal
rules; every proposition in it is also caused by other proposi-
tions that hold. The nonmonotonic semantics are indeed non-
monotonic, since adding new rules to a causal theory may
lead to a nonmonotonic change of the semantics, and thereby
to a nonmonotonic change in the derived information.

The causal nonmonotonic semantics is equivalent to the se-
mantics introduced in [McCain and Turner, 1997].

2.2 Regular and Causal Inference

The causal calculus can be viewed as a two-layered construc-
tion. The nonmonotonic semantics form its top level. Its bot-
tom level are logics of causal rules introduced in [Bochman,
2004]. A weakest such logic is a slight modification of the
input-output logic from [Makinson and van der Torre, 2000]:

Definition 2. A production inference relation is a binary re-
lation = on the set of classical propositions satisfying the
following conditions:

If AE Band B=C, then A= C,;
(Weakening) If A= Band BF C,then A= C,
(And) IfA=Band A=C,then A= BAC,
(Truth and Falsity) t=1t; f=f.

A characteristic property of production inference is that the
reflexivity postulate A =- A does not hold for it.

Causal rules can be generalized to rules having arbitrary
sets of propositions as premises using the familiar compact-
ness recipe: for any set u of propositions,

(Strengthening)

u=A = /\a:>A, for some finite a C u

A production inference relation is regular if it satisfies
(Cut) IfA=Band ANB=C,then A=C.

Regular inference relations are already transitive. They
will play an important role in describing actual causation.
A production inference relation is basic if it satisfies

Or) IfA=Cand B=C,then AV B=C.

! According to Pearl, causal assumptions are encoded in the miss-
ing links (that sanction, e.g., claims of zero covariance).
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An important fact about basic production inference is that
any causal rule is reducible to a set of clausal rules of the
form A l; =/ I;, where [;,[; are classical literals.

Finally, a production inference relation is called causal if
it is both basic and regular. Causal inference relations satisfy
most of the usual postulates for classical entailment (except
Reflexivity and Contraposition).

Nonmonotonic semantics indirectly determine their asso-
ciated causal logics. More precisely, such a logic could be
characterized as a maximal logic that preserves the nonmono-
tonic semantics under arbitrary expansions of a causal theory
with additional causal rules. It has been shown in [Bochman,
2004] that causal inference is an adequate logic for the causal
nonmonotonic semantics, whereas a weaker regular inference
is adequate for the general nonmonotonic semantics.

2.3 Representing Structural Equations

In [Pearl, 2000, Chapter 71, a causal model was defined as a
triple M = (U, V, F') where U is a set of exogenous variables,
V ={V; | i < n} is afinite set of endogenous variables, and
F is a set of functions such that each f; € F is a mapping
from U U (V\V;) to V;. F is represented as a set of equations

vi = filpai,u;) i=1,....n

where pa; is any realization of the unique minimal set of vari-
ables PA; in V\{V;} (parents) sufficient for representing f;,
and similarly for U; C U. Each such equation is intended
to represent a stable and autonomous physical mechanism,
which means that it is conceivable to modify (or cancel) one
such equation without changing the others.

Every instantiation U = u of the exogenous variables de-
termines a “causal world” of the causal model. Such worlds
stand in one-to-one correspondence with the solutions to the
above equations in the ordinary mathematical sense. How-
ever, structural equations also encode causal information in
their very syntax by treating the variable on the left of = as
the effect and treating those on the right as causes. This causal
reading plays a crucial role in determining the effect of exter-
nal interventions and evaluation of counterfactuals.

For binary variables, Pearl’s notion of a model can be for-
mulated as follows (cf. [Bochman and Lifschitz, 2015]):

Definition 3. Assume that the set of propositional atoms is
partitioned into a set of exogenous atoms and a finite set of
endogenous atoms.

e A Boolean structural equation is an expression of the
form A = F, where A is an endogenous atom and F is
a propositional formula in which A does not appear.

e A Boolean causal model is a set of Boolean structural
equations A = F, one for each endogenous atom A.

Definition 4. A solution (or a causal world) of a Boolean
causal model M is any propositional interpretation satisfying
the equivalences A <> F for all equations A = F'in M.

[Bochman and Lifschitz, 2015] suggested the following
translation of causal models into the causal calculus:

Definition 5. For any Boolean causal model M, A, is the
causal theory consisting of the rules

F=Aand -F = —-A
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for all equations A = F in M and the rules
A= Aand ~A=-A

for all exogenous atoms A of M.

This translation will be used in re-presenting structural
equation models suggested for examples of actual causation.

3 Actual Causation Defined

Actual causation involves causal claims of the form “C was a
cause of E”. In other words, it deals with post factum attribu-
tion of causal responsibility for actual outcome. Traditional
regularity approach to this notion is exemplified by the well-
known INUS condition?. A more adequate formulation has
been suggested in [Wright, 1985]:

The NESS test: a condition ¢ was a cause of a con-
sequence e if and only if it was necessary for the
sufficiency of a set of existing antecedent condi-
tions that was sufficient for the occurrence of e.

Following [Lewis, 19731, however, the majority of authors
have chosen a rival counterfactual approach to causation. A
standard opinion in the literature has long been that regu-
larity theories have unsurmountable difficulties. This opin-
ion, however, is largely unjustified. To begin with, most of
these difficulties can be met by adopting more stringent con-
ditions on necessary and sufficient conditions (see [Baum-
gartner, 2013]). However, a more radical amendment has
been suggested, e.g., in [Strevens, 20071, according to which
the very notion of sufficiency (which has been assumed to
be classical in the original regularity theory) should be given
a causal interpretation. This view has been endorsed by the
author of the NESS test himself in [Wright, 2011].

In the definition below, we will explicate the relevant no-
tion of causal sufficiency in terms of causal inference?.

3.1 Clausal Theories and Parsimony

Actual causation turns out to be highly sensitive to the syn-
tactic form of causal rules. That is why we will require from
the outset that the relevant causal theory should be a clausal
theory, namely, it should consist only of causal rules of the
form l4,...,l, =, where [ and all /; are literals.

In our approach to actual causation, each causal rule of a
causal theory will be viewed as describing an autonomous
causal mechanism®*. This understanding presupposes, how-
ever, that the causal theory does not contain redundant causal
rules that are subsumed by other rules:

Definition 6. A causal theory A will be called parsimonious
(irredundant) if no causal rule from A is derivable from the
rest of the rules in A by causal inference.

Suitable examples will be provided in what follows show-
ing that the above constraints are essential for the correctness
of actual causation claims in particular situations.

Insufficient but Nonredundant part of an Unnecessary but Suf-
ficient condition [Mackie, 1974].

3Such definitions have already been attempted in the framework
of structural equation models - see, e.g., [Baldwin and Neufeld,
2004; Halpern, 2008].

*Cf. [Vennekens et al., 2010] for a similar approach.
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3.2 The Definition

On the account below, an actual causation claim presupposes
a given causal theory A, and an actual world « that is a causal
(exact) world with respect to A.

Definition 7. Let « be a causal world of a clausal causal the-
ory A. A causal rule Iy, . ..,l, = [ will be called active in «
if {l1,...,1,} C «. The actual sub-theory of A wrt « is the
set A, of all causal rules from A that are active in c.

Since causal worlds of A are closed with respect to the
rules of A, the heads of all causal rules that are active in «
will also hold in a.. Note that any causal world is uniquely
determined by the causal rules that are active in it.

In what follows, =, will denote the least causal inference
relation that includes A,,.

Definition 8 (actual cause). Let o be a causal world of a
parsimonious clausal causal theory A. A literal [y € « will
be said to be an actual cause of a literal [ in « wrt A if and
only if there exists a set of literals L C « such that

1. lo,L:>al;
2. L=l

The above definition provides a direct formalization of the
NESS test by defining sufficiency as causal inference in the
actual sub-theory of the source causal theory.

There is a lot of similarity between the actual causal sub-
theory and the notion of a causal beam in [Pearl, 2000]. Our
definition has also much in common with the approach of
[Beckers and Vennekens, 2018]. In particular, their notion
of production can be viewed as a counterpart of our logical
notion of causal inference =, in the actual sub-theory.

On the suggested account, general and actual causation are
conceptually different. Namely, general causation is a purely
logical notion that is described by an appropriate formalism
of causal inference. In contrast, actual causation is already
an explicitly nonmonotonic notion, since it depends on the
absence (non-provability) of certain causal rules. Unlike gen-
eral causation, claims of actual causation can be overridden
with an addition of new causal rules to a causal theory.

Yet another salient feature of the above definition is its high
sensitivity to the syntactic form of causal rules®. For instance,
suppose that disjunctions of literals are allowed in the bodies
of causal rules, and assume that [ is an actual cause of [ by
the above definition: for some set L of literals,

lo, L=,1 and L#,1

Now let r be an arbitrary literal from a.. Then we have

r,(-rVlip),L=4l and (=r Vi), L=yl

by the logical properties of =,. So, if we could add =V to
the ‘witness’ set L, we would obtain that r is an actual cause
of [, which is absurd.

It should be kept in mind, however, that this syntax sen-
sitivity is not specific to our definition, or even to regularity
accounts in general. Rather, it might be a feature of the no-
tion of actual causation itself. Starting with the stipulation in

3As a matter of fact, our definition ‘inherited’ its sensitivity to
the syntax from the original INUS condition (see [Strevens, 2007]).
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[Lewis, 1973] that causal relata are primitive ‘events’, prac-
tically all counterfactual accounts of causation impose simi-
lar restrictions. There are severe differences in opinions even
about whether ‘negations’ (absences and omissions) of events
can be causal relata, let alone ‘disjunctive’ events.

3.3 Actual Causation and Regular Inference

The following key result will show that causal inference with
respect to the actual sub-theory =, can be replaced with an
unconstrained regular inference. This will recast part of the
difference between general and actual causation as a differ-
ence in their underlying logics.

Let =y denote the least regular inference relation contain-
ing a causal theory A. Then we have

Theorem 1. Let o be a causal world of a clausal causal the-
ory A. Then for any L C « and any literal |,

L=, iff L=%Z\1.

As a consequence, we obtain the following equivalent char-
acterization of actual causation:

Corollary 2. Let a be a causal world of a clausal causal
theory A. Then ly € « is an actual cause of | in o wrt A if
and only if there exists a set of literals L C « such that

1. lo,L:>TA l,‘
2. L=}

The above description makes our definition of actual cau-
sation a straightforward formalization of the NESS test with
regular inference as a logical explication of (causal) suffi-
ciency. As a consequence, regular inference is adequate for
reasoning about actual causation:

Corollary 3. Regularly equivalent clausal causal theories
support the same claims of actual causation.

In the next section we will test our definition on a number
of standard examples in the literature.

4 Examples and Counterexamples

The examples we are going to discuss occupy a prominent
place in the literature, mainly because each of them consti-
tutes a counterexample for some past approach to actual cau-
sation. For the majority of these examples, there are estab-
lished representations in structural equation models (see, e.g.,
[Halpern, 2016]) , and we will use them as a basis of our log-
ical characterization. This will not mean, of course, that our
suggested definition will always produce the same answers,
though there will indeed be a large area of agreement.

To begin with, the role of the restriction to the actual sub-
theory can be illustrated on the following example.
Example 1 (Loader [Hopkins and Pearl, 2003]). A firing
squad consists of shooters B and C. It is A’s job to load B’s
gun, C loads and fires his own gun. On a given day, A loads
B’s gun. When the time comes, only C shoots the prisoner.

The initial definition in [Halpern and Pearl, 2001] wrongly
made A an actual cause of D.
The structural equation for this example is as follows:

D=(AANB)vC

It corresponds to the following clausal causal theory:
A B=D C=D
-A,-C=-D -B,-C=-D

For the actual causal world {A, =B, C, D}, the associated
actual causal theory is just {C' = D}. Thus, C is clearly an
actual cause of D, but A is not.

Examples of overdetermination and preemption present
prima facie problems for counterfactual theories of causation,
because in such cases there is no direct counterfactual depen-
dence between the effect and its cause.

Symmetric overdetermination.

Example 2 (Window). Billy (B) and Suzy (S) both throw
rocks at a window. The rocks strike the window at exactly
the same time. The window breaks (W).

The structural equation of this story is just W = BV S, so
the corresponding causal theory is as follows

B=W S=W =B, -S=-W.

The actual causal world is o = {S, B, W}, and only the
first two rules are active in it. We have both B =, W and
S =4 W, though t %, W, and therefore both S and B are
actual causes of W in a.

Early preemption.

Example 3 (Backup [Hitchcock, 2007]). Assassin poisons
Victim’s coffee (A). Victim drinks it and dies (D). If Assas-
sin hadn’t poisoned the coffee, Backup would have (B), and
Victim would have died anyway.

Backup is represented using the equations:
B=-A, D=AVB
The latter correspond to the following causal theory A:
-A=1B A=-B
A=D B=D ﬁA,ﬁB:>ﬁD

- A= Band B=-D imply ~A = D. Taken together with
A= D, the latter implies t = D by Or. Thus, on the level of
general causation, D is ‘causally inevitable’.

For the actual world a={A,—-B, D}, the actual causal
theory is {A=-B,A=D}. We have A=, D, though
t %, D, and therefore A is an actual cause of D in a.

A distinctive feature of our account is that in the situ-
ation where Assassin does not poison the coffee (that is
a = {—A,B,D}), —A is an actual cause of D (as well as
B), since in this case the actual causal theory is

-A=B B=D

Surprisingly, the last, modified definition from [Halpern,
2016] does not support this claim. Even more surprisingly,
just as in the original counterfactual account of [Lewis, 19731,
the claim is restored if we add some intermediate event (say
“Victim drinks the poisoned coffee’) on the causal path from
Ato D. We agree here with [Hitchcock, 2001] that we should
be particularly troubled that we judge there to be a causal
relationship on the basis of finding an intermediate event that
is not made salient in the presentation of the example.
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Remark. In the sequel to this study (forthcoming), it will be
shown that the above configuration practically exhausts the
area of ‘positive’ disagreement between our definition and
that of Halpern; otherwise, it can be proved that if C is an
actual cause of E on our account, it will be a(t least part of
a) cause of F on Halpern’s modified definition. Due to the
results stated in [Halpern, 2016], this will also imply that our
definition is more ‘conservative’ than practically any other
counterfactual account. Still, there are cases where what is
an actual cause on all counterfactual accounts will not be an
actual cause on our definition - see the Shock example below.

Late preemption.

Example 4 (Bottle). Suzy (ST) and Billy (BT) both throw
rocks at a bottle, Suzy’s rock arrives first and hits the bottle
(SH), the bottle shatters (BS), Billy’s arrives second and so
does not hit the bottle (BH). Both throws are accurate, Billy’s
would have shattered the bottle if Suzy’s had not.

The following structural equation model has been sug-
gested in [Halpern and Pearl, 2001]:

SH=ST, BH=BTAN-SH, BS=BHVSH
The corresponding causal theory is:

ST=SH BT,~-SH=BH BH=BS SH=BS
-ST=-SH -BH,-SH=-BS
-BT=-BH SH=-BH

For general causation, we have again an overdetermination,
namely not only ST = BS, but also BT = BS'! However,
for the actual world « = {ST, BT, SH,~BH, BS}, the cor-
responding actual causal theory is

ST=SH SH=BS SH=-BH

We have ST =- BSS by transitivity, so both SH and ST are
actual causes of BS in «, as expected. It is clear also that BT
cannot be an actual cause of D in this world.

The above description of bottle shattering involves auxil-

iary variables SH and BH whose only role consists in en-
abling a counterfactual description of the difference between
preempting and preempted cause. A simpler description of
the situation could as well be as follows:
Example 5 (Simplified Bottle). Suzy (ST) and Billy (BT)
both throw rocks at a bottle, but Suzy’s rock arrives first and
shatters the bottle (BS). Both throws are accurate: Billy’s
would have shattered the bottle if Suzy’s had not.

Though it seems there is no apt structural model just on
the salient variables of this simplified description, there is a
simple causal theory that describes them:

ST=BS BT,-ST=BS -ST,-BT = -BS

For the variables involved, this theory support the same
claims of actual causation. The adequacy of this causal the-
ory in describing preemption is based, however, on the fact
that the set of causal rules {ST = BS, -ST, BT = BS} is
logically distinct from {ST = BS, BT = BS} for regular
inference, though they are equivalent with respect to causal
inference.
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‘Structural’ non-equivalence. The existence of regularly
different logical representations for causally equivalent de-
scriptions can also be exploited for resolving the problem of
‘structural equivalents’ in structural equation models.
Example 6 (Bogus Prevention [Hiddleston, 2005]). Assassin
refrains from putting poison in Victim’s coffee (—A). Body-
guard puts antidote in the coffee (B). Victim drinks the coffee
and survives (—D).

A seemingly appropriate equation D = A A —B makes
this case ‘isomorphic’ to Window (symmetric overdetermi-
nation), with a counter-intuitive conclusion that both = A and
B are actual causes of —D.

The intuitive asymmetry of these potential causes could be
captured by using auxiliary variables (e.g., poison neutraliza-
tion)®. In our logical framework, however, the same effect
can be achieved using the following causal theory:

A, -B=D -A=-D A B=-D

The last rule provides a formal description of poison neu-
tralization. For the actual world « = {—A, B, ~D}, the cor-
responding actual causal theory is just {—=A = —D}, and con-
sequently only —A is an actual cause of = D.

Switches. Preemption examples invariably involve a pat-
tern where some variable acts as a switch between two mech-
anisms or processes, both leading to the same result. Accord-
ingly, this variable does not influence the result on the general
causal level, though its actual instantiations are actual causes
of this result in each particular situation. We will discuss be-
low a couple of more complex examples of this kind.

Example 7 (Push [McDermott, 1995]). 1 push (P) Jones in
front of a truck (T), which hits (H) and kills him (D); if I had
not done so, a bus (B) would have hit and killed him.

Below is a corresponding structural model:

H=(PAT)V(-PAB), D=H

The HP definition from [Halpern and Pearl, 2005] yielded
P and T as causes of D, as we would expect. But, unfortu-
nately, it also yielded B as a cause of D.

The ’positive’ part of the corresponding causal theory is’

PT=H -P,B=H H=D
The actual world is { P, B, T'}, so the actual theory is
PT=H H=D

Thus, P and T are actual causes of D, but B is not.

The above example can also be used to illustrate the ne-
cessity of a parsimonious (non-redundant) representation of
causal mechanisms. Note that the first two rules imply the
following rule by causal inference:

T,B= H.

Actually, this is an immediate consequence of a purely logical
fact that (P AT) V (=P A B) is equivalent to

(PAT)V (=P AB)V (T A B)
SThis solution has been suggested in [Blanchard and Schaffer,

2017] and mentioned in [Halpern and Hitchcock, 2015].
"The rest of the causal theory is irrelevant for this example.
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in classical logic. However, if we would add the above causal
rule to the source causal theory, it would appear also in the
actual causal theory, and we would obtain that also B is an
actual cause of D, contrary to our intuitions.

In the example below what is a cause on any counterfactual
approach will not be an actual cause on our definition®.
Example 8 (Inevitable Shock [McDermott, 1995; Weslake,
2015]). Two switches are wired to an electrode. The switches
are controlled by A and B respectively, and the electrode is at-
tached to C. A flips her switch (A), which forces B to flip her
switch (B) (B has no other option). The electrode is activated
and shocks C (C) iff both switches are in the same position.

The corresponding causal theory is

A=B A B=C -A-B=C
-A=-B -A,B=-C A -B=-C

Again, t = C follows from the above theory by causal in-
ference, so the shock is inevitable. Still, the actual world is
{4, B, C}, so the actual causal sub-theory is

A=B AB=C

We obtain A =-C by Cut, so B cannot be an actual cause of
C (since any set of literals that causes C' will include A). This
makes A the only actual cause of C. In fact, the source causal
theory is regularly equivalent to the following one:

A=B A=C -A=-B -A=C

In the above theory, B and C' are just joint effects of
the common cause A. Note, however, that B is a but-for
cause of C' in the original causal theory (due to the last rule,
A,-B=--(), so it is an actual cause of the latter on any
counterfactual account. The regularity account provides here
more discriminate answers about actual causality than the
counterfactual approach.

(In)transitivity of causation. One of the most discussed
features of causation is transitivity, and the suggested the-
ory allows to explain at least some of the deliberations aris-
ing about this controversial property. In our theory, general
causal inference is transitive, while actual causation is not.
The following example from [Ehring, 1987] forms perhaps
the simplest counterexample to transitivity on our definition:
Example 9 (Purple flame). Jones puts potassium salts (P)
into a hot fire (F). Because potassium compounds produce
a purple flame when heated, the flame changes to a purple
colour (PF), though everything else remains the same. Both
flames ignite some flammable material (I).

P F=PF F=I1 PF=I
-P=-PF —-F=-PF =F -PF=-]
If the actual world « is {P, PF, F,I}, then the actual
causal sub-theory is
P F=PF F=I1 PF=I,

and hence P is an actual cause of PF’, and PF is an actual
cause of I. However, P is not an actual cause of I, since it is
not a necessary part of any sufficient condition for /.

8We have slightly changed the story to make it more in accord
with the equations (specifically, B := A used in [Weslake, 2015]).

4.1 Summary and Prospects

Causation is a notoriously difficult and complex notion. In
our logical approach, part of its complexity is reflected in
the fact that the causal calculus is not a plain logical sys-
tem with stipulated axioms, but an essentially nonmonotonic
formalism in which logics and nonmonotonic semantics are
tightly intertwined. As we have seen, this representational
complexity is even higher for actual causation. Still, our sug-
gested definition has produced reasonably simple algorithms
for checking the relevant causal claims.

There are at least two major representational issues that
have been left outside the scope of this study. The first con-
cerns the use of multi-valued (non-binary) variables that have
shown their usefulness in the framework of structural equa-
tion models. The causal calculus has all the necessary tools
for dealing with such variables, which creates ample opportu-
nities for a formal representation of the relevant cases of ac-
tual causation (such as trumping preemption - see, e.g., [Wes-
lake, 2015]).

The second, larger issue concerns the role and use of
normality and defaults in reasoning about actual causation.
Again, the causal calculus already has the relevant tools for
a formal representation of these concepts (see [Giunchiglia et
al., 2004]), so it seems to suggest a promising approach for
the study of the latter within a single logical framework.

Among more specific aims, an important objective of
the study was to show that, once placed on proper logical
grounds, traditional regularity approach to causation provides
not only a natural, but also a viable definition of actual cau-
sation. In some sense, the viability of this approach lends an
additional support to the counter-slogan from [Pearl, 2000]:
“Causation without manipulation? You bet!”

Of course, our approach does not ‘cancel’ the counterfac-
tual accounts, it only poses anew the old philosophical ques-
tions about the relation between (causal) laws and counter-
factuals, questions that could be traced back to the famous
double definition of causation by David Hume. Still, we can’t
help to agree with [Weslake, 2015] that there is a nice irony
in the fact that most plausible counterfactual theories of cau-
sation turn out to draw heavily from the resources of the reg-
ularity theories they was initially motivated by rejecting.

We are intending to provide a more systematic compari-
son between our approach and counterfactual accounts in the
sequel of this study [forthcoming], which, in turn, could be
viewed as part of a larger, and independently important, log-
ical study of causal counterfactuals in the framework of the
causal calculus.

Actual causation, the primary subject of this study, is only
part of the bigger picture of causality. In this respect, a larger
aim of this study consisted in demonstrating that the causal
calculus provides a unifying logical framework for causal rea-
soning. We believe that the study lends one more piece of
justification for the use of logical tools and representations in
the study of causation.
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