
Enhancing Existential Rules by Closed-World Variables

Giovanni Amendola, Nicola Leone, Marco Manna and Pierfrancesco Veltri
University of Calabria, Italy

amendola@mat.unical.it, leone@mat.unical.it, manna@mat.unical.it, veltri@mat.unical.it

Abstract
Existential rules generalize Datalog with existential
quantification in the head. Natively, Datalog is in-
terpreted under a closed-world semantics, while ex-
istential rules typically employ the open-world as-
sumption. The interpretation domain in the latter
case is enlarged by infinitely many “anonymous”
individuals. Then, in any rule, each variable ranges
over all individuals, even if not needed or required.
In this paper, we enhance existential rules by
closed-world variables to consciously reason on the
properties of “known” (non-anonymous) and arbi-
trary individuals in different ways. Accordingly,
we uniformly generalize the basic classes of exis-
tential rules that ensure decidability of ontology-
based query answering. For them, after observing
that decidability is preserved, we prove that a strict
increase in expressiveness is gained, and in most
cases the computational complexity is not altered.

1 Introduction
Existential rules, also known as TGDs or datalog∃ rules,
are a fascinating research topic deeply studied not only in
artificial intelligence [Baget et al., 2011; Amendola et al.,
2017] but also in database theory [Bourhis et al., 2016;
Alviano and Pieris, 2015] and logic [Bárány et al., 2014].
They are at the core of Datalog± [Calı̀ et al., 2009], an emerg-
ing family of ontology languages complementing the expres-
sive power of Description Logics (DLs) [Baader et al., 2003].
Indeed, datalog∃ generalizes the well-known language Dat-
alog [Ceri et al., 1989] with existential quantification in the
head. Natively, Datalog is interpreted under a closed-world
semantics, while existential rules typically employ the open-
world assumption. For example, in classical query answer-
ing [Ortiz, 2013] —where a query q is evaluated over a logi-
cal theory consisting of a database D paired with an ontology
Σ— the presence of existential quantifiers in Σ requires an
interpretation domain of D ∪ Σ that extends the closed do-
main of D with infinitely many extra “anonymous” individu-
als. Then, each variable of Σ does range over all individuals.

To consciously reason on the properties of “known” (non-
anonymous) and arbitrary individuals in different ways, we
complement standard variables with closed(-world) variables

that range over the individuals of D ∪ Σ only. The result-
ing language, called datalog∃,H , offers novel modeling capa-
bilities, as it allows to specify properties at both data and
conceptual level in a uniform way. Consider, for exam-
ple, a scenario in which one has to model that “every good
has a price” and “a good is auctionable if some reference
price can be associated to it”. Such desiderata are express-
ible via the rules ρ1 = good(X) → ∃Y hasPrice(X,Y ) and
ρ2 = good(X), hasPrice(X, Ŷ) → auctionable(X), where
Ŷ is a closed variable. Given D0 = {good(ferrari250 )},
Σ0 ={ρ1, ρ2}, and the queries q1 =∃X ∃Y hasPrice(X,Y )
and q2 =∃X ∃Y hasPrice(X,Y ), auctionable(X). Clearly,
q1 is entailed by D0 ∪ Σ0. But q2 is not since M = D0 ∪
{hasPrice(ferrari250 , 10)} is a possible model of D0 ∪Σ0.
Indeed, 10 is not a reference price for ferrari250 but simply
one of the infinitely many anonymous individuals not in D0.
Therefore rule ρ2 is satisfied in M . Of course, a first natural
question now is to wonder whether Σ0 can be expressed via
some equivalent datalog∃ ontology.

Existential rules, besides offering good modeling capabil-
ity, are extremely challenging from a computational view-
point, as they make query answering undecidable in the gen-
eral case [Beeri and Vardi, 1984]. To remedy this fact, several
syntactic conditions have been proposed in the literature, with
some giving rise to the five basic decidable datalog∃ classes:
linear [Calı̀ et al., 2012a], weakly-acyclic [Fagin et al., 2005],
guarded [Calı̀ et al., 2013], sticky [Calı̀ et al., 2012b], and
shy [Leone et al., 2012]. The second natural question now
is to wonder whether these conditions can be generalized to
preserve decidability of query answering also for datalog∃,H .

Along the paper we give answers to the above questions,
starting right here by summarizing the main contributions:
I For each basic datalog∃ class C, we consider a “naive”

and a “refined” extension, denoted by CH and CH+, respec-
tively. In naive extension, the syntactic conditions underlying
C treat closed variables as standard ones. In the refined one,
the syntactic conditions are enforced over standard variables
only. Decidability can be easily established. (Section 3.)
I We show that CH preserves the same data and combined

complexity of each basic datalog∃ class C. Likewise, this
holds with shyH+ and w-acyclicH+ w.r.t. their standard coun-
terparts. Differently, guardedH+ and stickyH+ exhibit an
increase in data complexity, while only linearH+ has an in-
crease in both data and combined complexity. (Section 4.)
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I We prove that datalog∃,H is (resp., CH and CH+ are)
strictly more expressive than datalog∃ (resp., each basic class
C). In particular, going back to our running example, there is
no datalog∃ ontology that, independently from the database
at hand, behaves as Σ0 w.r.t. both q1 and q2. Also, each CH+

is even strictly more expressive than datalog. (Section 5.1.)
I We show that the well-known Description Logic
ELH [Brandt, 2004b] is captured by linearH+, even if we
only focus on linearH+ ontologies of arity at most two and
with at most two atoms in the body (where the combined
complexity of query answering drops to NP as for ELH). In-
terestingly, linearH+ keeps a lower computational complex-
ity, compared to other datalog∃ classes that can express this
DL, namely guarded and its extensions. (Section 5.2.)

2 Existential Rules with Closed Variables
Basics. Let C (constants or individuals) and V (variables) be
pairwise disjoint discrete sets of terms. A variable (x, y, ...)
is either standard (X,Y, ...) or closed(-world) (X̂, Ŷ, ...). We
denote by Vs and Vc, the set of standard and closed variables,
respectively. An atom α is a labeled tuple p(t), where p =
pred(α) is a predicate symbol, t = t1, ..., tm is a tuple of
terms, m = |p| is the arity of p or α, and α[i] = ti. Given a fi-
nite domain ∆ ⊂ C of “known” individuals, a ∆-substitution
is any map µ : V → C such that X̂ ∈ Vc implies µ(X̂) ∈ ∆.
For a set A of atoms, µ(A) is obtained from A by replacing
each variable x by µ(x). A database (resp., instance) is any
variable-free finite (resp., possibly infinite) set of atoms.
Syntax. A datalog∃,H rule ρ is a logical implication of the
form ∀X∀Y (φ(X,Y)→ ∃Z ψ(X,Z)) —with X∪Y ⊆ V
and Z ⊆ Vs— whose body (resp., head) b(ρ) = φ(X,Y)
(resp., h(ρ) = ψ(X,Z)) is a conjunction (or set) of atoms,
possibly with constants. As usual, the head is nonempty.
Universal and existential variables are respectively denoted
by UV(ρ) and EV(ρ). The set X is known as the fron-
tier of ρ. If no closed variable is in ρ, then it is also a
datalog∃ rule; and if even EV(ρ) = ∅, then it is also a
datalog rule. A datalog∃,H ontology Σ is any finite set of
datalog∃,H rules. We denote by R(Σ) the set of predicates
occurring in Σ. A position p[i] is defined as a predicate p of
R(Σ) and its i-th attribute. Let pos(p)={p[1], ..., p[|p|]}. A
CH (hybrid conjunctive) query is an expression of the form
q(X) = ∃Y φ(X,Y), where φ is as above. In case q con-
tains no closed variable, it is also a C (conjunctive) query. For
a “structure” ς over atoms (set, rule, query, ...), if X̂ occurs in
ς , then X does not occur in ς . Also, atoms(ς), terms(ς),
vars(ς) and std(ς) respectively denote the set of atoms in ς ,
the set of terms in atoms(ς), the set of variables in atoms(ς),
and the structure built from ς by replacing each X̂ with X .
Semantics. Consider a triple 〈D,Σ, q〉 as above, and let
∆ = terms(D,Σ) ∩ C. A model of D ∪ Σ is any in-
stance M ⊇ D such that, for each ρ ∈ Σ and each
∆-substitution µ, µ(b(ρ)) ⊆ M implies µ′(h(ρ)) ⊆ M
for some ∆-substitution µ′ ⊇ µ|X. The answer to q over M
is the set ans(q,M) of |X|-tuples t for which there is a
∆-substitution µ such that µ(φ(t,Y)) ⊆ M . The set of all
models is denoted by mods(D,Σ). The (certain) answer to q
is the set ans(q,D,Σ) =

⋂
M∈mods(D,Σ) ans(q,M).

3 Decidability
Hereafter, QEVAL refers to the following decision problem:
Given a database D, a datalog∃,H ontology Σ, a CH query
q(X) with |X| = n, and a tuple t ∈ Cn, decide whether
t ∈ ans(q,D,Σ) holds. In this section, we first introduce the
five basic datalog∃ classes ensuring decidability of QEVAL,
as well as some of their generalizations that we need in our
technical analysis: j-acyclic [Krötzsch and Rudolph, 2011],
w-sticky [Calı̀ et al., 2012b], and w-guarded [Calı̀ et al.,
2013]. Then, we define hybrid(-world) extensions of the ba-
sic classes, and show that decidability is preserved.

3.1 Overview of Some Decidable datalog∃ Classes
Fix a datalog∃ ontology Σ. We assume that different rules of
Σ share no variable. A term t occurs in a set A of atoms at
position p[i] if there is α ∈ A s.t. pred(α) = p and α[i] = t.
Position p[i] is invaded by an existential variable X if there
is ρ ∈ Σ s.t.: (1) X occurs in h(ρ) at position p[i]; or (2)
some y ∈ UV(ρ) attacked by X (i.e., y occurs in b(ρ) only
at positions invaded by X) occurs in h(ρ) at position p[i]. A
universal variable is protected if it is attacked by no variable.
Linearity. Ontology Σ belongs to linear if, for each ρ ∈ Σ,
b(ρ) contains at most one body atom.
Acyclicity. The labeled graph of Σ is G(Σ) = 〈N,A〉,
where: (1) N = ∪p∈R(Σ)pos(p); (2) (p[i], r[j], ∀) ∈ A
if there are ρ ∈ Σ and X ∈ UV(ρ) s.t. X occurs both
in b(ρ) at position p[i] and in h(ρ) at position r[j]; and (3)
(p[i], r[j], ∃) ∈ A if there are ρ ∈ Σ,X ∈ UV(ρ) also occur-
ring in h(ρ), and Y ∈ EV(ρ) s.t. bothX occurs in b(ρ) at po-
sition p[i] and Y occurs in h(ρ) at position r[j]. The existen-
tial graph of Σ isG∃(Σ) = 〈N,A〉, whereN = ∪ρ∈ΣEV(ρ)
and (X,Y ) ∈ A if the rule ρ where Y occurs contains a
universal variable attacked by X and occurring in h(ρ). Σ
belongs to weakly-acyclic (resp., j-acyclic) if G(Σ) (resp.,
G∃(Σ)) has no cycle through an ∃-arc (resp., is acyclic).
Guardedness. Σ belongs to guarded if ρ ∈ Σ implies that
there is α ∈ b(ρ) s.t. UV(ρ) = vars(α). Also, Σ belongs
to w-guarded if, for each ρ ∈ Σ, there is an atom of b(ρ)
containing all the attacked variables of ρ.
Stickiness. A variable X of Σ is marked if (1) there is ρ ∈ Σ
s.t. X occurs in b(ρ) but not in h(ρ); or (2) there are ρ, ρ′ ∈ Σ
s.t. a marked variable occurs in b(ρ) at some position p[i]
and X occurs in h(ρ′) at position p[i] too. Then, Σ is sticky
if, for each ρ ∈ Σ, X occurs multiple times in b(ρ) implies
X is not marked. Also, Σ belongs to w-sticky if, for each
ρ ∈ Σ, X occurs multiple times in b(ρ) implies X is not
marked orX occurs in some position never involved in cycles
going through an ∃-arc of G(Σ).
Shyness. Σ belongs to shy if, for each ρ ∈ Σ: (1) X occurs
in two different atoms of b(ρ) implies X is protected; and (2)
if X and Y occur both in h(ρ) and in two different atoms of
b(ρ), then X and Y are not attacked by the same variable.

Proposition 1. The considered classes are pairwise uncom-
parable, except for: linear ⊂ guarded ⊂ w-guarded, linear ⊂
shy, datalog ⊂ shy, sticky ⊂ w-sticky, and datalog ⊂
w-acyclic ⊂ j-acyclic.
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Class C Data complexity (LB) (UB) Combined complexity (LB) (UB)

linearH in AC0 C 2−→ linear PSPACE linear ⊂ C A3

linearH+ PTIME datalog 4−→ C C 1−→ shy EXPTIME datalog 4−→ C C 1−→ shy ∨ A3

w-acyclicH PTIME w-acyclic ⊂ C C 1∨2−−→ j-acyclic 2EXPTIME w-acyclic ⊂ C C 1−→ j-acyclic
w-acyclicH+ PTIME w-acyclic ⊂ C C 1−→ j-acyclic 2EXPTIME w-acyclic ⊂ C C 1−→ j-acyclic

guardedH PTIME guarded ⊂ C C 1∨2−−→ guarded 2EXPTIME guarded ⊂ C C 1−→ guarded

guardedH+ EXPTIME w-guarded 4−→ C C 1−→ w-guarded 2EXPTIME guarded ⊂ C C 1−→ w-guarded

stickyH in AC0 C 2−→ sticky EXPTIME sticky ⊂ C A3

stickyH+ PTIME datalog 4−→ C C 1−→ w-sticky EXPTIME sticky ⊂ C A3

shyH PTIME shy ⊂ C C 1∨2−−→ shy EXPTIME shy ⊂ C C 1−→ shy ∨ A3

shyH+ PTIME shy ⊂ C C 1−→ shy EXPTIME shy ⊂ C C 1−→ shy ∨ A3

Table 1: Computational Complexity of QEVAL, where LB and UB stand for lower and upper bound, respectively.

3.2 Decidable Hybrid Extensions
Let B = {linear, w-acyclic, guarded, sticky, shy}. For each
C ∈ B, we define the “naive” and “refined” hybrid(-world)
extension of C, respectively denoted by CH and CH+. For-
mally, for each Σ ∈ datalog∃,H , Σ ∈ CH if std(Σ) ∈ C,
while Σ ∈ CH+ if thin(Σ) ∈ C, where thin(Σ) is obtained
from Σ by replacing each closed variable by some constant
and then eliminating every atom containing only constants.
For example, g(X, Ŷ), s(Ŷ) → r(X) belongs to linearH+ but
not to linearH since g(X, c) → r(X) belongs to linear but the
rule g(X,Y ), s(Y )→ r(X) does not.
Proposition 2. For each C, C′ ∈ B, C ⊂ CH ⊂ CH+ holds,
as well as C ⊂ C′ implies both CH ⊂ C′H and CH+ ⊂ C′H+.

For the decidability analysis, we reduce QEVAL over
datalog∃,H to QEVAL over datalog∃ . To this end, we devise
the following algorithm, whose key principle is reminiscent
of analogous methods from the literature [Motik et al., 2005]:

Algorithm 1. Reduction A1 from a hybrid triple 〈D,Σ, q〉
† Σ′ ← {p(Xp)→ Γ(Xp), p̄(Xp) : p ∈ R(Σ)};
‡ Σ′′ ← {std(b(ρ̄)),Γ(Vρ)→ std(h(ρ̄)),Γ(Cρ) : ρ ∈ Σ};
q′ ← std(q̄),Γ(Vq);

return 〈D,Σ′ ∪ Σ′′, q′〉;

Legend. q̄ (resp., ρ̄) is obtained from q (resp., ρ) by replacing
each predicate p with p̄; Γ(t1, ..., tn) = c(t1), ..., c(tn), for
any n > 0; V�= {V : V̂ ∈ vars(�)}; Cρ= C∩terms(h(ρ));
Xp = X1, ..., X|p|; and {c, p̄} ∩ R(Σ) = ∅.

E.g., from q=∃X ∃Ŷ r(X, Ŷ) and Σ={r(X̂, Y )→∃Z r(Y, Z)},
we get q′=∃X ∃Y r̄(X,Y ), c(Y ), and Σ′={r(X1, X2)→c(X1),
c(X2), r̄(X1, X2)} and Σ′′ = {r̄(X,Y ), c(X)→∃Z r̄(Y, Z)}.
Let us now highlight the key properties of A1.
Lemma 1. A1 ensures ans(q,D,Σ) = ans(q′, D,Σ′∪Σ′′),
and it behaves as follows: (1) guardedH → guarded;
(2) guardedH+ → w-guarded; (3) stickyH+ → w-sticky;
(4) w-acyclicH+→ jointly-acyclic; and (5) shyH+→ shy.

Proof Sketch. Via †-rules, each p(t) ∈ D gives rise to a twin
atom p̄(t), and its constants are collected under the predi-
cate c. Via ‡-rules, each predicate p is renamed in p̄, each
variable V̂ is replaced by V , and the atom containing V is

paired with the atom c(V ). This way, known individuals can
be separated from anonymous ones, and c-atoms can mimic
the semantics of closed variables. Consider now the range
of the reduction; due to space limits, we only consider cases
(3) and (4). In case (3), let Σ ∈ stickyH+. Each rules ρ†
cannot violate stickiness as no repeated variable appears in
b(ρ†). Now, let X be a variable occurring multiple times
in std(b(ρ̄)), Γ(Vρ). We distinguish two cases: (i) X was
a standard variable in b(ρ). Then, it also occurred multiple
times in b(ρ), Hence, by definition of stickyH+, X was not
marked in Σ; and byA1 it appears multiple times in std(b(ρ̄))
only. Hence, X is also not marked in Σ′ ∪ Σ′′. (ii) X was
a closed variable in b(ρ). Then, it appears both in std(b(ρ̄))
and in Γ(Vρ). But position c[1] is never involved in cycles
going through an ∃-arc of G(Σ′ ∪Σ′′). Hence, Σ′ ∪Σ′′ ∈ w-
sticky. In case (4), let Σ ∈ w-acyclicH+. Note that, given
an existential variable X appearing in Σ′ ∪Σ′′ (and so in Σ),
for each i, p[i] and c[1] are not invaded by X . Assume that
there is a loop in G∃(Σ′ ∪Σ′′). Hence, there is a ‡-rule ρ′ s.t.
X ∈ EV(ρ′), and Y ∈ UV(ρ′) is attacked by X . Now, Y
cannot appear in c. Hence, it is a standard variable in b(ρ).
Then, Y is attacked by X in Σ. Thus, Σ 6∈ w-acyclicH+. An
induction on the length of the cycle concludes the proof.

The next result follows immediately.
Theorem 3. Let C ∈ B. Then, QEVAL for CH queries over
CH and CH+ ontologies is decidable.

4 Computational Complexity
We now study the combined and data complexity of QEVAL
over our hybrid extensions. The former is calculated by con-
sidering everything as input, while the latter by considering
fixed both the query and the ontology. From our analysis,
Theorem 4. All results in Table 1 do hold.

Each entry “C1 x−→ C2” reads as follows: Algorithm x de-
fines a reduction Ax from QEVAL over C1 to QEVAL over
C2, according to Lemma x possibly combined with Propo-
sitions 1 and 2. In particular, if x ∈ {1, 4}, then Ax works in
polynomial-time. Symbol ∨ means that the result admits al-
ternative proofs. Each entry “C1 ⊂ C2” comes from Proposi-
tion 2. Each entry “Ax” means that the upper bound is explic-
itly given by Algorithm x. The rest of the section is the proof
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of Theorem 4. To complete data complexity upper bounds of
all naive extensions, consider the following algorithm:

Algorithm 2. Reduction A2 from a hybrid triple 〈D,Σ, q〉
† Σ′ ← {p(Xp)→ Γ(Xp), p̄(Xp), p[c|p|](X

p) : p ∈ R(Σ)};
‡ Σ′′← {std(b(ρω)→ h(ρω), h(ρ̄),Γ(Cρ)) : ρ ∈ Σ, ω ∈ Ωρ};
q′ ← std(q̄), Γ(Vq);

return 〈D,Σ′ ∪ Σ′′, q′〉;

Legend. c|p| is the tuple c, ..., c of symbols having length |p|;
Ωρ collects all maps of the form ω : vars(ρ) → {c, o} such
that ω(x) = o if x ∈ EV(ρ), and ω(x) = c if x ∈ UV(ρ) ∩
Vc (symbols c and o stand for closed and open, respectively);
ρω denotes the rule obtained from ρ by replacing each atom
of the form p(X) with p[ω(X)](X); and the rest is as in A1.

Basically, A2 avoids Γ(Vρ) in rule bodies by encoding in
predicates those positions where only known individuals may
occur. E.g., from q = ∃X ∃Ŷ r(X, Ŷ) and Σ={ρ}, where ρ
= r(X̂, Y )→∃Z r(Y, Z), we get Ωρ = {ω1, ω2} s.t.: ω1(Ŷ) =
ω2(Ŷ)=c, ω1(Z)=ω2(Z)=o, ω1(Y )=c, ω2(Y )=o. Hence,
Σ′ ← {r(X1, X2)→ c(X1), c(X2), r̄(X1, X2), r[c,c](X1, X2)}
Σ′′ ← {r[c,c](X,Y )→ ∃Z r[c,o](Y, Z), r̄(Y, Z);

r[c,o](X,Y )→ ∃Z r[o,o](Y, Z), r̄(Y, Z)}
q′ ← ∃X ∃Y r̄(X,Y ), c(Y )

By considering any universal model U of D ∪ Σ′ ∪ Σ′′ —
i.e., a representative model of any other [Calı̀ et al., 2013]—
subscripts guarantee that whenever there is a substitution µ
that maps both the body and the head of a ‡-rule ρω to U ,
then µ(X) ∈ terms(D) iff ω(X) = c. Then,
Lemma 2. A2 ensures ans(q,D,Σ) = ans(q′, D,Σ′∪Σ′′).
In particular, it behaves as follows: CH→ C for each C ∈ B.

Although exponential (each rule ρ admits 2|UV(ρ)∩Vs| dif-
ferent maps), when combined with Lemma 2, reduction A2

gives us the desired bounds. To complete with upper bounds,
we design the following algorithm:

Algorithm 3. Alternating decision procedure A3

Input: Hybrid-world triple 〈D,Σ, q〉 where Σ is in normal form
∆← terms(D,Σ) ∩C; / ∗ known ∗ /
k ← (1 + |vars(q)|) ·maxp∈R(Σ) |p|;
I ← {a1, ..., ak} ⊂ C such that ∆ ∩ I = ∅; / ∗ anonymous ∗ /
guess a ∆-substitution µ : vars(q)→ ∆ ∪ I
Q← µ(atoms(q)) and Iq ← terms(Q) ∩ I
for each a ∈ Iq do / ∗ guess atom αa introducing each a ∗ /

guess αa ∈ {p(t, a) : p ∈ R(Σ), t ∈ (∆ ∪ I)|p|−1}
† for each α ∈ Q universally do / ∗ prove each atom α ∗ /

if α ∈ D then accept else
guess ρ ∈ Σ and a ∆-substitution µ : vars(ρ)→ {∆∪I}
if µ is not compatible with α then reject else

Q← µ(b(ρ)) and goto step †

Legend. Σ is in normal form if, for each ρ ∈ Σ, |h(ρ)| =
1, |EV(ρ)| ≤ 1, and |EV(ρ)| = 1 implies the existential
variable is in the last position; µ is not compatible with α if
one of the following occurs: µ(h(ρ)) 6= α; or X ∈ EV(ρ),
µ(X) ∈ Iq , and α 6= αµ(X); or µ maps some non-frontier
variable into Iq .

It is a resolution-based algorithm, generally working in al-
ternating polynomial space, hence in exponential time.

Lemma 3. If Σ is stickyH+ or shyH+, thenA3 is correct and
it runs in EXPTIME. If Σ ∈ linearH, thenA3 runs in PSPACE.

Proof Sketch. A3 proves the query q by exploring a “small”
(at most exponential) portion of some universal model of
D ∪Σ. In case of linear rules, the algorithm works in nonde-
terministic polynomial space as step † is universal only once,
namely at the very beginning when Q contains the image
µ(atoms(q)) of q.

We close the section by providing missing lower bounds:

Algorithm 4. Reduction A4 from a standard triple 〈D,Σ, q〉
Vp ← protectedVars(Σ);
Σ′ ← {cls(ρ,Vp) : ρ ∈ Σ};
return 〈D,Σ′, q〉;

Legend. Vp collects all protected standard universal variables
of Σ and cls(ρ,Vp) replaces each variable X ∈ Vp by the
closed one X̂.

Lemma 4. A3 ensures ans(q,D,Σ) = ans(q,D,Σ′). In
particular, it behaves as follows: 1) datalog→ CH+ for each
C ∈ B; and 2) w-guarded→ guardedH+.

Proof Sketch. Equality of certain answers follows by the fact
that protected variables implicitly behave as closed ones.

(1) Let Σ ∈ datalog. Then, each variable appearing in Σ
is protected. Hence, each rule in Σ′ has closed variables only.
Thus, Σ′ belongs to each refined extension, as the syntactic
conditions are enforced over standard variables only.

(2) Let Σ ∈ w-guarded. Let ρ ∈ Σ, and ρ′ be the corre-
sponding rule in Σ′. Then, by definition of w-guarded, there
is an atom in ρ that covers all the non-protected universal vari-
ables appearing in b(ρ). Hence, the corresponding atom in ρ′
covers all the standard universal variables appearing in b(ρ′),
as each protected variable is replaced by a closed one. Thus,
Σ′ ∈ guardedH+.

5 Expressive Power
We now investigate the expressiveness of datalog∃,H . After
showing that there are simple hybrid ontologies that can-
not be expressed by any datalog∃ one under model equiva-
lence, we consider the classical notion of program expressive
power [Arenas et al., 2014], also known as query insepara-
bility, which relies on answer equivalence and turns out to be
more appropriate for OBQA purposes. However, also in this
case we can show that datalog∃,H is strictly more expressive
than datalog∃ . In particular, for both extensions of each basic
datalog∃ class, we prove a strict increase in expressiveness.
We close the section by showing that linearH+ is strictly more
expressive than the Description Logic ELH [Brandt, 2004b].

5.1 datalog∃,H versus datalog∃
Two ontologies Σ1 and Σ2 are model-equivalent (ME ),
shortly Σ1 ≡ Σ2, if mods(D,Σ1) = mods(D,Σ2), for each
database D. Accordingly, a class C2 of ontologies is strictly
more expressive (under ME ) than C1, denoted by C1 < C2, if
(M1 ) for each Σ1 ∈ C1 there is Σ2 ∈ C2 s.t. Σ1 ≡ Σ2, and
(M2 ) for some Σ2 ∈ C2 there is no Σ1 ∈ C1 s.t. Σ1 ≡ Σ2.
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Theorem 5. It holds that: (i) datalog∃ < datalog∃,H , and
(ii) both C < CH and C < CH+, for each C ∈ B.

Proof. Consider the ontology Σ = {p(X̂)→ r(X̂)}. We pro-
ceed by contradiction. Assume Σ admits a model-equivalent
datalog∃ ontology Σ′. Let D∅ = ∅. According to Section 2,
M1 = {p(1)} is a model of D∅ ∪ Σ as the interpretation do-
main of the closed variables is empty. Hence, M1 is a model
of D∅ ∪ Σ′. Let D1 = {p(1)}. In this case, M1 = {p(1)}
is not a model of D1 ∪ Σ as r(1) is required. Thus M1 is
not a model of D1 ∪ Σ′. But this is not possible for classi-
cal first-order theories. In fact, M1 ⊇ D1. Hence, if M1 is
not a model of D1 ∪ Σ′ the only reason is that there exists
some rule ρ ∈ Σ′ that is not satisfied. But since M1 ⊇ D∅
also holds, this means that M1 cannot be a model of D∅ ∪Σ′

as the same rule ρ would be unsatisfied. Hence, (i) follows
since datalog∃ ⊂ datalog∃,H , while (ii) holds since, for each
C ∈ B, C ⊂ CH ⊂ CH+ by Proposition 2, and Σ ∈ CH.

We now consider a smoother notion of expressiveness.
Two ontologies Σ1 and Σ2 are answer-equivalent (AE ),
shortly Σ1

∼= Σ2, if ans(q,D,Σ1) = ans(q,D,Σ2), for each
databaseD and for each query q. Hence, if two ontologies are
model-equivalent, then they are also answer-equivalent (i.e.,
Σ1 ≡ Σ2 implies Σ1

∼= Σ2, for each Σ1 and Σ2). Similarly, a
class C2 of ontologies is strictly more expressive (under AE )
than C1, denoted by C1 ≺ C2, if (A1 ) for each Σ1 ∈ C1 there
is Σ2 ∈ C2 s.t. Σ1

∼= Σ2, and (A2 ) for some Σ2 ∈ C2 there
is no Σ1 ∈ C1 s.t. Σ1

∼= Σ2. Note that, if C1 < C2 (resp.,
C1 ≺ C2), then condition (A1 ) (resp., (M2 )) is guaranteed.

By Lemma 4, ontology Σ = {p(X̂) → r(X̂)} in the proof
of Theorem 5 admits an answer-equivalent datalog∃ ontol-
ogy. Indeed, it is the output of reduction A3 when it takes
the ontology std(Σ) = {p(X) → r(X)} as input. Hence, to
prove the next result, we need a stronger argument.

Theorem 6. It holds that: (i) datalog∃ ≺ datalog∃,H , and
(ii) C ≺ CH, C ≺ CH+, and also datalog ≺ CH+, for each
basic class C ∈ B.

Proof. Consider Σh = {p(X̂)→ r(X̂)} ∪ {→ ∃Y p(Y )}.
We proceed by contradiction. Assume Σh admits an answer-
equivalent datalog∃ ontology Σ′h. Let q1 = ∃X p(X), r(X)
and Dc = {p(c)}, for each constant c ∈ C. Accord-
ing to Section 2, ans(q1, Dc,Σh) = {〈〉}, and there-
fore also ans(q1, Dc,Σ

′
h) = {〈〉}. Since Σ′ is a stan-

dard first-order theory, this means that Dc ∪ Σ′h |= q1,
and therefore that Σ′h |= {p(c)→ q1}, or equivalently
mods(Σ′h) ⊆ mods({p(c) → q1}). Hence, we have that
mods(Σ′h) ⊆

⋂
c∈C mods({p(c)→ q1}). But the common

models are exactly those of φ1 = ∃Y p(Y ) → q1. There-
fore, mods(Σ′h) ⊆ mods(φ1). Let q2 = ∃Xp(X) and
D∅ = ∅. Clearly, ans(q2, D∅,Σh) = {〈〉}, and therefore
also ans(q2, D∅,Σ

′
h) = 〈〉. But this means that Σ′h |= q2,

or equivalently mods(Σ′h) ⊆ mods(q2). By combining the
above results, we have mods(Σ′h) ⊆ mods(φ1) ∩mods(q2).
But the common models are exactly those of q1. This means
that mods(Σ′h) ⊆ mods(q1), from which we get Σ′h |= q1,
implying that ans(q1, D∅,Σ

′
h) = {〈〉}. But this is not

possible since ans(q1, D∅,Σh) = ∅. Hence, (i) follows

since datalog∃ ⊂ datalog∃,H , while (ii) holds since, for each
C ∈ B, C ⊂ CH ⊂ CH+ by Proposition 2, and Σh ∈ CH, and
since datalog ≺ CH+ holds by Lemma 4.

5.2 linearH+ versus ELH
We now show that linearH+ is strictly more expressive than
ELH [Brandt, 2004a; 2004b], even if we focus on linearH+

ontologies with bounded-rules (namely, both arities and num-
ber af atoms of each rule are bounded by some integer con-
stant), in which case the combined complexity of QEVAL
drops to NP as the complexity of QEVAL for C queries over
ELH. (Note that ELH is not expressible in linearH.) In
particular, we provide a polynomial time transformation that
maps ELH ontologies into answer-equivalent linearH+ ones.
This also shows that ELH is no more succinct than linearH+.

In DLs, rules are called inclusions, which in ELH are of
the form: C v D; C u D v E; R v S; C v ∃R.D;
∃R.D v C; where C, D, E are concepts, and R, S are
roles. According to the semantics of DLs, they are model-
equivalent (hence answer-equivalent) to the following exis-
tential rules [Baader et al., 2003], respectively: (i) C(X) →
D(X); (ii) C(X), D(X)→ E(X); (iii) R(X,Y )→ S(X,Y );
(iv) C(X) → ∃Y R(X,Y ), D(Y ) (v) R(X,Y ), D(Y ) →
C(X). Only rules of the form (i), (iii), and (iv) are linear.

To obtain a linearH+ ontology answer-equivalent to an
ELH one, a possible way is to “close” join variables in the
body of non-linear rules, i.e., of the form (ii) and (v). This
would preserve soundness, but not necessarily completeness.
Hence, to guarantee answer equivalence, one should comple-
ment such (hybrid) rules with new linear ones that “bypass”
propagations inhibited by closed variables. Formally,

Theorem 7. Under answer-equivalence, linearH+ with
bounded-rules is strictly more expressive than ELH. In par-
ticular, for each ELH ontology, an equivalent linearH+ one
of quadratic size can be constructed in polynomial time.

Proof Sketch. Given an ELH ontology Σ in datalog∃ form,
we construct a datalog∃,H ontology Σ′ as follows: (0) Let
Σ′ = ∅; (1) Add to Σ′ each rule of Σ of the form (i),
(iii) or (iv); (2) For each rule of Σ of the form (ii) (resp.,
(v)), add to Σ′ the hybrid rule C(X̂), D(X̂) → E(X̂) (resp.,
R(X, Ŷ), D(Ŷ)→ C(X)); (3) For each pair (B,A) of unary
predicates (i.e., concepts) occurring in Σ, add to Σ′ the stan-
dard “bypass” ruleB(X)→ A(X), provided that Σ logically
entails the rule B(X) → A(X), namely whether Σ |= B v
A (B is subsumed by A in Σ) in DLs terminology. By con-
struction, Σ′ is linearH+. Also, the addition of bypass rules
makes Σ′ answer-equivalent to Σ (they share the same uni-
versal models). This completes our reduction, which works in
polynomial time, since it is known that also concept subsump-
tion in ELH can be performed in polynomial time [Brandt,
2004a]. Regarding the size of Σ′, it suffices to observe that
|Σ′| = |Σ| at the end of step (2), and also that the number of
rules added at step (3) are at most quadratic in the number of
concepts occurring in Σ. To conclude our proof, we consider
the linearH+ ontology Σ = {p(X̂), s(Ŷ) → g(X̂, Ŷ)}. It is
well-known that Σ cannot be expressed in ELH, as it defines
the so-called cross-product, namely p× s v g.
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6 Related Work
Interest in reconciling open- and closed-world semantics has
a long history [Cadoli et al., 1990]. Since then, different
paradigms have been proposed: epistemic and modal oper-
ators [Donini et al., 1992; Calvanese et al., 2007], hybrid
knowledge bases [Motik et al., 2005; Rosati, 2005; 2006;
Eiter et al., 2008; Krötzsch et al., 2008; Motik and Rosati,
2010; Knorr et al., 2011; Libkin and Sirangelo, 2011; Bajrak-
tari et al., 2017], closed predicates [Seylan et al., 2009; Lutz
et al., 2013; 2015; Ngo et al., 2016], and nominal schemas
[Krötzsch et al., 2011; Krötzsch and Rudolph, 2014].

In case of monotonic Horn DLs, modal operator K be-
haves as closed variables. Indeed, axiom KC v D is
answer-equivalent to the rule C(X̂) → D(X̂). Hybrid KBs
typically combine DLs and rule-based formalisms by en-
forcing syntactic safety condition, while closed predicates
are those whose extensions have to be interpreted as com-
plete. So, they are less related to our framework, although
we borrowed from them some useful tool, as said in Sec-
tion 3. Nominal schemas, instead, represent the proposal
which is closest to ours. Intuitively, a nominal variable {z}
is represents some arbitrary nominal (i.e., known individ-
ual). When occurring in the left-hand side of a concept in-
clusion, {z} behaves as the closed variable Ẑ. Indeed, ax-
iom ∃hasParent .{z} u ∃hasParent .∃married .{z} v C is
model-equivalent to hasParent(X, Ẑ), hasParent(X,Y ),
married(Y, Ẑ) → C(X). But in DLs, {z} may also be exis-
tentially quantified to mimic disjunction among nominals.

Concerning expressiveness, different notions have been
also considered in the literature. In [Gottlob et al., 2014], Σ1

and Σ2 are gr -equivalent if ans(q,D,Σ1) = ans(q,D,Σ2),
for each database D and query q ∈ G, where G collects
ground queries, i.e., all variable-free atoms. Under this notion
guarded ≺gr datalog, and datalog∃,H is no more expressive
than datalog∃ (the latter obtained via a minor modification
of Algorithm 1). Indeed, closed variables do not increase the
so-called query expressivity [Rudolph and Thomazo, 2015],
defined by fixing a special predicate goal as the only possible
ground query. In [Gottlob et al., 2018], (Σ1, q1) and (Σ2, q2)
are re-equivalent if ans(q1, D,Σ1) = ans(q2, D,Σ2), for
each database D. Then, 〈guarded,C〉 ≺re 〈datalog,G〉 and
also 〈sticky,C〉 �re 〈∅,UC〉, where UC is the class of union
of conjunctive queries. Differently from program expres-
sive power, however, these notions are more suitable to com-
pare ontology formalisms from a computational viewpoint
rather than from a knowledge representation one. Indeed, re-
equivalence coincides with the so-called query rewritability.

7 Future Work and Conclusion
In conclusion, closed variables represent a very natural, flex-
ible and effective extension of standard existential rules. In
the future, we would like to investigate whether our naive
or refined extensions can express other ontology languages,
as well as to close a question that has been left (partially)
open in Theorems 5 and 6 concerning the expressivity of CH
vs. CH+ by varying C. Indeed, so far, what is known is a
strict increase in expressivity in the two cases exhibiting a
jump in data complexity from AC0 to PTIME, namely when

C ∈ {linear, sticky}. Also, it would be reasonable to extend
the computational analysis to other known classes. Interest-
ingly, concerning the latter point, while moving to decidable
“abstract” (i.e., not recognizable) classes of rules [Baget et
al., 2011], such as fes generalizing w-acyclic, we realized
that there are ontologies in fesH that are not mapped to fes
via Algorithm 1; hence, a separate approach is needed here.
Also, one could study the impact of stratified negation in rules
and queries, for reasoning even on the anonymity of individ-
uals. As for nominal schemas in DLs, existentially quantified
closed variables can be certainly considered to mimic some
form of disjunction. Finally, implementing closed variables
in some existing datalog∃ system as well as testing perfor-
mances on real-world ontologies are also tasks in our agenda.
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