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Abstract

Existential rules generalize Datalog with existential
quantification in the head. Natively, Datalog is in-
terpreted under a closed-world semantics, while ex-
istential rules typically employ the open-world as-
sumption. The interpretation domain in the latter
case is enlarged by infinitely many “anonymous”
individuals. Then, in any rule, each variable ranges
over all individuals, even if not needed or required.
In this paper, we enhance existential rules by
closed-world variables to consciously reason on the
properties of “known” (non-anonymous) and arbi-
trary individuals in different ways. Accordingly,
we uniformly generalize the basic classes of exis-
tential rules that ensure decidability of ontology-
based query answering. For them, after observing
that decidability is preserved, we prove that a strict
increase in expressiveness is gained, and in most
cases the computational complexity is not altered.

1 Introduction

Existential rules, also known as TGDs or datalog® rules,
are a fascinating research topic deeply studied not only in
artificial intelligence [Baget et al., 2011; Amendola er al.,
2017] but also in database theory [Bourhis et al., 2016;
Alviano and Pieris, 2015] and logic [Bérdny et al., 2014].
They are at the core of Datalog* [Cali et al., 2009], an emerg-
ing family of ontology languages complementing the expres-
sive power of Description Logics (DLs) [Baader et al., 2003].
Indeed, datalog® generalizes the well-known language Dat-
alog [Ceri et al., 1989] with existential quantification in the
head. Natively, Datalog is interpreted under a closed-world
semantics, while existential rules typically employ the open-
world assumption. For example, in classical query answer-
ing [Ortiz, 2013] —where a query ¢ is evaluated over a logi-
cal theory consisting of a database D paired with an ontology
>.— the presence of existential quantifiers in > requires an
interpretation domain of D U X that extends the closed do-
main of D with infinitely many extra “anonymous” individu-
als. Then, each variable of > does range over all individuals.

To consciously reason on the properties of “known” (non-
anonymous) and arbitrary individuals in different ways, we
complement standard variables with closed(-world) variables
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that range over the individuals of D U X only. The result-
ing language, called datalog", offers novel modeling capa-
bilities, as it allows to specify properties at both data and
conceptual level in a uniform way. Consider, for exam-
ple, a scenario in which one has to model that “every good
has a price” and “a good is auctionable if some reference
price can be associated to it”. Such desiderata are express-
ible via the rules p; = good(X) — 3Y hasPrice(X,Y) and
p2 = good(X), hasPrice(X,Y) — auctionable(X), where
Y is a closed variable. Given Dy = {good(ferrari250)},
Yo={p1,p2}, and the queries ¢g; =3X JY hasPrice(X,Y)
and go=3X 3Y hasPrice(X,Y), auctionable(X). Clearly,
q1 is entailed by Dy U Y. But ¢2 is not since M = Dy U
{hasPrice(ferrari250,10)} is a possible model of Dy U X.
Indeed, 10 is not a reference price for ferrari250 but simply
one of the infinitely many anonymous individuals not in Dy.
Therefore rule p, is satisfied in M. Of course, a first natural
question now is to wonder whether 3y can be expressed via
some equivalent datalog? ontology.

Existential rules, besides offering good modeling capabil-
ity, are extremely challenging from a computational view-
point, as they make query answering undecidable in the gen-
eral case [Beeri and Vardi, 1984]. To remedy this fact, several
syntactic conditions have been proposed in the literature, with
some giving rise to the five basic decidable datalog? classes:
linear [Cali et al., 2012al, weakly-acyclic [Fagin et al., 2005],
guarded [Cali et al., 2013], sticky [Cali er al., 2012b], and
shy [Leone et al., 2012]. The second natural question now
is to wonder whether these conditions can be generalized to
preserve decidability of query answering also for datalog?".

Along the paper we give answers to the above questions,
starting right here by summarizing the main contributions:

» For each basic datalog? class C, we consider a “naive”
and a “refined” extension, denoted by CH and CH™, respec-
tively. In naive extension, the syntactic conditions underlying
C treat closed variables as standard ones. In the refined one,
the syntactic conditions are enforced over standard variables
only. Decidability can be easily established. (Section 3.)

» We show that CH preserves the same data and combined
complexity of each basic datalog® class C. Likewise, this
holds with shyH™ and w-acyclicHT w.r.t. their standard coun-
terparts. Differently, guardedH™ and stickyH™ exhibit an
increase in data complexity, while only linearH™ has an in-
crease in both data and combined complexity. (Section 4.)
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» We prove that datalog®" is (resp., CH and CH™ are)
strictly more expressive than datalog? (resp., each basic class
C). In particular, going back to our running example, there is
no datalog® ontology that, independently from the database
at hand, behaves as ¥y w.r.t. both ¢; and ¢». Also, each CHT
is even strictly more expressive than datalog. (Section 5.1.)

» We show that the well-known Description Logic
ELH [Brandt, 2004b] is captured by linearHT, even if we
only focus on linearH™ ontologies of arity at most two and
with at most two atoms in the body (where the combined
complexity of query answering drops to NP as for ELH). In-
terestingly, linearH™ keeps a lower computational complex-
ity, compared to other datalog? classes that can express this
DL, namely guarded and its extensions. (Section 5.2.)

2 Existential Rules with Closed Variables

Basics. Let C (constants or individuals) and 'V (variables) be
pairwise disjoint discrete sets of terms. A variable (z,v, ...)
is either standard (X,Y, ...) or closed(-world) (X, Y, ...). We
denote by V; and 'V, the set of standard and closed variables,
respectively. An arom « is a labeled tuple p(t), where p =
pred(«) is a predicate symbol, t = t1,...,t,, is a tuple of
terms, m = |p| is the arity of p or «, and [i] = t;. Given a fi-
nite domain A C C of “known” individuals, a A-substitution
is any map p : V — C such that X € 'V, implies u(X) € A.
For a set A of atoms, 1(A) is obtained from A by replacing
each variable x by u(x). A database (resp., instance) is any
variable-free finite (resp., possibly infinite) set of atoms.
Syntax. A datalog®" rule p is a logical implication of the
form VXYY (¢(X,Y) — 3Z (X, Z)) —with XUY C V
and Z C V,— whose body (resp., head) b(p) = ¢(X,Y)
(resp., h(p) = ¥(X,Z)) is a conjunction (or set) of atoms,
possibly with constants. As usual, the head is nonempty.
Universal and existential variables are respectively denoted
by UV(p) and EV(p). The set X is known as the fron-
tier of p. If no closed variable is in p, then it is also a
datalog® rule; and if even EV(p) = (), then it is also a
datalog rule. A datalog®" ontology X is any finite set of
datalog®" rules. We denote by R(X) the set of predicates
occurring in X. A position p[i] is defined as a predicate p of
R(X) and its i-th attribute. Let pos(p)={p[1], ..., p[|p|]}. A
C# (hybrid conjunctive) query is an expression of the form
q¢(X) = 3Y ¢(X,Y), where ¢ is as above. In case ¢ con-
tains no closed variable, it is also a C (conjunctive) query. For
a “structure” ¢ over atoms (set, rule, query, ...), if X occurs in
¢, then X does not occur in ¢. Also, atoms(s), terms(s),
vars(s) and std(s) respectively denote the set of atoms in g,
the set of terms in atoms(s), the set of variables in atoms(s),
and the structure built from ¢ by replacing each X with X.
Semantics. Consider a triple (D, 3, q) as above, and let
A = terms(D,X) N C. A model of D U X is any in-
stance M DO D such that, for each p € X and each
A-substitution g, u(b(p)) € M implies p'(h(p)) € M
for some A-substitution p’ O p|x. The answer to ¢ over M
is the set ans(q, M) of |X|-tuples t for which there is a
A-substitution p such that p(¢(t,Y)) C M. The set of all
models is denoted by mods(D, X). The (certain) answer to q
is the set ans(q, D, X) = (\are moas(p,x) ans(q, M).

3 Decidability

Hereafter, QEVAL refers to the following decision problem:
Given a database D, a datalog®" ontology %, a C" query
q(X) with |X| = n, and a tuple t € C", decide whether
t € ans(q, D,X) holds. In this section, we first introduce the
five basic datalog? classes ensuring decidability of QEVAL,
as well as some of their generalizations that we need in our
technical analysis: j-acyclic [Krotzsch and Rudolph, 2011],
w-sticky [Cali et al., 2012b], and w-guarded [Cali er al.,
2013]. Then, we define hybrid(-world) extensions of the ba-
sic classes, and show that decidability is preserved.

3.1 Overview of Some Decidable datalog® Classes

Fix a datalog? ontology >. We assume that different rules of
Y share no variable. A term ¢ occurs in a set A of atoms at
position p[¢] if there is & € A s.t. pred(a) = pand afi] =t.
Position p[i] is invaded by an existential variable X if there
is p € ¥s.t.: (1) X occurs in h(p) at position p[i]; or (2)
some y € UV(p) attacked by X (i.e., y occurs in b(p) only
at positions invaded by X) occurs in h(p) at position p[i]. A
universal variable is protected if it is attacked by no variable.
Linearity. Ontology X belongs to linear if, for each p € %,
b(p) contains at most one body atom.

Acyclicity. The labeled graph of ¥ is G(X) = (N, A4),
where: (1) N' = Upersypos(p); (2) (plil 7(j.¥) ¢ A
if there are p € ¥ and X € UV(p) s.t. X occurs both
in b(p) at position p[i] and in h(p) at position r[j]; and (3)
(p[i], r[g],3) € Aifthereare p € X, X € UV(p) also occur-
ringin h(p), and Y € EV(p) s.t. both X occurs in b(p) at po-
sition p[i] and Y occurs in h(p) at position r[j]. The existen-
tial graph of ¥ is G5(X) = (N, A), where N = U, EV (p)
and (X,Y) € A if the rule p where Y occurs contains a
universal variable attacked by X and occurring in h(p). X
belongs to weakly-acyclic (resp., j-acyclic) if G(X) (resp.,
G3(X)) has no cycle through an 3-arc (resp., is acyclic).
Guardedness. Y belongs to guarded if p € % implies that
there is € b(p) s.t. UV (p) = vars(a). Also, ¥ belongs
to w-guarded if, for each p € X, there is an atom of b(p)
containing all the attacked variables of p.

Stickiness. A variable X of X is marked if (1) thereis p € ¥
s.t. X occurs in b(p) but not in h(p); or (2) there are p, p’ € &
s.t. a marked variable occurs in b(p) at some position pli]
and X occurs in h(p') at position p[i] too. Then, X is sticky
if, for each p € 3, X occurs multiple times in b(p) implies
X is not marked. Also, X belongs to w-sticky if, for each
p € X, X occurs multiple times in b(p) implies X is not
marked or X occurs in some position never involved in cycles
going through an 3-arc of G(X).

Shyness. X belongs to shy if, for each p € X: (1) X occurs
in two different atoms of b(p) implies X is protected; and (2)
if X and Y occur both in h(p) and in two different atoms of
b(p), then X and Y are not attacked by the same variable.

Proposition 1. The considered classes are pairwise uncom-
parable, except for: linear C guarded C w-guarded, linear C
shy, datalog C shy, sticky C w-sticky, and datalog C
w-acyclic C j-acyclic.
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Class C Data complexity (LB) (UB) ‘ Combined complexity (LB) (UB)
linearH in ACy C 2 linear PSPACE linear C C As
linearH™ PTIME datalog & C C L shy ExXPTIME datalog & C C L shy v Az
w-acyclicH PTIME w-acyclicC C € 1Y% j-acyclic 2EXPTIME w-acyclicc ¢ C 4 j-acyclic
w-acyclicH™ PTIME w-acyclic C C C L j-acyclic 2EXPTIME w-acyclic C C C L j-acyclic
guardedH PTIME guarded C C C Y2, guarded 2EXPTIME guarded C C C L guarded
guardedH™ EXPTIME w-guarded 4 C  C % w-guarded 2EXPTIME guarded C C  C 4 w-guarded
stickyH in AC C 2 sticky EXPTIME sticky C C As
stickyH™ PTIME datalog % C C L w-sticky EXPTIME sticky C C As
shyH PTIME shy C C C Y2, shy EXPTIME shy C C C L shy v Az
shyH™ PTIME shy C C C L shy EXPTIME shy C C C L shy v Az

Table 1: Computational Complexity of QEVAL, where LB and UB stand for lower and upper bound, respectively.

3.2 Decidable Hybrid Extensions

Let B = {linear, w-acyclic, guarded, sticky, shy}. For each
C € B, we define the “naive” and “refined” hybrid(-world)
extension of C, respectively denoted by CH and CH*. For-
mally, for each ¥ € datalog?", ¥ € CH if std(X) € C,
while ¥ € CH™ if thin(X) € C, where thin(X) is obtained
from X by replacing each closed variable by some constant
and then eliminating every atom containing only constants.
For example, ¢(X,Y), s(Y) — r(X) belongs to linearH™ but
not to linearH since ¢(X,c¢) — r(X) belongs to linear but the
rule ¢(X,Y), s(Y) — r(X) does not.

Proposition 2. For each C,C' € B, C € CH C CH™ holds,
as well as C C C' implies both CH C C'H and CHT™ C C'HT.

For the decidability analysis, we reduce QEVAL over
datalog®" to QEVAL over datalog?. To this end, we devise
the following algorithm, whose key principle is reminiscent
of analogous methods from the literature [Motik et al., 2005]:

Algorithm 1. Reduction A4; from a hybrid triple (D, Y, ¢)

t X e [p(X7) 5 (X)) p(X7) < pe RV

P X e {std(6(2), T(V") - std(h(p)).T(C) : p € T
q < std(g),I'(V?);

return (D,>' UX" ¢');

Legend. q (resp., p) is obtained from ¢ (resp., p) by replacing
each predicate p with p; T'(tq, ..., t,) = c(t1), ..., c(t,), for
anyn > 0; Vo= {V : V € vars(o)}; CP= Cnterms(h(p));
XP = X1,..., Xpp; and {c, p} NR(X) = 0.

E.g., from ¢=3X 3Yr(X,Y) and ={r(X,Y)—=3Z (Y, Z)},
we get ¢'=3X IJY 7(X,Y), c(Y), and X' ={r(X1, X2)—c(X1),
c(X2), 7(X1, X2)} and £ = {F(X,Y), o(X) — IZ#(Y, Z)}.
Let us now highlight the key properties of A;.

Lemma 1. A, ensures ans(q, D, X)) = ans(q¢’, D, X' UX"),
and it behaves as follows: (1) guardedH — guarded;
(2) guardedH™ — w-guarded; (3) stickyH™ — w-sticky;
(4) w-acyclicH" — jointly-acyclic; and (5) shyHt — shy.

Proof Sketch. Via t-rules, each p(t) € D gives rise to a twin
atom p(t), and its constants are collected under the predi-
cate c. Via I-rules, each predicate p is renamed in p, each
variable V is replaced by V, and the atom containing V' is
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paired with the atom c(V'). This way, known individuals can
be separated from anonymous ones, and c-atoms can mimic
the semantics of closed variables. Consider now the range
of the reduction; due to space limits, we only consider cases
(3) and (4). In case (3), let ¥ € stickyH™. Each rules pf
cannot violate stickiness as no repeated variable appears in
b(p"). Now, let X be a variable occurring multiple times
in std(b(p)), ['(V?). We distinguish two cases: (i) X was
a standard variable in b(p). Then, it also occurred multiple
times in b(p), Hence, by definition of stickyH*, X was not
marked in ; and by A; it appears multiple times in std (b(p))
only. Hence, X is also not marked in ¥’ U X", (i) X was
a closed variable in b(p). Then, it appears both in std(b(p))
and in T'(V?). But position c[1] is never involved in cycles
going through an J-arc of G(X' UX"). Hence, ¥’ UX" € w-
sticky. In case (4), let ¥ € w-acyclicHT. Note that, given
an existential variable X appearing in ¥’ U X" (and so in X)),
for each 4, p[i] and c[1] are not invaded by X. Assume that
there is a loop in G3(X’ UX"). Hence, there is a -rule p’ s.t.
X € EV(p),and Y € UV(p') is attacked by X. Now, YV
cannot appear in c. Hence, it is a standard variable in b(p).
Then, Y is attacked by X in . Thus, ¥ ¢ w-acyclicH". An
induction on the length of the cycle concludes the proof. [

The next result follows immediately.

Theorem 3. Let C € B. Then, QEVAL for C® queries over
CH and CH™ ontologies is decidable.

4 Computational Complexity

We now study the combined and data complexity of QEVAL
over our hybrid extensions. The former is calculated by con-
sidering everything as input, while the latter by considering
fixed both the query and the ontology. From our analysis,
Theorem 4. All results in Table 1 do hold.

Each entry “C; & Cs” reads as follows: Algorithm x de-
fines a reduction A, from QEVAL over C; to QEVAL over
Ca, according to Lemma z possibly combined with Propo-
sitions 1 and 2. In particular, if z € {1, 4}, then A, works in
polynomial-time. Symbol V means that the result admits al-
ternative proofs. Each entry “C; C Cy” comes from Proposi-
tion 2. Each entry “A,” means that the upper bound is explic-
itly given by Algorithm z. The rest of the section is the proof
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of Theorem 4. To complete data complexity upper bounds of
all naive extensions, consider the following algorithm:

Algorithm 2. Reduction A, from a hybrid triple (D, %, q)
P2 {p(XP) = T(XP), p(XP), piein \](Xp) tpER(D)}:
P 5" {std(b(p*) = h(p”), h(p),['(C7)) : p € Byw € Qs

¢ « std(q),D(V");
return (D, > UX" ¢');

Legend. cPl is the tuple c, ..., ¢ of symbols having length |p|;
Q, collects all maps of the form w : vars(p) — {c¢, 0} such
that w(z) = oif x € EV(p), and w(z) = cif z € UV (p) N
V. (symbols ¢ and o stand for closed and open, respectively);
p* denotes the rule obtained from p by replacing each atom
of the form p(X) with py,(x);(X); and the rest is as in A;.

Basically, A avoids I'(V?) in rule bodies by encoding in
predicates those positions where only known individuals may
occur. E.g., from ¢=3X 3V r(X,Y) and X={p}, where p
=r(X,Y)—3Zr(Y,Z), we get Q, = {wi,wa} s.t: wi(Y)=
wa(Y)=c, w1(Z)=ws(Z)=0,w1(Y)=c, wa(Y)=o0. Hence,
Y {T(Xh X2) — C(X1)7 C(X2)1 F(Xh X2)7 T[c,c](Xla X2)}
> {T‘[c’c] (X, Y) — 37 T'[c,0] (Y, Z), F(K Z);

T[e,o] (X7 Y) —3Z T0,0] (K Z)7 f(Yv Z)}
¢ « IXIY 7(X,Y),c(Y)

By considering any universal model U of D UY U X" —
i.e., a representative model of any other [Cali er al., 2013]—
subscripts guarantee that whenever there is a substitution g
that maps both the body and the head of a f-rule p* to U,
then p(X) € terms(D) iff w(X) = c. Then,

Lemma 2. A, ensures ans(q, D,X) = ans(q¢’, D, ¥ UX").
In particular, it behaves as follows: CH — C for each C € B.

Although exponential (each rule p admits 2/UV (V)% df-
ferent maps), when combined with Lemma 2, reduction As
gives us the desired bounds. To complete with upper bounds,
we design the following algorithm:

Algorithm 3. Alternating decision procedure A3

Input: Hybrid-world triple (D, X, ¢) where X is in normal form
A <+ terms(D,X) N C;
k< (1 + |vars(q)]) - maxper(s) |pl;

/ * known *

I+ {a1, ceey ak} C Csuchthat ANT =0 * QaNONYMOUS *
guess a A-substitution y : vars(q) - AU T
Q « p(atoms(q)) and Iy < terms(Q) NI
for each a € ]q do / * guess atom v, introducing each a *

guess a, € {p(t,a) : p € R(),t € (AUT)PI71}
t for each o € ) universally do
if o € D then accept else
guess p € ¥ and a A-substitution y : vars(p) — {AUI}
if 1 is not compatible with o then reject else
Q < u(b(p)) and goto step T

Legend. ¥ is in normal form if, for each p € X, |h(p)| =
1, |JEV(p)| < 1, and |[EV(p)| = 1 implies the existential
variable is in the last position; p is not compatible with « if
one of the following occurs: p(h(p)) # «; or X € EV(p),
u(X) € Iy, and o # ay(x); or g maps some non-frontier
variable into I,.

/ x prove each atom o * /

It is a resolution-based algorithm, generally working in al-
ternating polynomial space, hence in exponential time.

Lemma 3. If Y is stickyH™ or shyH™, then As is correct and
it runs in EXPTIME. If % € linearH, then A3 runs in PSPACE.

Proof Sketch. As proves the query g by exploring a “small”
(at most exponential) portion of some universal model of
D U X. In case of linear rules, the algorithm works in nonde-
terministic polynomial space as step T is universal only once,
namely at the very beginning when () contains the image
w(atoms(q)) of q. O

We close the section by providing missing lower bounds:

Algorithm 4. Reduction A4 from a standard triple (D, %, ¢)
V,  protectedVars(X);
¥« {cls(p, Vp) : pE X}
return (D, q);

Legend. 'V, collects all protected standard universal variables
of ¥ and cls(p,V,) replaces each variable X € 'V, by the
closed one X.

Lemma 4. Aj ensures ans(q,D,X) = ans(q,D,Y’). In
particular, it behaves as follows: 1) datalog — CH™ for each
C € B; and 2) w-guarded — guardedH™.

Proof Sketch. Equality of certain answers follows by the fact
that protected variables implicitly behave as closed ones.

(1) Let X € datalog. Then, each variable appearing in X
is protected. Hence, each rule in X’ has closed variables only.
Thus, ¥/ belongs to each refined extension, as the syntactic
conditions are enforced over standard variables only.

(2) Let X € w-guarded. Let p € ¥, and p’ be the corre-
sponding rule in ¥’. Then, by definition of w-guarded, there
is an atom in p that covers all the non-protected universal vari-
ables appearing in b(p). Hence, the corresponding atom in p’
covers all the standard universal variables appearing in b(p’),
as each protected variable is replaced by a closed one. Thus,
Y € guardedH™. O

5 Expressive Power

We now investigate the expressiveness of datalog®". After
showing that there are simple hybrid ontologies that can-
not be expressed by any datalog® one under model equiva-
lence, we consider the classical notion of program expressive
power [Arenas et al., 2014], also known as query insepara-
bility, which relies on answer equivalence and turns out to be
more appropriate for OBQA purposes. However, also in this
case we can show that datalog?" is strictly more expressive
than datalog?. In particular, for both extensions of each basic
datalog® class, we prove a strict increase in expressiveness.
We close the section by showing that linearH™ is strictly more
expressive than the Description Logic ££H [Brandt, 2004b].

5.1 datalog®" versus datalog?

Two ontologies ¥; and X5 are model-equivalent (ME),
shortly 31 = X5, if mods(D, ¥1) = mods(D, X5), for each
database D. Accordingly, a class Cy of ontologies is strictly
more expressive (under MF) than Cq, denoted by C; < Co, if
(M1) for each 31 € C; there is Xy € Cy s.t. X3 = %o, and
(M2) for some Xy € Co there isno Xy € Cp s.t. X1 = Y.
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Theorem 5. It holds that: (i) datalog? < datalog", and
(i) both C < CH and C < CH™, for each C € B.

Proof. Consider the ontology ¥ = {p(X) — r(X)}. We pro-
ceed by contradiction. Assume Y admits a model-equivalent
datalog? ontology ¥'. Let Dy = . According to Section 2,
M; = {p(1)} is a model of Dy U X as the interpretation do-
main of the closed variables is empty. Hence, M is a model
of Dy UY'. Let D; = {p(1)}. In this case, M7 = {p(1)}
is not a model of Dy U ¥ as r(1) is required. Thus M is
not a model of Dy U 3. But this is not possible for classi-
cal first-order theories. In fact, M; O D;. Hence, if M; is
not a model of Dy U ¥ the only reason is that there exists
some rule p € ¥’ that is not satisfied. But since M; 2 Dy
also holds, this means that M; cannot be a model of Dy U X/
as the same rule p would be unsatisfied. Hence, (¢) follows
since datalog® C datalog®", while (4¢) holds since, for each
C €B,C C CH C CHT by Proposition 2, and ¥ € CH. O

We now consider a smoother notion of expressiveness.
Two ontologies X1 and X5 are answer-equivalent (AFE),
shortly 31 & %o, if ans(q, D, X1) = ans(q, D, ¥5), for each
database D and for each query g. Hence, if two ontologies are
model-equivalent, then they are also answer-equivalent (i.e.,
31 = Yy implies X1 = Yo, for each 31 and X5). Similarly, a
class Co of ontologies is strictly more expressive (under AFE)
than Cy, denoted by C; < Ca, if (A1) for each 3y € C; there
is ¥y € Co s.t. 31 = Xy, and (A2) for some Yy € Cy there
isno ¥; € Cy s.t. 31 = ¥y, Note that, if C; < Cy (resp.,
C1 < Co), then condition (A1) (resp., (M2)) is guaranteed.

By Lemma 4, ontology . = {p(X) — 7(X)} in the proof
of Theorem 5 admits an answer-equivalent datalog® ontol-
ogy. Indeed, it is the output of reduction As when it takes
the ontology std(X) = {p(X) — r(X)} as input. Hence, to
prove the next result, we need a stronger argument.

Theorem 6. Iz holds that: (i) datalog® < datalog®", and
(#4) C < CH, C < CH™, and also datalog < CH™, for each
basic class C € B.

Proof. Consider %, = {p(X) = r(X)} U{— 3Yp(Y)}.
We proceed by contradiction. Assume ¥;, admits an answer-
equivalent datalog® ontology ¥ . Let ¢ = 3X p(X),r(X)
and D. = {p(c)}, for each constant ¢ € C. Accord-
ing to Section 2, ans(qi,D.,2n) ={()}, and there-
fore also ans(qi,D.,%}) ={()}. Since ¥’ is a stan-
dard first-order theory, this means that D.UZX} |= g1,
and therefore that X} k= {p(c) = ¢:}, or equivalently
mods(X}) C mods({p(c) — ¢1}). Hence, we have that
mods(%,) € (.ec mods({p(c) = q1}). But the common
models are exactly those of ¢; = IYp(Y) — ¢1. There-
fore, mods(X)) C mods(¢1). Let go = IXp(X) and
Dy = 0. Clearly, ans(qz2, Dy, %) = {()}, and therefore
also ans(ga, Dy, X)) = (). But this means that 3} |= ¢o,
or equivalently mods(X}) C mods(g2). By combining the
above results, we have mods(X}) C mods(¢1) N mods(gz).
But the common models are exactly those of ¢;. This means
that mods(X}) C mods(gi1), from which we get ¥} = ¢1,
implying that ans(q1,Dg,X}) = {()}. But this is not

possible since ans(qi, Dy, %) = (0. Hence, (i) follows
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since datalog® C datalog?", while (i) holds since, for each
C € B,C C CH c CHT by Proposition 2, and 3;, € CH, and
since datalog < CH™ holds by Lemma 4. O

5.2 linearH™' versus ELH

We now show that linearH™ is strictly more expressive than
ELH [Brandt, 2004a; 2004b], even if we focus on linearHt
ontologies with bounded-rules (namely, both arities and num-
ber af atoms of each rule are bounded by some integer con-
stant), in which case the combined complexity of QEVAL
drops to NP as the complexity of QEVAL for C queries over
ELH. (Note that ELH is not expressible in linearH.) In
particular, we provide a polynomial time transformation that
maps £ LH ontologies into answer-equivalent linearH™ ones.
This also shows that £LH is no more succinct than linearH™.
In DLs, rules are called inclusions, which in £LH are of
the foom: ¢ C D; CnN D C E; RC S; C C 3R.D;
JR.D C C; where C, D, E are concepts, and R, S are
roles. According to the semantics of DLs, they are model-
equivalent (hence answer-equivalent) to the following exis-
tential rules [Baader et al., 2003], respectively: (i) C(X) —
D(X); (#4) C(X),D(X) = E(X); (i11) R(X,Y) = S(X,Y);
(iv) C(X) — 3IYR(X,Y),DY) (v) R(X,Y),D(Y) —
C(X). Only rules of the form (4), (ii), and (iv) are linear.
To obtain a linearH™ ontology answer-equivalent to an
ELH one, a possible way is to “close” join variables in the
body of non-linear rules, i.e., of the form (i7) and (v). This
would preserve soundness, but not necessarily completeness.
Hence, to guarantee answer equivalence, one should comple-
ment such (hybrid) rules with new linear ones that “bypass”
propagations inhibited by closed variables. Formally,

Theorem 7. Under answer-equivalence, linearH™ with
bounded-rules is strictly more expressive than ELH. In par-
ticular, for each £LH ontology, an equivalent linearH™ one
of quadratic size can be constructed in polynomial time.

Proof Sketch. Given an £LH ontology ¥ in datalog® form,
we construct a datalog®" ontology X' as follows: (0) Let
¥ = 0; (1) Add to ¥’ each rule of ¥ of the form (i),
(91) or (iv); (2) For each rule of % of the form (ii) (resp.,
(v)), add to ¥’ the hybrid rule C(X), D(X) — E(X) (resp.,
R(X,Y), D(Y) — C(X)); (3) For each pair (B, A) of unary
predicates (i.e., concepts) occurring in X, add to X the stan-
dard “bypass” rule B(X) — A(X), provided that ¥ logically
entails the rule B(X) — A(X), namely whether © = B C
A (B is subsumed by A in X)) in DLs terminology. By con-
struction, ¥’ is linearH™". Also, the addition of bypass rules
makes ¥/ answer-equivalent to X (they share the same uni-
versal models). This completes our reduction, which works in
polynomial time, since it is known that also concept subsump-
tion in £LH can be performed in polynomial time [Brandt,
2004al]. Regarding the size of X', it suffices to observe that
|>'| = |X] at the end of step (2), and also that the number of
rules added at step (3) are at most quadratic in the number of
concepts occurring in 2. To conclude our proof, we consider
the linearH™ ontology > = {p(X), s(Y) — ¢(X,Y)}. Itis
well-known that > cannot be expressed in £LH, as it defines
the so-called cross-product, namely p x s C g. O
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6 Related Work

Interest in reconciling open- and closed-world semantics has
a long history [Cadoli er al., 1990]. Since then, different
paradigms have been proposed: epistemic and modal oper-
ators [Donini et al., 1992; Calvanese et al., 20071, hybrid
knowledge bases [Motik et al., 2005; Rosati, 2005; 2006;
Eiter et al., 2008; Krotzsch et al., 2008; Motik and Rosati,
2010; Knorr et al., 2011; Libkin and Sirangelo, 2011; Bajrak-
tari et al., 20171, closed predicates [Seylan et al., 2009; Lutz
et al., 2013; 2015; Ngo et al., 2016], and nominal schemas
[Krétzsch et al., 2011; Krotzsch and Rudolph, 2014].

In case of monotonic Horn DLs, modal operator K be-
haves as closed variables. Indeed, axiom KC T D is
answer-equivalent to the rule C'(X) — D(X). Hybrid KBs
typically combine DLs and rule-based formalisms by en-
forcing syntactic safety condition, while closed predicates
are those whose extensions have to be interpreted as com-
plete. So, they are less related to our framework, although
we borrowed from them some useful tool, as said in Sec-
tion 3. Nominal schemas, instead, represent the proposal
which is closest to ours. Intuitively, a nominal variable {z}
is represents some arbitrary nominal (i.e., known individ-
ual). When occurring in the left-hand side of a concept in-
clusion, {z} behaves as the closed variable Z. Indeed, ax-
iom JhasParent.{z} N 3hasParent. Imarried {z} C C is
model-equivalent to hasParent(X,Z), hasParent(X,Y),
married(Y,Z) — C(X). But in DLs, {2z} may also be exis-
tentially quantified to mimic disjunction among nominals.

Concerning expressiveness, different notions have been
also considered in the literature. In [Gottlob et al., 2014], 3¢
and Yo are gr-equivalent if ans(q, D, %1) = ans(q, D, X2),
for each database D and query ¢ € G, where G collects
ground queries, i.e., all variable-free atoms. Under this notion
guarded <, datalog, and datalog®" is no more expressive
than datalog® (the latter obtained via a minor modification
of Algorithm 1). Indeed, closed variables do not increase the
so-called query expressivity [Rudolph and Thomazo, 2015],
defined by fixing a special predicate goal as the only possible
ground query. In [Gottlob et al., 20181, (31, ¢1) and (X2, g2)
are re-equivalent if ans(q1,D,%1) = ans(qe, D, X2), for
each database D. Then, (guarded, C) <,. (datalog,G) and
also (sticky, C) <,. (#, UC), where UC is the class of union
of conjunctive queries. Differently from program expres-
sive power, however, these notions are more suitable to com-
pare ontology formalisms from a computational viewpoint
rather than from a knowledge representation one. Indeed, re-
equivalence coincides with the so-called query rewritability.

7 Future Work and Conclusion

In conclusion, closed variables represent a very natural, flex-
ible and effective extension of standard existential rules. In
the future, we would like to investigate whether our naive
or refined extensions can express other ontology languages,
as well as to close a question that has been left (partially)
open in Theorems 5 and 6 concerning the expressivity of CH
vs. CHT by varying C. Indeed, so far, what is known is a
strict increase in expressivity in the two cases exhibiting a
jump in data complexity from ACy to PTIME, namely when
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C € {linear,sticky}. Also, it would be reasonable to extend
the computational analysis to other known classes. Interest-
ingly, concerning the latter point, while moving to decidable
“abstract” (i.e., not recognizable) classes of rules [Baget et
al., 2011], such as fes generalizing w-acyclic, we realized
that there are ontologies in fesH that are not mapped to fes
via Algorithm 1; hence, a separate approach is needed here.
Also, one could study the impact of stratified negation in rules
and queries, for reasoning even on the anonymity of individ-
uals. As for nominal schemas in DLs, existentially quantified
closed variables can be certainly considered to mimic some
form of disjunction. Finally, implementing closed variables
in some existing datalog® system as well as testing perfor-
mances on real-world ontologies are also tasks in our agenda.
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