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Abstract
We consider the problem of fairly allocating indi-
visible goods, among agents, under cardinality con-
straints and additive valuations. In this setting, we
are given a partition of the entire set of goods—i.e.,
the goods are categorized—and a limit is specified
on the number of goods that can be allocated from
each category to any agent. The objective here is to
find a fair allocation in which the subset of goods
assigned to any agent satisfies the given cardinal-
ity constraints. This problem naturally captures a
number of resource-allocation applications, and is
a generalization of the well-studied (unconstrained)
fair division problem.
The two central notions of fairness, in the context
of fair division of indivisible goods, are envy free-
ness up to one good (EF1) and (approximate) max-
imin share guarantee (MMS). We show that the ex-
istence and algorithmic guarantees established for
these solution concepts in the unconstrained setting
can essentially be achieved under cardinality con-
straints.
Furthermore, focusing on the case wherein all the
agents have the same additive valuation, we estab-
lish that EF1 allocations exist even under matroid
constraints.

1 Introduction
A large body of recent work in algorithmic game theory,
artificial intelligence, and computational social choice has
been directed towards understanding the problem of allocat-
ing indivisible goods among agents in “fair” manner; see,
e.g., [Brandt et al., 2016] and [Endriss, 2017] for excellent ex-
positions. This recent focus on indivisible goods is motivated,
in part, by applications (such as division of inheritance and
partitioning computational resources in a cloud computing
environment) which inherently entail allocation of resources
that cannot be fractionally allocated. In fact, algorithms de-
veloped for finding fair allocations of indivisible goods have
been implemented in specific settings; for instance, Course
Match [Budish et al., 2016] is employed for course alloca-
tion at the Wharton School in the University of Pennsylvania

and the website Spliddit (www.spliddit.org) [Goldman and
Procaccia, 2014] provides online access to fair division al-
gorithms.

Note that, though the theory of fair division is exten-
sive, classical notions of fairness—such as envy freeness1—
typically address allocation of divisible goods and are not rep-
resentative in the indivisible setting. For instance, while an
envy-free allocation of divisible goods is guaranteed to ex-
ist [Stromquist, 1980], such an existence result does not hold
for indivisible goods.2

Motivated by these considerations, recent results have for-
mulated and studied solution concepts for fairly allocating in-
divisible goods [Budish, 2011; Procaccia and Wang, 2014;
Bouveret and Lemaı̂tre, 2014]. Arguably, the two most
prominent notions of fairness in this context are (i) envy free-
ness up to one good (EF1) and (ii) the maximin share guar-
antee (MMS). These solution concepts were defined by Bud-
ish [Budish, 2011] and they, respectively, provide a cogent
analogue of envy-freeness and proportionality3 in the context
of indivisible goods:

• An allocation is said to be EF1 if every agent values
her bundle at least as much as any other agent’s bun-
dle, up to the removal of the most valuable good from
the other agent’s bundle. EF1 allocations are guaran-
teed to exist; by contrast, for indivisible goods envy-free
allocations might not exist. Another attractive feature of
EF1 is that it is computationally tractable: even under
combinatorial valuations, EF1 allocations can be found
efficiently [Lipton et al., 2004]. Furthermore, under ad-
ditive valuations, this notion of fairness is compatible
with Pareto efficiency [Caragiannis et al., 2016].

• An allocation is said to satisfy MMS if each agent re-
ceives a bundle of value at least as much as her maximin
share. These shares are defined as the maximum value
that an agent can guarantee for herself if she were to

1An allocation is said to be envy-free if each agent values her
bundle at least as much as she values any other agent’s bundle[Foley,
1967; Varian, 1974].

2If we have a single indivisible good and two agents, then in any
allocation, the losing agent is bound to be envious.

3An allocation is said to be proportionally fair among n agents,
if every agent gets a bundle of value at least 1/n times her value for
the entire set of goods.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

91



partition the set of goods into n bundles and then, from
those bundles, receive the minimum valued one; here,
n is the total number of agents. This can be interpreted
via an application of the standard cut-and-choose proto-
col over indivisible goods: if agent i is (hypothetically)
asked to partition the set of goods into n bundles and
the remaining (n − 1) agents were to select their bun-
dles before i, then a risk-averse agent would find a par-
tition which maximizes the least valued bundle. This
value, that the agent i can guarantee for herself, is called
the maximin share of i. Even though MMS allocations
are not guaranteed to exist [Procaccia and Wang, 2014;
Kurokawa et al., 2016], it admits efficient approxima-
tion guarantees, in particular, assuring that each agent
receives a bundle of value at least 2/3 times her max-
imin share [Procaccia and Wang, 2014; Amanatidis et
al., 2015; Barman and Krishnamurthy, 2017].4 Note that
these results establish an absolute guarantee, i.e., they
show that an approximately maximin fair allocation al-
ways exists.

The existence and computational results developed for
EF1 and MMS provide a sound understanding of fair divi-
sion of indivisible goods. However, it is relevant to note that
the vast majority of work in this thread of research is solely
focussed on the unconstrained version of the problem.5 To
address this limitation, and motivated by the fact that in many
real-world settings the allocations are required to satisfy cer-
tain criteria, we study a relevant, constrained version of the
fair division problem.

In particular, we consider a setting wherein the indivisible
goods are categorized and a limit is specified on the num-
ber of goods that can be allocated from each category to any
agent. Here, the objective is to find a fair allocation in which
the subset of goods assigned to any agent satisfies the given
cardinality constraints. We shall see that this corresponds to a
fair allocation problem under a partition matroid constraint.

The following stylized example—adapted from [Gourvès
et al., 2014]—demonstrates the applicability of such con-
straints: A museum decides to open new branches, and
thereby needs to transfer some of the exhibits from the
main museum to the newly opened ones. The exhibits are
categorized into, say, statues, paintings, and pottery. In
addition, there is an upper limit on the number of exhibits
that every newly opened branch can accommodate from each
category. The question now is to find a feasible division of
the exhibits which is fair to the curators of each of the new
branches.

Our Contributions: We establish the following results under
additive valuations and cardinality (partition matroid) con-
straints:

1. EF1 allocations are guaranteed to exist. In particular,
we develop a combinatorial algorithm which, for a given

4For additive valuations, Ghodsi et al. [Ghodsi et al., 2017] pro-
vide an improved approximation guarantee of 3/4.

5The work of Bouveret et al. [Bouveret et al., 2017] along with
[Gourvès and Monnot, 2017] and [Gourvès et al., 2014] are notable
exceptions. These results are discussed in Section 1.1.

fair division instance with additive valuations and cardi-
nality constraints, finds an EF1 allocation in polynomial
time (Theorem 1).

2. In this constrained setting, a constant-factor approximate
MMS allocation always exists and can be computed in
polynomial time (Theorem 2). Note that, in this setting,
the value of the maximin share of each of the n agents
is obtained by considering only feasible allocations (see
Equation (1) in Section 2). That is, here, the maximin
share of an agent is defined to be maximum value that
she can guarantee for herself if she were to partition the
set of goods into n bundles, each of which must sat-
isfy the cardinality constraints, and from them receive
the minimum valued one.

3. We also consider fair division subject to matroid con-
straints (Section 6) and show that if the agents have iden-
tical, additive valuations, then again an EF1 allocation
is guaranteed to exist (Theorem 3).

1.1 Related Work
The fairness notions EF1 and MMS were defined by Bud-
ish [Budish, 2011] (see also [Moulin, 1990]), and have been
extensively studied since then. These two solution concepts
are incomparable, i.e., one does not imply the other [Cara-
giannis et al., 2016]. The existence of EF1 allocations can be
established via the cycle-elimination algorithm [Lipton et al.,
2004].

Fair division instances wherein the agents’ valuations are
binary and additive always admit MMS allocations [Bouveret
and Lemaı̂tre, 2014]. However, there exists intricate coun-
terexamples that refutes the universal existence of MMS allo-
cations, even under additive valuations [Procaccia and Wang,
2014; Kurokawa et al., 2016]. This lead to a study of approx-
imate maximin share allocations, α-MMS, where each agent
receives a bundle whose value to her is at least α ∈ (0, 1)
times her maximin share. In particular, efficient algorithms
are provided to compute a 2/3-MMS allocation [Procaccia
and Wang, 2014; Amanatidis et al., 2015].

More recently, constant-factor approximation guarantees
for MMS in settings wherein the valuations are not necessar-
ily additive have been established in [Barman and Krishna-
murthy, 2017] and [Ghodsi et al., 2017]. Specifically, for sub-
modular valuations Ghodsi et al. [Ghodsi et al., 2017] have
developed an efficient algorithm for computing 1/3-MMS al-
locations.

As mentioned previously, the work on fair division of indi-
visible goods is primarily confined to the unconstrained set-
ting. Exceptions include the setting considered in [Bouveret
et al., 2017] and [Ferraioli et al., 2014]. In [Bouveret et al.,
2017], they consider fair division of goods which correspond
to vertices of a given graph, and the problem is to fairly allo-
cate a connected subgraph to each agent. They also show that
MMS allocations might not exist for general graphs; however,
it can be efficiently computed when the underlying graph is a
tree.

Ferraioli et al. [Ferraioli et al., 2014] consider fair division
problems where each agent must receive exactly k goods, for
a given integer k, and provide an algorithm to efficiently com-
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pute a 1/k-approximate MMS allocation. A different kind
of matroid constraint is considered in [Gourvès and Monnot,
2017] and [Gourvès et al., 2014]. In particular, their prob-
lem formulation requires that the union of all the allocated
goods is an independent set of a given matroid. This setup
is incomparable to the one considered in this paper. Specif-
ically, while we ensure that in the computed fair allocation
each agent’s bundle satisfies the partition matroid constraint
and all the goods are allocated, these requirements are not
imposed in [Gourvès and Monnot, 2017] and [Gourvès et al.,
2014].

2 Notation and Preliminaries
An instance of the fair division problem comprises of a tuple〈
[m], [n], (vi)i∈[n]

〉
, where [m] = {1, 2, . . . ,m} denotes the

set of indivisible goods, [n] = {1, 2, . . . , n} denotes the set
of agents, and vis specify the valuation (preferences) of the
agents, i ∈ [n], over the set of goods. Throughout, we will
assume that, for each agent i, the valuation vi : 2[m] 7→ R+

is additive, i.e., for all agents i ∈ [n] and subsets S ⊆ [m],
vi(S) =

∑
g∈S vi ({g}). Also, we have vi ({g}) ≥ 0 for

all i ∈ [n] and g ∈ [m]. For ease of notation, we will use
vi(g), instead of vi({g}), to denote the valuation of agent i
for a good g.

Write Πt(S) to denote the set of all t-partitions of a sub-
set of goods S ⊆ [m]. An allocation, A, refers to an
n-partition A = (A1, A2, . . . , An) ∈ Πn([m]), where Ai
is the subset of goods (bundle) allocated to agent i. In
this work we focus on finding fair allocations which satisfy
given cardinality constraints. Specifically, we are given a
partition of the set of goods consisting of ` different “cate-
gories” {C1, C2, . . . , C`}, and associated with each category
h ∈ {1, 2, . . . , `} we have a (cardinality) threshold kh. In
this setup, an allocation A = (A1, A2, . . . , An) is said to be
feasible iff, for every bundle Ai and category h, the cardinal-
ity constraint holds: |Ai ∩ Ch| ≤ kh. Throughout, we will
use F to denote the set of feasible allocations, F := {A ∈
Πn([m]) | |Ai ∩ Ch| ≤ kh for all i ∈ [n] and h ∈ [`]}.
To ensure that F is nonempty, we require that the threshold
kh ≥ |Ch|

n for all categories h ∈ [`].
We will use

〈
[m], [n], (vi)i∈[n],F

〉
to denote an instance

of the fair division problem subject to cardinality constraints.
Overall, our goal is to find fair allocations contained inF .6 In
this work, we provide existential and algorithmic results for
the following fairness notions:
• Envy-free up to one good (EF1): In a fair division

instance
〈
[m], [n], (vi)i∈[n],F

〉
, an allocation A =

(A1, A2, . . . , An) ∈ F is said to be EF1 iff for every
pair of agents i, j ∈ [n] there exists a good g ∈ Aj such
that vi(Ai) ≥ vi(Aj \ {g}).
• Maximin Share Guarantee (MMS): Given an instance〈

[m], [n], (vi)i∈[n],F
〉
, the (constrained) maximin share

6Note that the set F might be exponential in size, but it is spec-
ified in an efficient manner via the partition {C1, C2, . . . , C`} and
thresholds kh. Setting `=1, C1=[m], k1=m, we get F=Πn([m]).
Hence, this formulation is a strict generalization of the uncon-
strained fair division problem.

of agent i is defined as

CMMSi := max
(P1,...,Pn)∈F

min
j∈[n]

vi(Pj). (1)

An allocation A = (A1, . . . , An) ∈ F is said satisfy
MMS iff for i ∈ [n], we have vi(Ai) ≥ CMMSi. Since
MMS allocations are not guaranteed to exist, the objec-
tive is to find feasible allocations (A1, . . . , An) ∈ F
wherein each agent gets a bundle of value at least α ∈
(0, 1] times CMMSi; with factor α being as large as pos-
sible. We call such allocations α-MMS.

3 Main Results
The key results established in this paper are:
Theorem 1. Given any fair division instance〈
[m], [n], (vi)i∈[n],F

〉
with additive valuations and cardi-

nality constraints (F 6= ∅), there exists a polynomial time
algorithm for finding a feasible EF1 allocation7.

This theorem is established in Section 4 and it implies that
as long as the set of feasible allocations F is nonempty it
admits an EF1 (i.e., a fair) allocation.
Theorem 2. Given any fair division instance〈
[m], [n], (vi)i∈[n],F

〉
with cardinality constraints (F 6= ∅)

and additive valuations, a 1/3-MMS allocation can be
computed in polynomial time.

Analogous to the EF1 case, this theorem provides an ab-
solute, existence guarantee for approximate maximin fair al-
locations under cardinality constraints. A proof of this result
appears in Section 5.

We also establish that when the valuations are identical,
then EF1 allocations exist even under matroid constraints;
see Theorem 3 in Section 6.

4 EF1 Allocations Under Cardinality
Constraints: Proof of Theorem 1

In the unconstrained setting, there exist efficient algorithms
for finding EF1 allocations; see, e.g., the cycle-elimination
algorithm [Lipton et al., 2004] and the round-robin method
[Caragiannis et al., 2016]. However, the allocations obtained
by these algorithms are not guaranteed to satisfy the given
cardinality constraints. We bypass this issue by developing a
polynomial-time algorithm, ALG 1, for finding an allocation
A which is not only EF1, but also feasible, i.e., A ∈ F .

ALG 1 is based on an interesting modification of the round-
robin algorithm: initially, ALG 1 selects an arbitrary order
(permutation) over the agents σ := (σ(1), . . . , σ(n)). It then
picks an unallocated category h and executes the Greedy-
Round-Robin algorithm (ALG 2) with the n agents, |Ch|
goods (from category Ch), and the selected order σ.

ALG 2 follows the ordering σ in a round-robin fashion (i.e.,
it selects agents, one after the other, from σ(1) to σ(n)), and

7One can construct examples to show that stronger fairness no-
tions than EF1—in particular, envy-free up to the least valued good
(EFX) [Caragiannis et al., 2016] and envy-free up to one least-
preferred good (EFL) [Barman et al., 2018]—are not guaranteed
to exist under cardinality constraints.

Proceedings of the Twenty-Seventh International Joint Conference on Artificial Intelligence (IJCAI-18)

93



Algorithm 1 ALG 1
Input : A fair division instance 〈[m], [n], (vi)i,F〉 with ad-
ditive valuations and cardinality constraints.
Output: A feasible EF1 allocation

1: Initialize allocation A0 = (A0
1, . . . , A

0
n) with A0

i ← ∅
for each agent i ∈ [n].

2: Fix an (arbitrary) ordering of the agents σ =
(σ(1), σ(2), . . . , σ(n))

3: for h = 1 to ` do
4: Bh ←Greedy-Round-Robin(Ch, [n], (vi)i, σ).
5: Set Ahi ← Ah−1

i ∪Bhi for all i ∈ [n].
6: Using Lemma 1, updateAh = (Ah1 , . . . , A

h
n) to obtain

an acyclic envy graph G(Ah).
7: Update σ to be a topological ordering of G(Ah).
8: Return A`.

iteratively assigns to the selected agent an unallocated good
from Ch that she desires the most. Finally, it returns an allo-
cation Bh ∈ Πn(Ch).

Algorithm 2 Greedy-Round-Robin (ALG 2)
Input : An instance 〈C, [n], (vi)i〉 with additive valuations
and an ordering σ of [n].
Output: An allocation of the given |C| goods among n
agents

1: Initialize bundle Bi ← ∅, for each agent i ∈ [n], the set
of unallocated goods M ← C, and t← 0.

2: while M 6= ∅ do
3: t← t+ 1.
4: for i = 1 to n do
5: Set gtσ(i) ∈ arg maxg∈M vσ(i)(g)

6: Update Bσ(i) ← Bσ(i) ∪ {gtσ(i)}
7: Update M ←M \ {gtσ(i)}.
8: if M == ∅ then
9: break;

10: Return B = (B1, . . . , Bn).

After allocating all the goods of a category h, Step 6 of
ALG 1 creates an envy graph8 G(Ah). It was established in
[Lipton et al., 2004] that one can always efficiently update a
given partial allocation such that the resulting envy graph is
acyclic:

Lemma 1. [Lipton et al., 2004] Given a partial allocation
(A1, . . . , An) ∈ Πn(S) of a subset of goods S, we can find
another partial allocation B=(B1, . . . , Bn) ∈ Πn(S) of S in
polynomial time such that
(i) The valuations of the agents for their bundles do not de-
crease: vi(Bi) ≥ vi(Ai) for all i ∈ [n].
(ii) The envy graph G(B) is acyclic.

Finally, σ is updated to be a topological ordering of the

8An envy graph, for an allocation A, is a directed graph that
captures the envy between agents in A. Specifically, the nodes in
the envy graph represent the agents and it contains a directed edge
from i to j iff i envies j, i.e., iff vi(Ai) < vi(Aj).

acyclic directed graph G(Ah). This new ordering is then used
for the next category of goods.

The feasibility of the computed allocation,A`, directly fol-
lows from the fact that (for each h ∈ [`]) ALG 2 distributes the
|Ch| goods evenly among n agents. In particular, the round-
robin nature of ALG 2 ensures that, Bhi , the set of goods allo-
cated to agent i from category h satisfies:9

|Bhi | ≤
⌈
|Ch|
n

⌉
≤ kh.

In Lemma 2 we show that, for each h ∈ [`], the partial
allocation obtained after the allocating the first h categories,
Ah, is EF1. Since Algorithm 1 allocates all the m goods,
the final allocation, A`, is EF1 as well. This, along with the
observation that ALG 1 runs in polynomial time completes
the proof of Theorem 1.

Next, we establish a proposition which will be used in the
proof of Lemma 2.
Proposition 1. Given any fair division instance
〈C, [n], (vi)i〉 with additive valuations and an ordering
of agents σ, the allocation B = (B1, . . . , Bn) obtained by
ALG 2 satisfies the following properties:
(1) For any two indices i < j, the agent σ(i) does not envy
agent σ(j), i.e., vσ(i)(Bσ(i)) ≥ vσ(i)(Bσ(j)).
(2) B is EF1.

Proof. Write T := d |C|n e to denote the total number of
rounds of ALG 2. In each round, for i < j, agent σ(i) gets to
choose her most desired good among the unallocated goods
before agent σ(j). Hence, if gtσ(i) and gtσ(j) denote the good
assigned to agent σ(i) and σ(j), respectively, in the tth round,
then vσ(i)(g

t
σ(i)) ≥ vσ(i)(g

t
σ(j)) for all t ∈ {1, . . . , T}.

Since the valuations are additive, the stated property holds:
vσ(i)(Bσ(i)) ≥ vσ(i)(Bσ(j)).

It is known that the round-robin algorithm results in an
EF1 allocation [Caragiannis et al., 2016], we repeat the ar-
gument for completeness: If index i is less than j, then
agent σ(i) does not envy agent σ(j). On the other hand,
even if i > j the good allocated to agent σ(i) in the tth
round is of value (under vσ(i)) no less than the good allo-
cated to agent σ(j) in the (t + 1)th round: vσ(i)(g

t
σ(i)) ≥

vσ(i)(g
t+1
σ(j)) for all t ∈ {1, . . . , T − 1}. Summing we get,∑T−1

t=1 vσ(i)(g
t
σ(i)) ≥ vσ(i)(Bσ(j)) − vσ(i)(g

1
σ(j)). Thus, the

allocation B is EF1.

Lemma 2. ALG 1 returns an EF1 allocation.

Proof. We will show inductively that, for each h ∈ [`], the
partial allocation obtained after allocating the first h cate-
gories, Ah, is EF1. Hence, the returned allocation, A` is
EF1 as well.

The base case (h = 1) follows from Proposition 1; since
A1 = B1, the proposition ensures that B1 is EF1.

By the induction hypothesis we have that Ah is EF1 and,
by construction, the corresponding envy graph G(Ah) is

9Recall that the underlying feasible set of allocations F is
nonempty if and only if the integer limit kh ≥ |Ch|

n
.
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acyclic. Next, we will show that this continues to hold for
the next category h + 1. Note that the ordering of agents
for (executing ALG 2 over) the category Ch+1 is obtained by
topologically sorting G(Ah). Let π be that topological order-
ing and write π−1(a) as the index of agent a according to the
ordering π.

Now, if agent a envies b in Ah, then there is a directed
edge from a to b in G(Ah) and, hence, π−1(a) < π−1(b).
In this case, Proposition 1 ensures that a does not envy b in
Bh+1, i.e., we have va(Bh+1

a ) ≥ va(Bh+1
b ). The fact that

Ah is EF1 gives us va(Aha) ≥ va(Ahb ) − va(g), for some
g ∈ Ahb . Summing the last two inequalities and noting that
Ah+1
a = Aha ∪ Bh+1

a and Ah+1
b = Ahb ∪ B

h+1
b we get that

Ah+1 is EF1 with respect to agent a and b.
The complementary case wherein a does not envy b in Ah

is analogous, since Bh+1 is guaranteed to be EF1 in itself.
Overall, this establishes the stated claim, that the final alloca-
tion A` is EF1.

Lemma 2 along with the feasibility argument mentioned
above (and the direct observation that ALG 1 runs in polyno-
mial time) proves Theorem 1.

5 MMS Under Cardinality Constraints:
Proof of Theorem 2

To obtain an α-approximate maximin share allocation (α-
MMS) under cardinality constraints we define a nonnegative,
monotone, submodular function Fi(·), for each agent i ∈ [n]
which helps in reducing a fair division problem under additive
valuations and cardinality constraints to an unconstrained fair
division problem under monotone, submodular valuations Fi.
Recall that a function Fi(·) is said to be monotone and sub-
modular iff for all subsets A ⊆ B ⊆ [m] and g ∈ [m] \ B,
we have F (A) ≤ F (B) and F (A ∪ {g}) − F (A) ≥ F (B ∪
{g})− F (B).

We define the function Fi(·) : 2[m] → R as follows
Fi(S) :=

∑
h∈[`]

fhi (S) where,

fhi (S) :=


∑

g∈S∩Ch

vi(g), if |S ∩ Ch| ≤ kh∑
g∈Topkh

i (S∩Ch)

vi(g), otherwise

Here, Topki (T ) denotes the set of the k most valued (by
agent i) goods contained in T . The following lemma asserts
that Fis are submodular; its proof is deferred to a full version
of the paper.
Lemma 3. For each agent i ∈ [n] the function Fi(·) (defined
above) is monotone, nonnegative, and submodular.

Recall that the set of feasible allocations F is nonempty iff
the cardinality thresholds kh ≥ |Ch|

n for all categories h ∈ [`].
Assuming nonempty set of feasible allocations, we establish
the following lemma.
Lemma 4. If for all the categories h ∈ [`], the cardi-
nality threshold satisfies kh ≥ |Ch|

n , then for each agent

i ∈ [n], the value of max
(P1,...,Pn)∈F

min
j∈[n]

vi(Pj) equals

max
(P1,...,Pn)∈Πn([m])

min
j∈[n]

Fi(Pj).

Proof. We fix an agent i ∈ [n] and first show
that the left-hand side of the stated equality is upper
bounded by the right-hand side. Write (A∗1, . . . , A

∗
n) ∈

arg max(P1,...,Pn)∈F minj∈[n] vi(Pj). Since |A∗j ∩
Ch| ≤ kh for all h and j, we have Fi(A

∗
j ) =

vi(A
∗
j ) for all j. Now, the inequality minj∈[n] Fi(A

∗
j ) ≤

max(P1,...,Pn)∈Πn([m]) minj∈[n] Fi(Pj) establishes the up-
per bound.

We complete the proof by showing that an inequality holds
in the other direction as well. Write (B∗1 , . . . , B

∗
n) ∈

arg max(P1,...,Pn)∈Πn([m]) minj∈[n] Fi(Pj). Say
(B∗1 , . . . , B

∗
n) /∈ F , then there exists an index b ∈ [n]

and h ∈ [`] such that |B∗b ∩ Ch| > kh. Since kh ≥ |Ch|
n , an

averaging argument implies that there exists another index
a ∈ [n] for which |B∗a ∩ Ch| < kh. Now, consider the
lowest valued (by agent i) good g ∈ B∗b ∩ Ch. Note that
Fi(B

∗
b ) = Fi(B

∗
b \ {g}) and Fi(B

∗
a ∪ {g}) ≥ Fi(B

∗
a).

Hence, we can iteratively perform such swaps till all the
cardinality constraints are satisfied. That is, we can obtain
an allocation, say B′ = (B′1, . . . , B

′
n) ∈ F , which is

feasible and satisfies Fi(B′j) ≥ Fi(B
∗
j ) for all j ∈ [n]. The

feasibility of B′ ensures that the following equality holds
for all j: Fi(B′j) = vi(B

′
j). Therefore, minj∈[n] Fi(B

′
j) =

minj∈[n] vi(B
′
j) ≤ max(P1,...,Pn)∈F minj∈[n] vi(Pj).

Hence, the left-hand side of the equality stated in the lemma
is at least as much as the right-hand side.

Under submodular valuations a 1/3-MMS allocation can
be computed efficiently in the unconstrained setting [Ghodsi
et al., 2017]. Therefore, for an unconstrained fair division
instance over the m goods and with submodular valuations
of the n agents as (Fi)i, we can efficiently find an allocation
A = (A1, . . . , An) ∈ Πn([m]) which is 1/3-MMS. Employ-
ing a swap argument—similar to the one used in the proof
of Lemma 4—we can efficiently convert A into a feasible al-
location B ∈ F which satisfies Fi(Bi) ≥ Fi(Ai), for all
i ∈ [n]. That is, for the unconstrained instance, B is a 1/3-
MMS allocation as well. In addition, the feasibility of B im-
plies that Fi(Bi) = vi(Bi), for all i. Overall, via Lemma 4
(i.e., the fact that the maximin shares of each agent i in the
constructed unconstrained instance is equal to the underlying
CMMSi value), we get that B is a feasible, 1/3-MMS allo-
cation for the constrained instance. This completes the proof
of Theorem 2.

6 Identical Valuations and Matroid
Constraint

This section shows that if the additive valuations of the agents
are identical (i.e., vi = vj for all i, j ∈ [n]), then an EF1 allo-
cation is guaranteed to exist even under a matroid constraint.

Matroids have been studied extensively in mathematics and
computer science; see, e.g. [Oxley, 1992]. These structures
provide an encompassing framework for representing combi-
natorial constraints; in particular, the cardinality constraints
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considered in the previous sections correspond to a particular
matroid, called the partition matroid. Formally, a matroid is
defined as a pair ([m], I) where [m] is the ground set of ele-
ments and I—referred to as independent sets—is a nonempty
collection of subsets of [m] that satisfies: (i) Hereditary prop-
erty: If B ∈ I and A ⊂ B, then A ∈ I, and (ii) Independent
Set Exchange: If A,B ∈ I and |A| < |B|, then there exist an
element x ∈ B \A such that A ∪ {x} ∈ I .

We consider a fair division instance
〈[m], [n], (vi)i∈[n],M〉 where M denotes the set of all
allocations which satisfy the underlying matroid constraint,
M := {A = (A1, . . . , An) ∈ Πn([m]) | Ai ∈ I for all
i ∈ [n]}. Here, the main result is as follows
Theorem 3. Every fair division instance〈
[m], [n], (vi)i∈[n],M

〉
under additive, identical valua-

tions and matroid constraint, M 6= ∅ , admits an EF1
allocation.

Proof. We establish the result by showing that an allocation
which maximizes the Nash Social Welfare over the set M
is necessarily EF1. For an allocation A = (A1, . . . , An), the
Nash Social Welfare (NSW) is defined as the geometric mean
of the agents’ valuations, NSW(A) := (

∏
i∈[n] vi(Ai))

1/n.
Let v(·) denote identical, additive valuations of the agents.

We assume v(g) > 0 for all g ∈ [m] and consider an
optimal allocation A ∈ arg max

B∈M
NSW(B), which satisfies

NSW(A) > 0.10 We will prove that A is EF1. Since
A ∈M, the stated claim follows.

Say, for contradiction, thatA is not an EF1 allocation, then
we will show that there exists another allocation A′ ∈ M
along with agents i and j, such that A′h = Ah, for all
other agents h ∈ [n] \ {i, j}, and min{v(A′i), v(A′j)} >
min{v(Ai), v(Aj)}. The last inequality and the fact that
v(A′i) + v(A′j) = v(Ai) + v(Aj) imply v(A′i) · v(A′j) >
v(Ai) · v(Aj). Therefore, we get NSW(A′) > NSW(A),
which contradicts the optimality of A.

Note that, if A is not EF1 then there exists a pair of agents
i, j such that

(E) : v(Ai) < v(Aj)− v(g) for all g ∈ Aj .

Note that if there exists a good g in Aj such that Ai ∪ {g}
is independent (i.e., Ai ∪ {g} ∈ I), then swapping g from
Aj to Ai gives us the desired allocation A′ (with a strictly
higher NSW than A). Hence, we analyze the case in which
no such good exists. In particular, we have Ai ∪ g /∈ I for all
g ∈ Aj . This condition implies that |Ai| ≥ |Aj |; otherwise,
the Independent Set Exchange property of matroids would
ensure the existence of a good g ∈ Aj such thatAi∪{g} ∈ I.

Write t := |Aj |. Let Âi denote a subset ofAi of cardinality
t and hence, Âi is also independent by the Hereditary prop-
erty of independent sets of matroids. Since Âi and Aj are
independent and |Âi| = |Aj | = t, there exist t component-
wise distinct pairs of goods {(giz, gjz) ∈ (Âi, Aj) | z ∈ [t]}

10If the optimal NSW over M is zero, then it must be the case
that we have less than n goods. For such an instance, an allocation
wherein each agent gets at most one good is both feasible and EF1.

such that (Âi \ {giz}) ∪ {gjz} and (Aj \ {gjz}) ∪ {giz} are in-
dependent for all z ∈ [t] [Goemans, 2009]. Since the pairs
are distinct, Aj = {gjz | z ∈ [t]} and Âi = {giz | z ∈ [t]}.
In addition, the envy between agent i and j (i.e., v(Aj) >

v(Ai) ≥ v(Âi)) implies that there exists index y ∈ [t] for
which v(gjy) > v(giy).

Consider the allocation A′ wherein A′i = (Ai \ {giy}) ∪
{gjy}, A′j = (Aj \ {gjy}) ∪ {giy}, and A′h = Ah for
all other agents. Note that v(A′i) = v(Ai) + v(gjy) −
v(giy) > v(Ai). Furthermore, v(A′j) = v(Aj) − v(gjy) +

v(giy) > v(Ai); the last inequality follows from (E). Hence,
min{v(A′i), v(A′j)} > v(Ai) = min{v(Ai), v(Aj)}, which
implies that the NSW ofA′ is higher than that ofA. This, by
contradiction, completes the proof.

7 Conclusion and Future Work
This paper extends the active line of work on fair division
of indivisible goods and shows that fairness guarantees are
not lost by imposing cardinality constraints. In particular, we
show that EF1 allocations are guaranteed to exist even un-
der cardinality constraints. Note that, though the round-robin
method [Caragiannis et al., 2016] and cycle-elimination algo-
rithm [Lipton et al., 2004] efficiently find EF1 allocations in
the unconstrained setting, these algorithms can lead to an al-
location which does not satisfy the cardinality constraints. In
this paper we bypass this issue by combining the round-robin
method with envy graphs in an interesting manner.

The universality of EF1 is further strengthened by our
result which shows that if the agents’ valuations are iden-
tical (and additive), then fair (EF1) allocations exist even
under matroid constraints. Establishing such a guarantee—
along with computational results—for heterogeneous valua-
tions (additive and beyond) remains an interesting direction
of future work.11

We also show that, even under cardinality constraints, ap-
proximate maximin fair allocations always exist and can be
computed efficiently. This result is obtained by reducing the
constrained version of the problem (with additive valuations)
to an unconstrained one (with submodular valuations). This
reduction might be useful for addressing other constrained,
fair division problems.

Going forward it would be quite relevant to study fair di-
vision, both unconstrained and constrained, among strategic
agents.
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and Jérôme Monnot. On Regular and Approximately Fair
Allocations of Indivisible Goods. In International con-
ference on Autonomous Agents and Multi-Agent Systems,
AAMAS, pages 997–1004, 2014.

[Foley, 1967] DC Foley. Resource allocation in the public
sector. Yale Economic Essays, 7:73–76, 1967.

[Ghodsi et al., 2017] Mohammad Ghodsi, MohammadTaghi
HajiAghayi, Masoud Seddighin, Saeed Seddighin, and
Hadi Yami. Fair allocation of indivisible goods:
Improvement and generalization. arXiv preprint
arXiv:1704.00222, 2017.

[Goemans, 2009] M Goemans. Lecture notes on Matroid In-
tersection (Lecture 11). Massachusetts Institute of Tech-
nology, Combinatorial Optimization, 2009.

[Goldman and Procaccia, 2014] Jonathan R. Goldman and
Ariel D. Procaccia. Spliddit: unleashing fair division al-
gorithms. SIGecom Exchanges, 13(2):41–46, 2014.

[Gourvès and Monnot, 2017] Laurent Gourvès and Jérôme
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