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Abstract

In many applications that involve processing high-
dimensional data, it is important to identify a small
set of entities that account for a significant frac-
tion of detections. Rather than formalize this as
a clustering problem, in which all detections must
be grouped into hard or soft categories, we formal-
ize it as an instance of the frequent items or heavy
hitters problem, which finds groups of tightly clus-
tered objects that have a high density in the feature
space. We show that the heavy hitters formulation
generates solutions that are more accurate and ef-
fective than the clustering formulation. In addition,
we present a novel online algorithm for heavy hit-
ters, called HAC, which addresses problems in con-
tinuous space, and demonstrate its effectiveness on
real video and household domains.

1 Introduction

Many applications require finding entities in raw data, such
as individual objects or people in image streams or particu-
lar speakers in audio streams. Often, entity-finding tasks are
addressed by applying clustering algorithms such as k-means
(for instance in [Niebles et al., 2008]). We argue that instead
they should be approached as instances of the frequent items
problem, also known as the heavy hitters problem. The clas-
sic frequent items problem assumes discrete data and involves
finding the most frequently occurring items in a stream of
data. We propose to generalize it to continuous data.

Figure 1 shows examples of the differences between clus-
tering and entity finding. Some clustering algorithms fit a
global objective assigning all/most points to centers, whereas
entities are defined locally leading to more robustness to noise
(1a). Others, join nearby dense groups while trying to detect
sparse groups, whereas entities are still distinct (1b). These
scenarios are common because real world data is often noisy
and group sizes are often very unbalanced [Newman, 2005].

We characterize entities using two natural properties: sim-
ilarity - the feature vectors should be similar according to
some (not necessarily Euclidean) distance measure, such as
cosine distance, and salience - the region should include a
sufficient number of detections over time.
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(a) Noisy environment: outliers (red points) greatly influence clus-
tering. Entities, defined locally, are robust to large amounts of noise.
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(b) Groups of different sizes: clustering tends to join nearby groups;
entities may be close together yet distinct.

Figure 1: In clustering all/most points belong to a group, forming
big clusters which are defined globally. In entity finding some points
belong to a group, forming small tight regions defined locally.

Even though our problem is not well-formulated as a clus-
tering problem, it might be tempting to apply clustering al-
gorithms to it. Clustering algorithms optimize for a related,
but different, objective. This makes them less accurate for
our problem; moreover, our formulation overcomes typical
limitations of some clustering algorithms such as relying on
the Euclidean distance metric and performing poorly in high-
dimensional spaces. This is important because many natural
embeddings, specially those coming from Neural Networks,
are in high dimensions and use non-Euclidean metrics.

In this paper we suggest addressing the problem of entity
finding as an extension of heavy hitters, instead of clustering,
and propose an algorithm called HAC with multiple desirable
properties: handles an online stream of data; is guaranteed to
place output points near high-density regions in feature space;
is guaranteed to not place output points near low-density re-
gions (i.e., is robust to noise); works with any distance metric;
can be time-scaled, weighting recent points more; is easy to
implement; and is easily parallelizable.

We begin by outlining a real-world application of tracking
important objects in a household setting without any labeled
data and discussing related work. We go on to describe the
algorithm and its formal guarantees and describe experiments
that find the main characters in video of a TV show and that
address the household object-finding problem.
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1.1 Household Setting

The availability of low-cost, network-connected cameras pro-
vides an opportunity to improve the quality of life for people
with special needs, such as the elderly or the blind. One ap-
plication is helping people to find misplaced objects.

More concretely, consider a set of cameras recording video
streams from some scene, such as a room, an apartment or a
shop. At any time, the system may be queried with an image
or a word representing an object, and it has to answer with
candidate positions for that object. Typical queries might
be: "Where are my keys?” or "Warn me if I leave without
my phone.” Note that, in general, the system won’t know the
query until it is asked and thus cannot know which objects in
the scene it has to track. For such an application, it is impor-
tant for the system to not need specialized training for every
new object that might be the focus of a query.

Our premise is that images of interesting objects are such
that 1) a neural network embedding [Donahue er al., 2014;
Johnson et al., 2016; Mikolov et al., 2013] will place them
close together in feature space, and 2) their position stays
constant most of the time, but changes occasionally. There-
fore objects will form high-density regions in a combined
feature x position space. Random noise, such as people mov-
ing or false positive object detections, will not form dense
regions. Objects that don’t move (walls, sofas, etc) will
be always dense; interesting objects create dense regions in
feature x position space, but eventually change position and
form a new dense region somewhere else. We will exploit the
fact that our algorithm is easy to scale in time, to detect theses
changes over time.

1.2 Related Work

Our algorithm, HAC, addresses the natural generalization of
heavy hitters, a very well-studied problem, to continuous set-
tings. In heavy hitters we receive a stream of elements from
a discrete vocabulary and our goal is to estimate the most
frequently occurring elements using a small amount of mem-
ory, which does not grow with the size of the input. Optimal
algorithms have been found for several classes of heavy hit-
ters, which are a logarithmic factor faster than our algorithm,
but they are all restricted to discrete elements [Manku and
Motwani, 2002]. In our use case (embeddings of real-valued
data), elements are not drawn from a discrete set, and thus
repetitions have to be defined using regions and distance met-
rics. Another line of work [Chen and Zhang, 2016] estimates
the total number of different elements in the data, in contrast
to HAC that finds (not merely counts) different dense regions.

Our problem bears some similarity to clustering but the
problems are fundamentally different (see figure 1). The clos-
est work to ours within the clustering literature is density-
based (DB) clustering. In particular, they first find all dense
regions in space (as we do) and then join points via paths in
those dense regions to find arbitrarily-shaped clusters. In con-
trast, we only care about whether a point belongs to one of the
dense regions. This simplification has two advantages: first, it
prevents joining two close-by entities, second, it allows much
more efficient, general and simple methods.

The literature on DB clustering is very extensive. Most
of the popular algorithms, such as DBScan [Ester et al.,
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1996] and Level Set Tree Clustering [Chaudhuri and Das-
gupta, 2010], as well as more recent algorithms [Rodriguez
and Laio, 2014], require simultaneous access to all points and
have complexity quadratic in the number of points; this makes
them impractical for big datasets and specially streaming
data. There are some online DB clustering algorithms [Chen
and Tu, 20071, [Wan et al., 2009], [Cao et al., 2006], but
they either tessellate the space or assume a small timescale,
tending to work poorly for non-Euclidean metrics and high
dimensions.

Two pieces of work join ideas from clustering with heavy
hitters, albeit in very different settings and with different
goals. [Larsen er al., 2016] uses graph partitioning to attack
the discrete [, heavy hitters problem in the general turnstile
model. [Braverman et al., 2017] query a heavy hitter algo-
rithm in a tessellation of a high dimensional discrete space, to
find a coreset which allows them to compute an approximate
k-medians algorithm in polynomial time. Both papers tackle
streams with discrete elements and either use clustering as an
intermediate step to compute heavy hitters or use heavy hit-
ters as an intermediate step to do clustering (k-medians). In
contrast, we make a connection pointing out that the general-
ization of heavy hitters to continuous spaces allows us to do
entity finding, previously seen as a clustering problem.

We illustrate our algorithm in some applications that have
been addressed using different methods. Clustering faces
is a well-studied problem with commercially deployed so-
Iutions. However, these applications generally assume we
care about most faces in the dataset and that faces occur in
natural positions. This is not the case for many real-world
applications, where photos are taken in motion from multi-
ple angles and are often blurry. Therefore, algorithms that
use clustering in the conventional sense, [Schroff ez al., 2015;
Otto et al., 2017], do not apply.

[Rituerto et al., 2016] proposed using DB-clustering in a
setting similar to our object localization application. How-
ever, since our algorithm is online, we allow objects to change
position over time. Their method, which uses DBScan, can be
used to detect what we will call stable objects, but not mov-
able ones (which are generally what we want to find). [Nirjon
and Stankovic, 2012] built a system that tracks objects assum-
ing they will only change position when interacting with a
human. However, they need an object database, which makes
the problem easier and the system much less practical, as the
human has to register every object to be tracked.

2 Problem Setting

In this section we argue that random sampling is surprisingly
effective (both theoretically and experimentally) at finding
entities by detecting dense regions in space and describe an
algorithm for doing so in an online way. The following defi-
nitions are of critical importance.

Definition 2.1. Let d(-, -) be the distance metric. A point p is
(r, f)-dense with respect to dataset D if the subset of points
in D within distance r of p represents a fraction of the points
that is at least f. If N = |D|; then p must satisfy:

{z € D|d(z,p) <r}| = fN.
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Figure 2: Varying fraction f with fixed radius r. Data comes from 3
Gaussians plus uniform random noise. A circle of radius r near the
sparsest Gaussian captures more than 7% of the data but less than
15%; thus being dense in (a), but not in (b).
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Figure 3: Varying radius r with fixed frequency f. We can detect
Gaussians with different variances by customizing r for each output.
The goal isn’t to cover the whole group with the circle but to return
the smallest radius that contains a fraction f of the data. Points near
an output are guaranteed to need a similar radius to contain the same
fraction of data.

Definition 2.2. A point p is (r, f)-sparse with respect to
dataset D if and only if it is not (7, f)-dense.

The basic version of our problem is the natural generaliza-
tion of heavy hitters to continuous spaces. Given a metric
d, a frequency threshold f, a radius r and a stream of points
D, after each input point the output is a set of points. Every
(r, f)-dense point (even those not in the dataset) has to be
close to at least one output point and every (r, f/2)-sparse
region has to be far away from all output points.

Our algorithm is based on samples that hop between data
points and count points nearby; we therefore call it Hop And
Count (HAC).

2.1 Description of the Algorithm

A very simple non-online algorithm to detect dense regions is
to take a random sample of m elements and output only those
samples that satisfy the definition of (r, f)-dense with respect
to the whole data set. For a large enough m, each dense re-
gion in the data will contain at least one of the samples with
high probability, so the output will include a sample from this
region. For sparse regions, even if they contain a sampled
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point, this sample will not be in the output since it will not
pass the denseness test.

Let us try to make this into an online algorithm. A known
way to maintain a uniform distribution in an online fashion is
reservoir sampling [Vitter, 1985]: we keep m stored samples.
After the ¢-th point arrives, each sample changes, indepen-
dently, with probability 1/i to this new point. At each time
step, samples are uniformly distributed over all the points in
the data. However, once a sample has been drawn we cannot
go back and check whether it belongs to a dense or sparse
region of space, since we have not kept all points in memory.

The solution is to keep a counter for each sample in mem-
ory and update the counters every time a new point arrives. In
particular, for any sample = in memory, when a new point p
arrives we check whether d(x, p) < r; if so, we increase x’s
counter by 1. When the sample hops to a new point 2, the
counter is no longer meaningful and we set it to 0.

Since we are in the online setting, every sample only sees
points that arrived after it and thus only the first point in a re-
gion sees all other points in that region. Therefore, if we want
to detect a region containing a fraction f of the data, we have
to introduce an acceptance threshold lower than f, for exam-
ple /2, and only output points with frequency above it. The
probability of a sample being in the first half of any dense
region is at least f/2 and thus, for a large enough number
of samples m, with high probability every dense region will
contain a sample detected as dense. Moreover, since we set
the acceptance threshold to f/2, regions much sparser than f
will not produce any output points. In other words, we will
have false positives but they will be good false positives, since
those points are guaranteed to be in regions almost as dense as
the target dense regions we actually care about. In general we
can change f/2to (1 — €) f by e trading memory for perfor-
mance. Finally, note that this algorithm is easy to parallelize
because all samples and their counters are independent.

2.2 Multiple Radii

In the previous section we assumed a specific known thresh-
old . What if we don’t know 7, or if every dense region has
a different diameter? We can simply have counts for mul-
tiple values of r for every sample. In particular, for every
2 in memory we maintain a count of streamed points within
distance r for every 7 € {rg = Tmin, 707V, 707>, - - -, T0Y" =
Tmax - At output time we can output the smallest r; such
that the x is (r;, f)-dense. With this exponential sequence we
guarantee a constant-factor error while only losing a logarith-
mic factor in memory usage. ry and ¢ may be user-specified
or automatically adjusted at runtime.

Algorithm 1 shows the pseudo-code for HAC with multiple
specified radii. Note that the only data-dependent parameters
are o and ¢, which specify the minimum and maximum radii,
and fj which specifies the minimum fraction that we will be
able to query. The other parameters (¢, §, ) trade off memory
vs. probability of satisfying guarantees.

2.3 Guarantees

We make a guarantee for every dense or sparse point in space,
even those that are not in the dataset. Our guarantees are
probabilistic; they hold with probability 1 — § where J is a
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Algorithm 1: Hop And Count with multiple radii.

1 Subroutine Hop And Count Processing( fo, €, 9, To, 7, ¢)
m < log (fo_l(sil)/be // to satisfy guarantees

N

3 Mem < [0, ™), 0] ; Counts + Zeros(m,c)

4 t=20

5 for p in stream do

6 t+=1

7 for 0 <i < mdo

8 if Bernoulli(1/t) then

9 Memli] < p // hop

10 for0 <r <cdo

1 ‘ Countsli][r] + 0 // reset counters
2 7 <+ max (0, ceil (log., (d(Memli], p)/ro)))
13 if » < c then

14 | Counts[i][r] + =1

15 Subroutine Hop And Count Query(f, t, e, Mem, Counts)

16 for 0 < i < len(Counts) do // 0<i<m
17 count < 0

18 for 0 < r < len(Counts[i]) do // 0<r<c
19 count < count + Mem][i][r]

20 if count > (1 — €) ft then

21 output (Mem][i],r)

22 break

parameter of the algorithm that affects the memory usage. We
have three types of guarantees, from loose but very certain,
to tighter but less certain. For simplicity, we assume here
that 7min = Tmax = 7. Here, we state the theorems; proofs
are available in the online version with an appendix at http:
/Nis.csail.mit.edu/alet/entities-appendix.html.

Definition 2.3. r;(p) is the smallest r s.t. p is (r, f)-dense.
For each point p we refer to its circle/ball as the sphere of
radius 77 (p) centered at p.

Theorem 2.1. For any tuple (e < 1,6, f), with probability
1 =4, for any point p s.t. vy < Tmax /27 our algorithm will
give an output point o s.t. d(o,p) < 3r¢(p).

Moreover,  the algorithm always needs at most

@(bgs(ifé)log,y (”“J)) memory and @(M) time

I Tmin ef
per point. Finally, it outputs at most © (%) points.

Lemma 2.2. Any (A, (1—¢)f)-sparse point will not have an
output point within A — 27 «.

Notice that we can use this algorithm as a noise detector
with provable guarantees. Any (rmax, f)-dense point will be
within 37y, of an output point and any (57max, (1 — €) f)-
sparse point will not.

Theorem 2.3. For any tuple (¢, 0, f), with probability (1-9),
for any (r, f)-dense point p our algorithm will output a point
o s.t. d(o,p) < r with probability at least (1 — 6 f).

Theorem 2.4. We can apply a post-processing algorithm that

takes parameter vy in time © (% to reduce the number

of output points to (1+2¢) / f while guaranteeing that for any
point p there is an output within (4 + 3)7¢(p). The same al-
gorithm guarantees that for any (v'ymaz, f)-dense point there
will be an output within 77.,qz.
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Note that the number of outputs can be arbitrarily close to
the optimal 1/f.

The post-processing algorithm is simple: iterate through
the original outputs in increasing ¢ (p). Add p to the final list
of outputs O if there isno o € O s.t. d(o0,p) < r¢(p) +7¢(0).
See the linked appendix for a proof of correctness.

In high dimensions many clustering algorithms fail; in con-
trast, our performance can be shown to be provably good in
high dimensions. We prove asymptotically good performance
for dimension d — oo with a convergence fast enough to be
meaningful in real applications.

Theorem 2.5. With certain technical assumptions on the data
distribution, if we run HAC in high dimension d, for any
(r,1.05f)-dense point there will be an output point within
(14 a)r, with o = O(d=1/?), with probability (0.95 — 5 f —
O(e=7™)), where n is the total number of datapoints.

Moreover, the probability that a point p is (r,0.98(1 — ¢€) f)-
sparse yet has an output nearby is at most 0.05 + O(e=/™).

We refer the reader to the linked appendix for a more de-
tailed definition of the theorem and its proof.

The intuition behind the proof is the following: let us
model the dataset as a set of high-dimensional Gaussians plus
uniform noise. It is well-known that most points drawn from
a high dimensional Gaussian lie in a thin spherical shell. This
implies that all points drawn from the same Gaussian will be
similarly dense (have a similar 7;(p)) and will either all be
dense or all sparse. Therefore, if a point is (r, f)-dense it is
likely that another point from the same Gaussian will be an
output and will have a similar radius. Conversely, a point that
is (1, (1—e€) f)-sparse likely belongs to a sparse Gaussian and
no point in that Gaussian can be detected as dense.

Note that, for d,n — oo and § — 0 the theorem guaran-
tees that any (r, f)—dense point will have an output within r
with probability 95% and any (r, (1 — ¢))-sparse point will
not, with probability 5%; close to the ideal guarantees. Fur-
thermore, in the appendix we show how these guarantees are
non-vacuous for values as small as n = 5000,d = 128: the
values of the dataset in section 3.

2.4 Time Scaling

We have described a time-independent version of HAC in
which all points have equal weight, regardless of when they
arrive. However, it is simple and useful to extend this algo-
rithm to make point i have weight proportional to e~ (t—%)/7
for any timescale 7, where ¢ is the current time and ¢; is the
time when point ¢ was inserted.

Trivially, a point inserted right now will still have weight 1.
Now, let ¢’ be the time of the last inserted point. We can up-
date all the weights of the previously received points by a
factor e~ =)/ Since all the weights are multiplied by the
same factor, sums of weights can also be updated by multi-
plying by e~ (=#)/7,

We now only need to worry about hops. We can keep a
counter for the total weight of the points received until now.
Let us define w; 3, as the weight of point p; at the time point
k arrives. Since we want to have a uniform distribution over
those weights, when the ¢-th point arrives we simply assign
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Figure 4: Identifying the main n characters for n € {1,5,8}. We ask each algorithm to give n outputs and compute the fraction of main
n characters found in those n outputs. We report the average of 25 different random seeds sampling the original dataset for 70% of the
data. There are 3 ways of missing: Wrong: a noisy image (such as figure 5a) or unpopular character, Duplicate: an extra copy of a popular
character, Missing: the algorithm is unable to generate enough outputs. Despite being online, HAC outperforms all baselines.

the probability of hopping to be 1/, w; ;. Note that for
the previous case of all weights being 1 (i.e. 7 = o0) this
reduces to a probability of 1/i as before.

We prove in the appendix that by updating the weights and
modifying the hopping probability, the time-scaled version
has guarantees similar to the original ones.

2.5 Fixing the Number of Outputs

We currently have two ways of querying the system: 1) Fix a
single distance r and a frequency threshold f, and get back all
regions that are (r, f)-dense; 2) Fix a frequency f, and return
a set of points {p;}, each with a different radius {r;} s.t. a
point p near output point p; is guaranteed to have r¢(p) ~ r;.

It is sometimes more convenient to fix the number of out-
puts instead. With HAC we go one step further and return a
list of outputs sorted according to density (so, if you want o
outputs, you pick the first o elements from the output list).
Here are two ways of doing this: 1) Fix radius r. Find a set of
outputs p; each (r, f;)-dense. Sort {p;} by decreasing f;, thus
returning the densest regions first. 2) Fix frequency f, sort the
list of regions from smallest to biggest 7. Note, however, that
the algorithm is given a fixed memory size which governs the
size of the possible outputs and the frequency guarantees.

In general, it is useful to apply duplicate removal. In our
experiments we sort all (r, f)-dense outputs by decreasing f,
and add a point to the final list of outputs if it is not within
rq of any previous point on the list. This is similar to but not
exactly the same as the method in theorem 2.4; guarantees for
this version can be proved in a similar way.

3 Identifying People

As a test of HAC’s ability to find a few key entities in a large,
noisy dataset, we analyze a season of the TV series House
M.D.. We pick 1 frame per second and run a face-detection
algorithm (dlib [King, 2009]) that finds faces in images and
embeds them in a 128-dimensional space. Manually inspect-
ing the dataset reveals a main character in 27% of the images,
a main cast of four characters appearing in 6% each and three
secondary characters in 4% each. Other characters account
for 22% and poor detections (such as figure 5a) for 25%.

We run HAC with » = 0.5 and apply duplicate reduction
with r4 = 0.65. These parameters were not fine-tuned; they
were picked based on comments from the paper that created

the CNN and on figure 6. We fix ¢ = 6 = 0.5 for all exper-
iments; these large values are sufficient because HAC works
better in high dimensions than guaranteed by theorem 2.1.

(@ (b)

Figure 5: Shortcomings of clustering algorithms in entity finding.
(a) The closest training example to the mean of the dataset (1-output
of k-means) is a blurry misdetection. (b) DBSCAN merges different
characters through paths of similar faces.

I (f,r)-dense
12 B ((1-¢)f,r)-sparse

Rare photos
of popular characters

Rare characters

|

probability density

01 02 03 0.4 05 0.6 07 08 09
Distance to closest center

Figure 6: Most (7, f)-dense points are within r of an output, most
(r, (1 — €) f)-sparse points are not, as predicted by theorem 2.5.
We run HAC with f = 0.02, » = 0.4. We compare two probability
distributions: distance to the closest output for dense points and for
sparse points. Ideally, we would want all the dense points (blue
distribution) to be to the left of the threshold 7 and all the sparse
points (green) to be to its right; which is almost the case.

Moreover, notice the two peaks in the frequency distribution (intra-
entity and inter-entity) with most uncertainty between 0.5 and 0.65.

We compare HAC against several baselines to find the most
frequently occurring characters. For n = {1,5,8} we ask
each algorithm to return n outputs and check how many of the
top n characters it returned. The simplest baseline, Random,
returns a random sample of the data. Maximal Independent

1996
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Set starts with an empty list and iteratively picks a random
point and adds it to the set iff it is at least » = 0.65 apart from
all points in the list. We use sklearn [Pedregosa et al., 2011]
for both k-means and DBSCAN. DBSCAN has two parame-
ters: we set its parameter 7 to 0.5, since its role is exactly the
same as our 7 and grid-search to find the best ¢. For k-means
we return the image whose embedding is closer to each center
and for DBSCAN we return a random image in each cluster.

As seen in figure 4, HAC consistently outperforms all base-
lines. In particular, k-means suffers from trying to account
for most of the data, putting centers near unpopular charac-
ters or noisy images such as figure 5a. DBSCAN’s problem
is more subtle: to detect secondary characters, the threshold
frequency for being dense needs to be lowered to 4%. How-
ever, this creates a path of dense regions between two main
characters, joining the two clusters (figure 5b).

While we used offfine baselines with fine-tuned parameters,
HAC is online and its parameters do not need to be fine-tuned.
Succeeding even when put at a disadvantage, gives strong ev-
idence that HAC is a better approach for the problem.

Finally, with this data we checked the guarantees of theo-
rem 2.5: most (f, r)-dense points have an output within dis-
tance r, 95%, whereas few (r, (1 — €))-sparse points do: 6%.
This is shown in figure 6.

4 Object Localization

In this section we show an application of entity finding that
cannot be easily achieved using clustering. We will need the
flexibility of HAC: working online, with arbitrary metrics and
in a time-scaled setting as old observations become irrelevant.

4.1 Identifying Objects

In the introduction we outlined an approach to object local-
ization that does not require prior knowledge of which ob-
jects will be queried. To achieve this we exploit many of the
characteristics of the HAC algorithm. We assume that: 1) A
convolutional neural network embedding will place images of
the same object close together and images of different objects
far from each other. 2) Objects only change position when a
human picks them up and places them somewhere else.

Points in the data stream are derived from images as fol-
lows. First, we use SharpMask[Pinheiro et al., 2016] to seg-
ment the image into patches containing object candidates (fig-
ure 7). Since SharpMask is not trained on our objects, pro-
posals are both unlabeled and very noisy. For every patch,
we feed the RGB image into a CNN (Inception-V3 [Szegedy
et al., 2016]), obtaining a 2048-dimensional embedding. We
then have 3 coordinates for the position (one indicates which
camera is used, and then 2 indicate the pixel in that image).

We need a distance for this representation. It is natural
to assume that two patches represent the same object if their
embedding features are similar and they are close in the 3-D
world. We can implement this with a metric that is the max-
imum between the distance in feature space and the distance
in position space:

d((p1, f1), (p2, f2)) = max(d,(p1,p2), ds(f1, f2))

We can use cosine distance for dy and [5 for dy,; HAC allows
for the use of arbitrary metrics. However, for good perfor-
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Figure 7: All the candidate objects from a random camera and time.
Only a few proposals (first 6) capture objects of actual interest.

mance, we need to scale the distances such that close in po-
sition space and close in feature space correspond to roughly
similar numerical values.

We can now apply HAC to the resulting stream of points.
In contrast to our previous experiment, time is now very im-
portant. In particular, if we run HAC with a large timescale 7
and a small timescale 75, we’ll have 3 types of detections:

e Noisy detections (humans passing through, false posi-
tive camera detections): not dense in either timescale;

e Detections from stable objects (sofas, walls, floor):

dense in both timescales; and

e Detections from objects that move intermittently (keys,
mugs): not dense in 7;, and alternating dense and sparse
in 75. (When a human picks up an object from a location,
that region will become sparse; when the human places
it somewhere else, a new region will become dense.)

We are mainly interested in the third type of detections.

4.2 Experiment: Relating Objects to Humans

We created a dataset of 8 humans moving objects around 20
different locations in a room." Locations were spread across
4 tables with 8, 4, 4, 4 on each respectively. Each subject had
a bag and followed a script with the following pattern: Move
to the table of location A; Pick up the object in your location
and put it in your bag; Move to the table of location B; Place
the object in your bag at your current location.

The experiment was run in steps of 20 seconds: in the first
10 seconds humans performed actions, and in the last 10 sec-
onds we recorded the scene without any actions happening.
Since we’re following a script and humans have finished their
actions, during the latter 10 seconds we know the position
of every object with an accuracy of 10 centimeters. The to-
tal recording lasted for 10 minutes and each human picked
or placed an object an average of 12 times. In front of every
table we used a cell phone camera to record that table (both
human faces and objects on the table).

We can issue queries to the system such as: Which hu-
man has touched each object? Which objects have not been
touched? Where can I find a particular object? Note that if
the query had to be answered based on only the current cam-
era image, two major issues would arise: 1) We would not
know whether an object is relevant to a human. 2) We would
not detect objects that are currently occluded.

'"You can find it at http://lis.csail.mit.edu/alet/entities.html
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placed the object
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Figure 8: When an object is placed, its frequency starts grow-
ing. It takes on the order of the timescale 7 to reach its stationary
value, surpassing the threshold frequency. When an object becomes
dense/sparse we assume a human placed/picked it, go 7 back time
and mark the pair (obj, human). This system is completely unla-
beled; obj and human are both just feature vectors.

This experimental domain is quite challenging for several
reasons: 1) The face detector only detects about half the
faces. Moreover, false negatives are very correlated, some-
times missing a human for tens of seconds. 2) Two of the 8
subjects are identical twins. We have checked that the face
detector can barely tell them apart. 3) The scenes are very
cluttered: when an interaction happens, an average of 1.7
other people are present at the same table. 4) Cameras are
2D (no depth map) and the object proposals are very noisy.

We focus on answering the following query: for a given
object, which human interacted with it the most? The algo-
rithm doesn’t know the queries in advance nor is it provided
training data for particular objects or humans. Our approach,
shown in figure 8, is as follows:

e Run HAC with 7; = oo (all points have the same weight
regardless of their time), 7, = 10 seconds, f = 2.5%
and a distance function and threshold which link two de-
tections that happen roughly within 30 centimeters and
have features that are close in embedding space.

e Every 10s, query for outputs representing dense regions.

e For every step, look at all outputs from the algorithm and
check which ones do not have any other outputs nearby
in the previous step. Those are the detections that ap-
peared. Similarly, look at the outputs from the previous
step that do not have an output nearby in the current step;
those are the ones that disappeared.

e (Figure 8) For any output point becoming dense/sparse
on a given camera, we take its feature vector (and drop
the position); call these features v and the current time
t. We then retrieve all detected faces for that camera at
times [t — 274,¢ — 75], which is when a human should
have either picked or placed the object that made the
dense region appear/disappear. For any face f; we add
the pair (v, f;) to alist with a score of 1/| f;|, which aims
at distributing the responsibility of the action between
the humans present.

Now, at query time we want to know how much each human
interacted with each object. We pick a representative picture

1998

#pick/place  #pick/place Rank pred.  Explanation
top human  pred. human human (of 8)

12 12 1 v’

8 8 1 v’

7 7 1 v’

6 6 1 v’

6 6 1 v’

6 6 1 v’

4 2 2 (a)

4 2 2 (b)

4 2 2 (c)

0 - - v (d)

Table 1: Summary of results. The algorithm works especially well
for more interactions, where it is less likely that someone else was
also present by accident. (a) Predicted one twin, correct answer was
the other. (b) Both twins were present in many interactions by coin-
cidence, one of them was ranked first. (d) Failure due to low signal-
to-noise ratio. (d) Untouched object successfully gets no appear-
ances or disappearances matched to a human.

of every object and every human to use as queries. We com-
pute the pair of feature vectors, compare against each object-
face pair in the list of interactions and sum its weight if both
the objects and the faces are close. This estimates the number
of interactions between human and object.

Results are shown in table 1. There is one row per ob-
ject. For each object, there was a true primary human who
interacted with it the most. The columns correspond to: the
number of times the top human interacted with the object,
the number of times the system predicted the top human in-
teracted with the object, the rank of the true top human in
the predictions, and explanations. HAC successfully solves
all but the extremely noisy cases, despite being a hard dataset
and receiving no labels and no specific training.

5 Conclusion

In many datasets we can find entities, subsets of the data with
internal consistency, such as people in a video, popular topics
from Twitter feeds, or product properties from sentences in
its reviews. Currently, most practitioners wanting to find such
entities use clustering.

We have demonstrated that the problem of entity finding
is well-modeled as an instance of the heavy hitters problem
and provided a new algorithm, HAC, for heavy hitters in con-
tinuous non-stationary domains. In this approach, entities
are specified by indicating how close data points have to be
in order to be considered from the same entity and when a
subset of points is big enough to be declared an entity. We
proved, both theoretically and experimentally, that random
sampling (on which HAC is based), works surprisingly well
on this problem. Nevertheless, future work on more complex
or specialized algorithms could achieve better results.

We used this approach to demonstrate a home-monitoring

system that allows a wide variety of post-hoc queries about
the interactions among people and objects in the home.
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