
 

 

Abstract 
This paper presents a model tackling a variant of the 
Raven's Matrices family of human intelligence tests 
along with computational experiments. Raven's Ma-
trices are thought to challenge human subjects' abil-
ity to generalize knowledge and deal with novel sit-
uations. We investigate how a generic ability to 
quickly and accurately generalize knowledge can be 
succinctly captured by a computational system. This 
work is distinct from other prominent attempts to 
deal with the task in terms of adopting a generalized 
similarity-based approach. Raven's Matrices appear 
to primarily require similarity-based or analogical 
reasoning over a set of varied visual stimuli. The 
similarity-based approach eliminates the need for 
structure mapping as emphasized in many existing 
analogical reasoning systems. Instead, it relies on 
feature-based processing with both relational and 
non-relational features. Preliminary experimental 
results suggest that our approach performs compa-
rably to existing symbolic analogy-based models.  

1 Introduction 
Psychometric intelligence tests can further the understanding 
of the computational aspects of natural and artificial intelli-
gence [Bringsjord and Schimanski, 2003; Hernández-Orallo 
et al., 2016]. It has even been suggested that psychometric 
intelligence tests should form a set of benchmark tasks 
against which progress in the field of artificial intelligence is 
assessed [Bringsjord and Schimanski, 2003]. Indeed, psycho-
metric tests present well-defined, validated tasks that place 
acute demands on key aspects of intelligence. In this paper, a 
new model of Raven's Progressive Matrices (RPM) [Raven 
et al., 1998a] is presented. This model suggests a subsym-
bolic approach to similarity-based (including analogical) rea-
soning and draws a connection between similarity-based rea-
soning, analogy making, and a form of inductive inference. 

Is there a general ability that underlies intelligent behavior, 
or is intelligent behavior the result of multiple distinct abili-
ties, each addressing a limited domain? If a general ability 
exists, what purpose does it serve, and how does it operate? 
These were some key questions Spearman [1927] sought to 
answer in his influential work on human intelligence. In 

artificial intelligence, these questions are closely related to 
the topic of generality, the task of developing systems that 
can handle a wide variety of tasks, environments, and do-
mains. Traditionally, generality has been a topic in symbolic 
and logical artificial intelligence, and several domain-general 
approaches have been proposed [Besold and Schmid, 2016]. 
These systems often give pride of place to analogical reason-
ing as it is a paradigm for effectively applying knowledge 
from unrelated domains to new tasks. Generality is also ad-
dressed in subsymbolic and statistical approaches to artificial 
intelligence, e.g., in transfer learning [Pan and Yang, 2010]. 
However, these latter efforts focus on techniques for general-
izing knowledge between specific tasks to improve learning 
as opposed to developing flexible and domain-general sys-
tems. Notably, subsymbolic approaches to analogical reason-
ing are relatively rare. 

The RPM tests were developed based on Spearman's work 
on human general intelligence [Raven, 2008; Raven et al., 
1998a]. Spearman believed that there exists a set of funda-
mental cognitive abilities essential for generating novel ideas 
and dealing with unfamiliar situations. These abilities, collec-
tively termed eductive ability, include the ability to draw out 
and identify relationships between ideas and the ability to 
form or identify ideas that enter into given relationships with 
given ideas. RPM tests are designed as direct measures of 
eductive ability and they are considered to be among the best 
measures of this ability [Nisbett et al., 2012]. Therefore, 
RPM tests are ideal material for computational approaches to 
the investigation of eductive ability [Carpenter et al., 1990].  

Although the present study, as the existing computational 
literature suggests, recognizes the important role of analogi-
cal reasoning as a mechanism for generality, it views analog-
ical reasoning as a special case of similarity-based reasoning 
[Sun, 1995; 1994]. This analysis allows the model to operate 
using subsymbolic processes, in contrast with existing sym-
bolic models of analogical reasoning. Typically, models of 
analogical reasoning form analogies by formally aligning 
structured representations between a source and a target (i.e., 
structure mapping) [Gentner and Forbus, 2011]. In the pre-
sent work, analogy making is viewed in a different way. First, 
potential analogues are represented using a set of basic or re-
lational features [Sun, 2016]; then, potential targets are eval-
uated on the basis of their similarity to sources with respect 
to these features [Turney, 2011]. Similarities are obtained by 
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computing the entropy of the target relative to the source. 
Thus, the model offers a subsymbolic approach to analogical 
reasoning where structured representations are replaced by 
basic and relational features, and structure mapping is re-
placed by the relative entropy similarity measure. 

2 Matrix Problems 
All items of the RPM tests are visual pattern completion 
problems of a specific kind, hereby called matrix problems. 
See Figure 1 for some example matrix problems.  

Specifications for matrix problems are presented in 
Penrose and Raven [1936]. According to Penrose and Raven,  
matrix problems are modeled on analogical proportions, that 
is, statements of the form “𝐴 is to 𝐵 as 𝐶 is to 𝐷.” Each item 
features a 2 × 2 or 3 × 3 matrix of visual figures where the 
bottom right corner is left blank. The task is to identify the 
figure, from a set of six to eight alternatives, that best com-
pletes the matrix when inserted into the blank.  

Since 3 × 3 matrices are more difficult, we describe the 
structure of only these variants in detail. Letting 𝐴 be a figure 
and 𝑓) , 𝑓*, 𝜙), 𝜙* be figure transformations, 3 × 3 matrices 
have the following form: 

𝐴 𝑓)𝐴 𝑓*𝐴
𝜙)𝐴 𝜙)𝑓)𝐴 𝜙)𝑓*𝐴
𝜙*𝐴 𝜙*𝑓)𝐴 𝜙*𝑓*𝐴

(1) 

where transformations are selected so as to ensure that pairs 
𝑓/, 𝜙0 commute on figure 𝐴 (𝑓/𝜙0𝐴 = 𝜙0𝑓/𝐴) for all (𝑖, 𝑗) ∈
{1,2}*.  

3 Similarity-Based Approach  
Complete matrix rows and columns (those with no blank) are 
called matrix sequences. Inserting an alternative into the 
blank completes two additional sequences, one each along the 
row and column axes; we call such sequences alternative se-
quences.  

To disambiguate between sequences of the same type (ma-
trix or alternative) and along the same axis (row or column), 
let 𝑛 be an index called the sequence number. For a matrix 
sequence, the sequence number refers to the index of the se-
quence along the relevant axis and, for an alternative se-
quence, it refers to the alternative array index of the alterna-
tive figure used to complete the sequence.  

We write 𝒔(𝑚, 𝑡, 𝑑, 𝑛) to denote a sequence from item 𝑚 
of type 𝑡, along axis 𝑑, and of sequence number 𝑛 (we some-
times use the abbreviated notation 𝒔). Indexes are assigned 
according to standard English reading order (left to right, top 
to bottom). For example, we would denote the top row of Fig-
ure 1a as 𝒔(1𝑎,𝑚𝑎𝑡, 𝑟𝑜𝑤, 1) and the alternative column pro-
duced by the bottom right alternative as 𝒔(1𝑎, 𝑎𝑙𝑡, 𝑐𝑜𝑙, 8). 

3.1 Selection Procedure 
The entropy of a probability distribution 𝑞 relative to a distri-
bution 𝑝, denoted 𝐷(𝑞||𝑝), and given, in the discrete case, by 

𝐷(𝑞||𝑝) =G 𝑞(𝑥) log
𝑞(𝑥)
𝑝(𝑥)L

(2) 

is a measure of the similarity of distribution 𝑞 to distribution 
𝑝. To the extent that 𝑞 and 𝑝 respectively describe character-
istics of alternative and matrix sequences for a given matrix 
and alternative pair, 𝐷(𝑞||𝑝) is a measure of the similarity of 
the alternative sequences to the matrix sequences [cf. Sun, 
1995; 1994]. 

Using a convolutional neural network, our model con-
structs, for a matrix 𝑚, a reference distribution 𝑝(𝑚) based 
on matrix sequence features, as well as alternative distribu-
tions 𝑞(𝑚, 𝑎) for each alternative 𝑎 (details below). The 
model then selects an alternative 𝑎∗ as its response, according 
to the Boltzmann distribution with temperature 𝜏:  

Pr[response = 𝑎∗] =
exp(−𝐷(𝑞(𝑚, 𝑎∗)||𝑝(𝑚)) 𝜏⁄ )
∑ exp(−𝐷(𝑞(𝑚, 𝑎)||𝑝(𝑚)) 𝜏⁄ )[

(3) 

The selection procedure thus favors alternatives that mini-
mize 𝐷(𝑞||𝑝), that is, those that produce alternative se-
quences that are more similar to corresponding matrix se-
quences. For the purposes of the present paper, 𝜏 = 1.  

3.2 Similarity Computation 
Matrix problem specifications suggest that sequences along 
common axes exhibit common features. Since, for an 𝑁 ×𝑁 
matrix, there are 𝑁− 1 matrix sequences along a given axis 
𝑑 (because one sequence contains the blank item), distribu-
tions for a feature 𝐹/ (e.g., shape distribution; see 4.1) ob-
tained from these sequences are combined to form a matrix 
feature distribution, 𝑝/,^(𝑚). In the present study, only binary 
features were used. As such, the combined distributions 
𝑝/,^(𝑚) are defined as:  

   

   
(a) (b) (c) 

Figure 1: Three matrix problems in the style of Raven’s matrices taken from the Matzen et al. [2010] dataset. 
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𝑝/,^(𝐹/ = 1|𝑚) ≔ `a𝑓/b𝐹/ = 1c𝒔(𝑚,mat, 𝑑, 𝑗)g
hi)

0j)

k

)
hi)

(4)

𝑝/,^(𝐹/ = 0|𝑚) ∶= 1 − 𝑝/,^(𝐹/ = 1|𝑚) (5)

 

where the symbol 𝑓/ denotes a probability distribution over 
possible values of feature 𝐹/. For instance, if 𝐹/ is the size 
increments feature (see 4.1) and 𝒔 is some figure sequence,  

𝑓/(𝐹/ = 𝑥|𝒔) ≔ pPr
[𝐹/	present|𝒔] 𝑖𝑓	𝑥 = 1

Pr[𝐹/	absent|𝒔] 𝑖𝑓	𝑥 = 0 (6) 

Although all features discussed in the present paper are bi-
nary, our model can accommodate non-binary and continu-
ous features.  

Note that 𝑝/,^(𝐹/ = 1|𝑚) is just the geometric mean of 
𝑓/b𝐹/ = 1c𝒔0g obtained for each matrix sequence 𝒔0  along 𝑑. 
The distribution 𝑝/,^(𝑚) represents whether feature 𝐹/ is 
characteristic of axis 𝑑 of matrix 𝑚. In a similar manner, al-
ternative feature distributions for each alternative 𝑎, 
𝑞/,^(𝑚, 𝑎), are constructed for each feature and axis, though 
no combination process is necessary. 

Assuming subjective probabilities for features are mutu-
ally independent, the entropy of a joint subjective probability 
distribution for alternative features, 𝑞(𝑚, 𝑎), relative to the 
joint subjective probability distribution for matrix features, 
𝑝(𝑚), can be expressed as the sum, over features and matrix 
axes, of relative entropies of individual features. For a matrix 
𝑚, the overall similarity of alternative sequences constructed 
using an alternative 𝑎 to corresponding matrix sequences, de-
noted as 𝐷(𝑞(𝑚, 𝑎)||𝑝(𝑚)), can thus be calculated as:	 
𝐷(𝑞(𝑚, 𝑎)||𝑝(𝑚)) =GG𝐷b𝑞/,^(𝑚, 𝑎)||𝑝/,^(𝑚)g

^/

(7) 

where 1 < 𝑖 < 𝑛 and 𝑑 ∈ {row, col}. 

3.3 Algorithm 
To put everything together, in response to a matrix with 8 al-
ternative answers (e.g., Figure 1a) the model proceeds as fol-
lows: 
                                                

1 Experimental notes, data and code are available at 
https://osf.io/7fy2d/. 

1. Using a convolutional neural network, subjective 
probabilities are obtained for each individual feature 
in each matrix sequence and each alternative se-
quence.  

2. Feature distributions for matrix sequences are com-
bined, row-wise and column-wise, using geomet-
ric means (Equations 4 and 5). 

3. For each alternative, the similarity of the 2 resulting 
alternative sequences and the 2 combined matrix se-
quences is computed, with regard to each feature, 
row-wise and column-wise, through relative en-
tropy (Equation 7).  

4. The 8 resulting similarity measures are used to sto-
chastically select an answer out of the 8 alternatives, 
using the Boltzmann distribution (Equation 3). 

4 Computational Experiments 
The model was tested on a set of matrix problems generated 
using the Sandia Matrix Generation Tool [Matzen et al., 
2010].1 These generated matrices, henceforth Sandia matri-
ces, have the same problem structure as Raven's original ma-
trices. In Matzen et al. [2010], tests developed using these 
matrices were shown to have psychometric characteristics 
comparable to the Standard Progressive Matrices (SPM) 
[Raven et al., 1998b] variant of the RPM in a norming study. 

A deep convolutional neural network was trained to esti-
mate subjective probabilities of features. A total of 1480 in-
put-output pairs (20 from each of 74 matrices) were used to 
train the model.  

To gain some understanding of processing in the hidden 
layers, further analysis was carried out. For example, a hier-
archical cluster analysis on activation patterns in the net-
work’s first fully connected layer was used to assess the qual-
ity of learned representations. 

4.1 Feature Set 
For the purposes of the present experiment, the model was 
implemented using a set of thirteen figure sequence features. 

Feature Definition 
Constant All figures are identical. 

Shape Distribution Each figure depicts a distinct shape. 
Shading Increments Figure shadings get progressively lighter or darker by even increments. 

Shading Distribution Each figure features a distinct shading. 
Orientation Increments Figure orientations are progressively incremented/decremented by a set angle. 

Orientation Distribution Each figure features a distinct orientation. 
Size Increments Figure sizes are progressively incremented/decremented by a set factor. 

Size Distribution Each figure features a distinct size. 
Numerosity Increments Figure numerosities are progressively incremented/decremented by a set number. 

Numerosity Distribution Each figure exhibits a distinct numerosity. 
Edgewise AND Third figure corresponds to edgewise intersection of first two figures. 
Edgewise XOR Third figure corresponds to edgewise symmetric difference of first two figures. 

Edgewise OR Third figure corresponds to edgewise union of first two figures. 
Table 1: Sequence Feature Definitions. Each definition concerns figures in a given sequence. 
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Specific features were defined following feature types pre-
sent in the literature [e.g., distribution and progression rules 
in Carpenter et al., 1990]. Detailed feature definitions are 
given in Table 1. Table 2 defines labeling criteria used to de-
termine subjective probabilities for each feature type. Figure 
sequences were labeled with subjective probabilities accord-
ing to these criteria.  

4.2 Neural Network 
The model's perceptual neural network takes a complete se-
quence of figures (e.g. a row) as input and outputs subjective 
probabilities for each sequence feature. The network has a to-
tal of 13 outputs whose values range in [0,1]. Sequence fig-
ures are presented to the network in a 28 × 28 grayscale for-
mat for a total of 2352 input values. (Input values are scaled 
down by 255 and shifted by −0.5 before being passed to the 
network in order to avoid saturating nodes in the first layer.) 

Architecture 
The network has a total of 7 layers and is divided into two 
major components. The convolutional stack, consisting of the 
first five layers, processes each of the three figures inde-
pendently. Then, the fully connected layers (FC layers) com-
bine the information flowing from the convolutional stack in 
order to produce subjective probability assignments. Nonlin-
earities in all but the final layer are given by the tanh func-
tion. The final layer makes use of the logistic activation func-
tion, 𝜎(𝑥) = )

){|}~
, to ensure that network outputs lie in the 

interval [0,1]. Remaining network meta-parameters are pre-
sented in Table 3; see Figure 2 for a graphical representation 
of network architecture.  

Training Procedure 
The network was trained using the ADADELTA algorithm 
[Zeiler, 2012] for 24000 epochs with learning parameters 

𝜌	 = 	 .6 and 𝜖	 = 	10i)Å. The Xavier method [Glorot and 
Bengio, 2010] was used for network weight initialization. 
Training samples were shuffled before being split into 20 
mini-batches of 74 input-output pairs. Mini-batch order was 
shuffled at the start of each epoch, and, every 500 epochs, 
network weights were recorded. A cross-entropy error meas-
ure augmented with 𝐿) (𝜆) = .003) and 𝐿* (𝜆* = .003) 
weight penalties was used to compute weight updates. 

4.3 Results 
The performance metric of interest is the expected percentage 
of matrices correctly solved, which is equal to the average, 
over test items, of the probability of a correct response. Max-
imum performance was found to be 85.01%. 

Representation Analysis 
A hierarchical clustering technique was used to analyze dis-
tributed representations [Servan-Schreiber et al., 1991] in the 
final convolutional layer (Layer 5) of the neural network. 

Layer Type Shape Stride Padding 
1 Conv (5,1,7,7) (3,3) (3,3) 
2 Conv (10,5,2,2) (2,2) - 
3 Conv (15,10,3,3) (1,1) - 
4 Conv (20,15,2,2) (1,1) - 
5 Conv (96,20,2,2) (1,1) - 
6 Full (3,96,1,1,96) - - 
7 Full (96,13) - - 

Table 3: Neural Network Meta-Parameters. The Shape column 
lists weight array dimensions for the corresponding layer. If the 
layer is convolutional, the shape tuple lists, in respective order, 
output depth, input depth, height, and width. If the layer is fully 
connected, the last shape tuple entry corresponds to the number 
of layer nodes and the remaining entries correspond to dimen-
sions of the input array. Notice that Layer 6 receives a stack of 
three inputs of shape (96,1,1). These are the final abstract fea-
tures extracted from each of the three figures in a sequence. 
 

Feature Type Pr Criteria 
Constant 1.0 All figures are identical.  

 0.5 Exactly two figures are identical. 
 0.0 No figures are identical. 

X Distribution 1.0 Each figure exhibits a distinct value of feature X (e.g., distribution of different shapes). 
 0.5 Only one figure exhibits a distinct value of feature X. 
 0.0 All sequence figures exhibit the same value of feature X. 

X Increments 1.0 In each figure, feature X is incremented by one unit relative to the previous figure (e.g., pro-
gression of sizes). 

 0.5 Figures exhibit values of feature X in ascending or descending order, but with variable incre-
ment or decrement magnitudes (including zero). 

 0.0 Figures exhibit no variation with respect to feature X; or, the values of X are not in descend-
ing or ascending order.  

Edgewise Opera-
tor X 

1.0 Edges of the third figure are identical to the result of applying operator X to edges of the first 
two figures. 

 0.5 Edges of the third figure agree with only part of the result of applying operator X to edges of 
the first two figures; or, the whole result is depicted as well as some unrelated edges. 

 0.0 Edges of the third figure depict only part of the result of applying operator X to the edges of 
the first two figures as well as some unrelated edges; or, edges of the third figure do not depict 
any discernible non-trivial part of the result of applying X to the edges of the first two figures. 

Table 2: Subjective Probability Assignment Criteria. Each criterion concerns figures in a given sequence. 
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This analysis identifies inputs that are represented in a similar 
manner by the layer. The analysis was conducted as follows. 
Pairwise Euclidian distances between node activations repre-
senting different figure sequences were first computed, and 
then figure sequences were incrementally merged into clus-
ters starting with the most similar pairs. Obtained clusters 
were compared to a reference cluster using the Fowlkes-Mal-
lows index [Fowlkes and Mallows, 1983], with the tree cut 
so as to produce two clusters. Reference clusters grouped to-
gether matrix sequences and answer sequences (alternative 
sequences containing the answer figure) on the one hand, and 
distractor sequences (other alternative sequences) on the 
other. The analysis revealed strong agreement between the 
reference clusters and clusters obtained from Layer 5 repre-
sentations (𝑀 = .72, 𝑆𝐷 = .10). 

Other Experiments 
To explore the contributions of the convolutional layers, a 
version of the neural network was trained with all convolu-
tional nonlinearities removed, thus leaving the network with 
only a single hidden layer in actuality. Removing nonlineari-
ties reduced model performance significantly, suggesting that 
the convolutional architecture of the network contributes sig-
nificantly to the model’s feature detection ability.  

5 Discussion 
This paper presents a new similarity-based model for solving 
matrix problems. Our approach has some implications for the 
pursuit of generality in artificial intelligence; our experiments 
so far seem to suggest so. Our model can capture analogical 
reasoning, which is a plausible contender for realizing gener-
ality, and suggests that feature learning and detection are im-
portant to achieving generality (see 5.2). 

The relative entropy similarity measure used in this work 
has a number of interesting characteristics. In particular, 
some notable formal properties of relative entropy such as 
non-symmetry and non-subadditivity (possible violations of 
the triangle inequality) agree with experimental observations 
about human similarity judgments [Tversky, 1977]. Further-
more, relative entropy minimization is a principle of induc-
tive inference [also known as cross-entropy minimization, cf. 
Shore and Johnson, 1980], which is closely related to Oc-
cam's razor [Feldman, 2016]. 

5.1 Related Work 
The present work builds on Mekik et al. [2017], where a sim-
ilar neural network was used for the extraction of features 
representing relations between two figures. The present mod-
el's response selection strategy differs from that of the Mekik 
et al. approach in that it employs a domain-agnostic subsym-
bolic selection procedure whereas the latter employed a do-
main-specific rule-based response selection procedure. 

A majority of the computational literature on RPM is based 
on the rule-induction approach to matrix problems [e.g., 
Little et al., 2012; Ragni and Neubert, 2014], first imple-
mented by Carpenter et al. [1990]. This approach focuses on 
identifying sets of rules describing similarities and differ-
ences between figures within matrix sequences and using 

these rules to drive response selection processes. This broad 
paradigm has encouraged work on analogical mechanisms 
for rule discovery [Lovett and Forbus, 2017; Rasmussen and 
Eliasmith, 2011], offering architectural insights for address-
ing the challenge of generality.  

Although explicit rules and symbolic representations dom-
inate the approaches to RPM, there is evidence that simple 
iconic representations (i.e., pixel arrays) can be used to solve 
a large proportion of RPM items without extraction of sym-
bolic features, at least at the difficulty level of the SPM 
[Kunda et al., 2013; McGreggor et al., 2014]. The effective-
ness of the iconic approach shows that symbolic representa-
tions may not be necessary to tackle matrix problems. If RPM 
primarily tests a single ability, it may be the case that the 
mechanisms supporting this ability act at a subsymbolic 
level. The present study explores one possible architecture for 
such mechanisms.    

Since the experimental items used in the present study are 
at the difficulty level of the SPM, the model's performance 
can be roughly situated relative to that of existing models of 
SPM. The Lovett and Forbus [2017] visual analogical model 
solves 93.33% of matrices on the SPM, which is currently the 
highest reported AI performance on that test. The maximal 
performance achieved by our model compares well to exist-
ing models, being second only to the Lovett and Forbus  
model in performance on SPM-level items. Note that the 
Lovett and Forbus model makes use of a number of heuristics 
and operates on visual inputs that have been pre-segmented 
by an annotator. In contrast, the present model requires no 
pre-segmentation, and relies on a formally motivated princi-
ple of inductive inference. We believe that our model’s per-
formance and parsimony are indicative of the promise of the 
present approach. 

5.2 Implications for Artificial Intelligence 
The performance of our model depends on the quality of the 
feature set and the precision with which subjective probabil-
ity calculations are made. These factors are important for bet-
ter understanding generality in artificial intelligence, as they 
appear to be the only non-trivial performance bottlenecks. In-
deed, further analyses (omitted due to space limitations) show 
that our feature set contains features that have some degree 
of dependency and that these dependencies are likely respon-
sible for several errors. Other errors are attributable to the 

 
Figure 2: Neural network architecture. Each rectangle represents 
a layer. Layer parameters are presented in Table 3. The 𝑖th se-
quence figure is represented by 𝐱𝐢; the output vector 𝐲 represents 
feature probabilities determined by the network. 
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limited discriminative ability provided by a small feature set 
or to perceptual errors attributable to the neural network. An 
enlarged feature set, capable of detecting more subtle differ-
ences between figure sequences and free of feature depend-
encies will likely result in even better performance on the cur-
rent experimental set. Taken together, these considerations 
suggest that learning and adaptive detection of features is an 
important aspect of generality. 
 Hoshen and Werman [2017] present further evidence of 
the importance of feature learning in the context of matrix 
problems. Their work tackles the task of guessing the final 
figure in a sequence following both a response selection and 
a response generation approach. Performance of the response 
generation approach is, reportedly, limited on the test set, and 
limited performance is attributed to discrepancies in figure 
complexity between training and test examples.          

Instead of focusing on feature learning, the present work 
explored how, given a (previously acquired) feature set, sub-
jects can carry out similarity-based (including analogical) 
reasoning at a subsymbolic level. This kind of reasoning is 
one of the most plausible mechanisms by which generality 
can be achieved in artificial intelligence. Models of such rea-
soning are often implemented using symbolic representations 
[Gentner and Forbus, 2011]. In these models, complex sym-
bolic representations play a crucial role in analogy formation, 
as analogues are often identified by detecting structural sim-
ilarities between structured representations. However, struc-
tured representations are not always readily available in the 
wild. Furthermore, analogical reasoning need not be contin-
gent on the presence of structured representations. The pre-
sent work suggests one way to capture analogical reasoning 
without relying on structured representations. The relative 
entropy similarity measure applied to basic and relational fea-
tures appears to be a viable alternative to structure mapping. 
We have yet to explore the full potential of our model for 
explaining all forms of analogy. 

Finally, we close with some speculative remarks. Our 
model suggests some interesting ideas for a computational 
theory of general intelligence. Our approach suggests integra-
tive links between concepts of inductive inference, simplic-
ity, similarity, and analogy. In particular, the approach sug-
gests that these concepts can all refer to the application of the 
principle of relative entropy minimization in order to achieve 
different sets of goals. We believe these links should be fur-
ther developed, perhaps starting with work on feature learn-
ing and on other analogical problems.  

6 Conclusion 
To conclude, the present work points to interesting possibili-
ties for a broadly scoped and integrative similarity-based 
computational theory of general intelligence. A limitation of 
the present model is its performance. Continued development 
of the model will address this limitation, test the model on 
original RPM items, and pursue new avenues of research dis-
cussed above. 
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