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Abstract

Epistemic planning extends classical planning with
knowledge and is based on dynamic epistemic logic
(DEL). The epistemic planning problem is unde-
cidable in general. We exhibit a small undecid-
able subclass of epistemic planning over 2-agent
S5 models with a fixed repertoire of one action, 6
propositions and a fixed goal. We furthermore con-
sider a variant of the epistemic planning problem
where the initial knowledge state is an automatic
structure, hence possibly infinite. In that case, we
show the epistemic planning problem with 1 public
action and 2 propositions to be undecidable, while
it is known to be decidable with public actions over
finite models. Our results are obtained by reducing
the reachability problem over small universal cel-
lular automata. While our reductions yield a goal
formula that displays the common knowledge op-
erator, we show, for each of our considered epis-
temic problems, a reduction into an epistemic plan-
ning problem for a common-knowledge-operator-
free goal formula by using 2 additional actions.

1 Introduction

Developing autonomous agents is central in artificial intel-
ligence. Agents should be able to plan their actions for
achieving a goal, and to reason about their knowledge and
other agents’ knowledge. Epistemic planning [Baral et al.,
2017] focuses on generating plans in a multi-agent con-
text. Goals can be epistemic (for instance, the goal could
be that “agent a knows that agent b does not know p”).
Some actions can change the physical world as well as the
knowledge of agents. Typical actions are public actions
where both knowledge and physical changes are commonly-
known by the agents [Kominis and Geffner, 2015]. Tra-
ditionally, goals are expressed in epistemic logic (the goal
above is expressed by formula K,—K;p). On top of the clas-
sical planning setting with pre/post-conditions for actions,
the Dynamic Epistemic Logic [van Ditmarsch et al., 2007;
Bolander, 2017] framework offers a representation of knowl-
edge change: actions are graphs [Baltag er al., 1998] whose
nodes are events (with pre/post-conditions) while edges de-
note epistemic relations.
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In this setting, the epistemic planning problem consists in
finding a sequence of actions leading to an epistemic state
satisfying the goal. The problem is undecidable in general;
there are several proofs in the literature, by reducing either the
halting problem of Turing machines [Bolander and Ander-
sen, 2011], or of two-counter machines [Aucher and Bolan-
der, 2013; Charrier et al., 2016]. Unfortunately, none of these
proofs exhibit bounds to parameters (number of actions, num-
ber of propositions, etc.) involved in the problem.

In order to bound the parameters, we suggest to focus on
one-dimensional three-neighbor cellular automata [von Neu-
mann, 1951]. First, small universal cellular automata [Smith,
1968; Wolfram, 2002] have been exhibited. Second, DEL
and cellular automata share theoretical features. On the one
hand, all cells in a cellular automaton update their own state
(called symbol later) synchronously according to a local rule.
On the other hand, knowledge update in DEL consists in syn-
chronously applying pre/post-conditions (that are local prop-
erties in epistemic logic) in several possible worlds.

Our first contribution is to take advantage of small uni-
versal cellular automata with a blank background (almost all
cells’ symbols except finitely many are _) to provide a small
class of instances for the epistemic planning problem that
is already undecidable (see Corollary 1). Interestingly, the
repertoire of actions (made up of one action) and the goal are
both fixed, only the initial knowledge state is part of the input.

Whereas public actions lead to decidability in epistemic
planning [Kominis and Geffner, 2015; Belardinelli et al.,
2017], the second contribution is that public actions are
enough for undecidability when the initial knowledge state
is automatic [Blumensath and Gridel, 2000] (the gap be-
tween finite and automatic for structures is analogous to the
gap between finite and regular for languages). This result is
quite surprising since leaping from finite to automatic struc-
tures usually maintains decidability, for instance for first-
order model checking. More surprisingly, undecidability is
obtained for a very small class of instances (see Corollary 2)
by taking advantage of Wolfram’s Rule 110.

In a last contribution, we show how to remove the common
knowledge operator from goal formulas (Corollaries 3 and 4).
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The paper is organized as follows. We first recall the DEL
setting and the epistemic planning problem in Section 2. Sec-
tions 3 and 4 are dedicated to the proofs of our two undecid-
ability results and contain the material on cellular automata.
Finally, Section 5 outlines the proof that common knowledge
can be avoided in the goal formulas.

2 Background on Epistemic Planning

Knowledge states A knowledge state is a pointed Kripke
model that describes an epistemic situation. In few words, it
is a graph whose vertices are possible worlds with a distin-
guished world wy. In the literature, such models are often de-
noted by M, wy, but here, we write them S for “states”; for
ease of notation, we will improperly write the ordered pair
(S, w) to denote state S whose actual world w has been re-
placed with w. Let Ag be a finite set of agents and AP be a
countable set of propositions.

Definition 1 A state S = (W, (Rq)aeag, V, wo) is defined by
a non-empty set W of epistemic worlds, equivalence relations
R, C W xW called epistemic relations, a valuation function
VW — 247 and aworld wy € W called the actual world.

In Definition 1, the valuation function V' is a labeling for
the worlds. The intuitive meaning of the epistemic relations
is: wR,w’ holds' if agent a considers world w’ as possible in
world w. The assumption of epistemic relations being equiv-
alence relations is referred to as S5 [Chellas, 1980].

a

p
(a) A state.

(b) An action. (c) Product.

Figure 1: A state, an action and their product.

Consider the state S = (W, (Ra)aeag, V, wo) where W =
{wo,w}, Ry = Ry = WxW,V(wo) = {p},and V (w) = 0.
This state has 2 agents and 1 proposition, and is depicted in
Figure 1a, with the convention that the pointed world is in a
double circle and equivalent worlds are linked with plain lines
(in order to lighten the pictures, loops are omitted). In the
epistemic situation described by S, agents a and b do not dis-
tinguish wy from w, and therefore do not know that p holds.

Epistemic language The language £z, extends the propo-
sitional language with epistemic modal operators and is de-
finedby: ¢ == T |p|—-¢|(pVe)| Kip| Cap, with
p € AP, a € Ag, G C Ag. Formula K, is read “agent
a knows that ¢ holds” and formula Cg ¢ is read “p is com-
monly known among agents in G”. We define the usual ab-

breviations (@1 A o) for ﬁ(ﬁgpl \Y ﬁgpg), Ky for - K,—p

'This is a standard notation for (w, w’) € R,.
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and C’ch for -C—¢. The semantics of Lgy, is defined by
induction over the formula (Boolean cases are omitted).

L4 (W (Ra)aeAg7 ‘/,U)) ): plfp € V(w)s

b (VV, (Ra)aeAga V, ’LU) ): KaSD if
for all w’ s.t. wRow', (W, (Ra)acag, V,w') = ¢

o (W,(Ro)acag: V,w) E  Cgyp if for all v st
w (UaeG Ra)* w', (Wv (Ra)aGAg’ V, wl) }: ®

where (U wcG Ra)* is the reflexive and transitive closure of
the union of the R, fora € G.

Actions Actions are modeled by so-called pointed event
models? [van Ditmarsch et al., 2007]. They are graphs whose
nodes are events with a distinguished event e that represents
the real event taking place (in the current world) when action
A is executed. In more formal words:

Definition 2 An action A = (E, (R )acag, Pre, POSt, eq) is
given by a non-empty finite set of events E, equivalence rela-
tions (Rq)acag C E x E, a precondition function pre : E —
L1, a postcondition function post : E x AP — Lgy, and
an event ey € E called the current event.

The precondition function defines under which condition
an event can take place. The postcondition decribes the effect
of an event on the world: after an event e has taken place,
the truth of p is assigned to the value post(e,p). Actions
made up of a single event (card(E) = 1) are public actions.
Figure 1b shows the action A where E = {eg,e}, R, =
E x E, Ry = {(eo,€0), (e, €)}, pre(eg) = p, pre(e) = T,
post(ep,q) = T and post(e,r) = T. In figures and formal
definitions, when a postcondition post(e,p) is omitted, we
mean that post(e, p) = p.

Product The update of a state S by an action A is a new
state written S ® A and defined as a product.The product is
defined only if the current event in A can take place, namely
its precondition holds in the current world of S.

Definition 3 Let S = (W, (Ra)acag, V,wo) be a state
and A = (E,(Ra)acag, Pre, post ey) be an action.
If S = pre(eg), we define the product of S and A as the
state S @ A = (W' (Ry), V', (w, eq)) where:

o W ={(w,e) e Wx E|(S,w) = pre(e)};
o (w,e)R(w',e) iff wR,w' and eRye’;
o V/((w,e)) = {p € AP | (S,w) = post(e, )}

Figure 1c shows the product S ® A of state S of Fig-
ure la and action A of Figure 1b. For instance, formula
Ky(p A g N Kqo(—g — 1)) holds in state S ® A. In the fol-
lowing, the expression S ® A, ..., A,, is a concise notation
for (...((S®A1)®As)---®A,,).

The epistemic planning problem introduced by [Bolander
and Andersen, 2011] can now be defined.

%In the literature, pointed event models are often denoted by £, e.
We also decided to simplify the notations and to call them actions.
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Figure 2: Rule 110 transition function (f110(1,0,1) = 1, etc.) and
some successive configurations.

Definition 4 (Epistemic planning problem)

e input: a state S, a finite set of actions A and a formula
v € LEL;

e output: yes if there exists a sequence of actions (a plan)
Ai,... A, € Asuchthat S® Aq,..., A, E ¢; no
otherwise.

3 Small Epistemic Planning Problems

In this section, we show the undecidability of two restrictions
of the epistemic planning problem, where A is fixed and no
longer part of the input. Undecidability is proven by reduc-
tion from undecidable reachability problems on cellular au-
tomata. From now on throughout the paper, Ag = {a, b}; re-
call that all models (i.e. states and actions) are S5 (epistemic
relations are equivalence relations).

3.1 Universal 1D Cellular Automata

In this article, we only consider one-dimensional three-
neighbor cellular automata. An infinite sequence of cells are
settled on a line; each cell is in a state represented by a sym-
bol? of a finite alphabet 3. Given a cell, a transition function
f maps a three-neighbor (left-cell symbol, current symbol,
right-cell symbol) to the new symbol of the cell.

Definition 5 A cellular automaton is a pair A = (%, f)
where Y is a finite alphabet and f : ¥* — X is a transi-
tion function.

Example 1 (Rule 110 [Wolfram, 2002]) The Rule 110 cel-
lular automaton is the two-symbol cellular automaton
Ario = ({0,1}, f110) where fi;y is defined by the Boolean
SJormula fi19(x,y,2) == (xAyA—z)V(xA-yAz)V(—zA
yAz)V(mz AyA-z)V (—mz Ay A z).

A configuration, that is the symbols of cells on an infinite
line, is modeled by an infinite word ¢ € >Z thatis, a map that
assigns a symbol cl[i] to any integer ¢ € Z. A computation
step is performed by the following rule.

Definition 6 Given a cellular automaton A, given an infinite
word ¢ € X7, we define the successor of ¢ by A to be the
infinite word ¢’ defined by c'[i] := f(c[i — 1], c[i], c[i + 1]).
We write ¢ — 4 .

Figure 2 shows the transition function f;,, graphically and
some successive configurations.

3We use ‘symbol’ instead of ‘cell state’, to avoid confusion with
a knowledge state.
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A cellular automaton is deemed universal if it can simulate
any Turing machine; the quest for finding such small univer-
sal cellular automata started in the 1960s. A common hy-
pothesis is to assume a blank background: we consider that
alphabets always contain a special symbol _, and that transi-
tion functions map _,_, , to _,. Furthermore, we assume that
configurations are finite, in the sense that almost all cell sym-
bols are _, except a finite number — configurations are of the
form _“«a % where « is a finite word, called the support of
the configurations. Starting from a finite configuration only
leads to finite configurations.

Smith proved that any m-symbol n-state Turing machine
can be simulated by a one-dimensional (m + 2n)-symbol*
3-neighbor cellular automaton with a blank background (see
Theorem 4 in [Smith, 1968]). As Minsky constructed a 4-
symbol 7-state universal Turing machine Myginsky [Minsky,
19671, there exists a 4+ 2 x 7 = 18-symbol universal cellular
automaton Asmith = (Zsmith, fsmitn), that simulates Myfinsky-
As a consequence, we obtain the following undecidability re-
sult for the reachability problem for Agpin with blank back-
ground.

Theorem 1 There exists a finite word® hgpiy such that it is
undecidable to determine, given a finite word o, whether
_a Y =, ¢ where the configuration ¢ contains the pat-

tern hgpim,.

3.2 Finite Linear States

The main result of this section is Corollary 1 which pro-
vides bounds to the parameters of the epistemic planning
problem. This is achieved by simulating executions of cel-
lular automata with blank background. First of all, we in-
troduce sufficiently many propositions to encode symbols of
the alphabet. Typically, for alphabet YXgmin, with 18 sym-
bols that we respectively write ¢, /1, ..., {17, only 5 propo-
sitions py, . . ., ps suffice. Given a symbol ¢, we note enc(¥)
the encoding of ¢: enc({y) = —p1 A ...—ps, enc(fy) =
p1 A —ps...ps, etc. W.lo.g.,, we suppose that symbol _,
is £y and is encoded by the valuation making all p;’s false. In
the rest, p’'denotes the sequence of propositions p;’s.

Now, we encode the finite supports of configurations by
means of finite linear states — such states appear in real epis-
temic puzzles such as the consecutive number puzzle [van
Ditmarsch and Kooi, 2015]. They are states of the form
Z,=({-n,...,—1,0,1,...n}, (Ra)acag, V,0) with odd n
and:

I Ry = {(k,k) | k € [1;n]}
U{(2k, 2k + 1), (2k + 1,2k) | =2t <k < 21
2. Ry = {(k,k) | k € [1;n]}
U{(2k,2k — 1), (2k — 1,2k) | =5 <k < 23t
3. O e V(k)iff kis even;
4. foralli,p; € V(—n),V(-n+1),V(n—1),V(n).

A finite linear state Z,, encodes a finite configuration c
whose support is of length smaller than 2n — 3 when V (k)

IN

“Referred to as (m + 2n)-state in [Smith, 1968].
3 According to the notation of Table 14.8-1 p. 279 in [Minsky,
19671, word hsmin is ¢30.
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makes enc(¢;) true iff c[k] = ¢;; we require that the two ter-
minal (—n and n) and the two pre-terminal (n — 1, —n + 1)
worlds encode _, (Condition 4). For instance, the Agy;p con-

figuration _“_,_flolsls . . “ where c[—1] = 9 can be repre-

sented by:

Q _2 a _1 b m a 1 b O
\J o/ \/

p1,p4 Q,p1,p3 p2

Given a finite word «, let us set once and for all what finite
linear state S,, will encode «: substituting « ™ for a with
m € {0,1,2,3} so that |«| be congruent to 3 modulo 4, we

set 5o = (Im;g , (Ra)acag, V,0) where V (k— MT_l) makes

enc(¥;) true iff a[k] = ¢; for 0 < k < |a| — 1, and makes
enc(_,) true outside of this range. These are only technical-
ities ensuring a sufficiently large odd index for the interval
state to respect constraints with a pseudo-centered word.

3.3 Simulating Cellular Automata in DEL

We define action F' mimicking one computation step of the
cellular automaton: if S is a finite linear state encoding a con-
figuration ¢, then S ® F is (isomorphic to) a finite linear state
encoding the successor of c.

pre:=K,Qpre:—K,0pre:~K,Q pre:K,ONK,Q pre:—K,Q pre:~K,Q pre:— K,
post:Q :=T post:Q :=T

Figure 3: Skeleton of action F.

Action F is partially given by Figure 3. Intuitively, the
actual event ey copies every non-terminal world; event e_;
keeps the left-tip world, while e_5 and e_3 clone it to append
two new worlds to the left. Events e, ea, es play a similar
part. In the end, action F' adds two new worlds on each side,
while preserving the canonical knowledge state structure that
we aim for, including the tips’ asymmetry relatively to the
agents.

We finish the definition of F' by adding postconditions for
p;’s, corresponding to the application of a transition func-
tion f. Suppose w.l.0.g. that ¢ holds in a given world
k€ {-n+1,...,n— 1}. Bits of c[k — 1] are obtained by
taking the b-transition from the —O-world of world k. They
are: (K,(=QAp;));. Inthe same way, the values of p'in world
k+1 are given by the vector (K,(=O Ap;));. The case where
Q does not hold in the current world is symmetric. We model
f by Boolean formulas f;(p~,p,p") over three sequences
of atomic propositions p~ (left cell symbol), p’ (middle cell
symbol), T (right cell symbol) that return the value of the

™ bit of the new symbol at the middle cell. Bits of the new
symbol are: (f;(5~, P, P )) .

The postconditions for p;’s in F is thus defined as follows.
First, post(ey)(p;) = L for all k£ # 0. Only e, effectively
applies f and post(eo)(p;) is formula

(9 = HURD Ap)is B (Ra (=0 A p))i) ) A
(-0 = HUEL@ Apid), 5 (Ko (@ Api))i)) -
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We will refer to Fgp, for the action model that cor-
responds to the transition function fsy, of the cellular
automaton Agmit.

On top of proposition ¢, when considering the particu-
lar cellular automaton Agyim, we need no more than 5 ex-
tra propositions to encode all symbols of alphabet gy of
cardinal 18, so that an overall set of 6 propositions suffices.

Now, we define formulas encoding the occurrence of a
pattern A in the configuration. We first define the for-
mula wenc(h) := wenco(h) V wenc_o(h) where formulas
wenco (h) and wenc_o (h) are inductively defined by:

O and wenc_g(e) = =0,
o for all letters £, wenco (¢h) =0 Aenc()AK ;wenc o (h);

e wenco(e) =

o forall letters £, wenc—q (¢h)=—QAenc(£) AKywenco (h).

We can now state the following theorem that derives from
our ability to simulate the behavior of the cellular automaton
Asmitn and the use of the dual of the common knowledge op-
erator C‘Ag to search over a finite linear state for the pattern
Wenc(hsmh).

Theorem 2 Given a finite linear state S over 6 propositions,
it is undecidable to determine whether or not a state satisfy-
ing CA'Agwenc(hgmi,h) is reachable from S by executing a finite
sequence of actions F gy,

PROOF.
By reduction from the undecidable reachability problem of

Theorem 1. An instance « of the latter is translated into S.
|

Corollary 1 The epistemic planning problem over 2-agent
S5 finite models is undecidable, even if the repertoire is
{Fsmimm }, the goal is C’Agwenc(hSmi,h) and we only use at most
6 different propositions.

The interested reader can run simulations in DEL of cel-
lular automata using the online software Hintikka’s world
[Schwarzentruber, 2018] available at the following address:
http://hintikkasworld.irisa.fr.

4 Epistemic Planning over Infinite States

We extend the epistemic planning problem to structures that
can be infinite, but which can be fully described by a finite
presentation, in the sense of automatic structures [Blumen-
sath and Gridel, 2000].

Automatic structures should be understood as all logical
structures whose domain and relations can be represented by
an encoding in some regular finite-word language and (multi-
tape) synchronous® finite-state automata operating on said en-
coding, respectively.

In our setting, we let a state S' =
automatic if the following holds’.

(W, (Ra)acag, V,wp) be

6 All heads of the tapes progress synchronously, provided the in-
puts have been “aligned” with a technical trick.

"We take the convention to use letter BB for (multi-tape) finite-
state automata.
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e W can be encoded as a regular language, hence accepted
by some one-tape finite-state automaton By over some
alphabet;

e bothrelations R, and Ry are characterized by some two-
tape automata B, and B, respectively: for two finite
words 7 and ¢ accepted by By (henceforth, they are en-
codings of two worlds w, and w¢) of S, the pair (7, ()
is accepted by the two-tape automaton B, if, and only if,
wy Rqwe (similarly for By);

e for each proposition p € AP, there is a one-tape au-
tomaton 53, accepting exactly words 7 s. th. p € V(w,)).

If the word 7n encodes world wg, the tuple
(Bw, (Ba)acag, (Bp)p,m) is called an automatic presen-
tation of (W, (Rq)acag, V,wo). We can now introduce the
following epistemic planning problem.

Definition 7 The epistemic planning problem over automatic
structures is the following.

e input: an automatic presentation of a state S, a finite set
of actions A and a formula p;

e output: yes if there exists a sequence of actions (a plan)
Ay, ..,A,, €Asuchthat SR Aq,..., A, E s no
otherwise.

In order to prove this problem to be undecidable, we first
recall a well-known result on universal cellular automata
with periodic background.

4.1 Cellular Automata with Periodic Background

In an attempt to reduce the number of possible cell symbols
of universal cellular automata as introduced in Section 3, the
notion of periodic background was introduced: a periodic
background is of the form a®8v%, where «, 3,7 € ¥* and
laf, [y > 1.

Lindgren and Nordahl exhibited a 7-symbol universal cel-
lular automaton [Lindgren and Nordahl, 1990]. Their results
were subsumed by Wolfram’s Ag, ;o cellular automaton with
only 2 symbols [Wolfram, 2002]. Automaton Ag,,, displays
complex behaviors, and more importantly, is universal [Cook,
2008; 2004; Sutner, 2003]. As stated in [Larsson, 2013] (Th.
5.1), the following reachability problem is undecidable.

Theorem 3 ([Cook, 2008]) Given three finite  words
a,B,v € {0,1}* with |al,|y| > 1, deciding whether
e =, ¢ where c contains the finite word
hrio = 01101001101000 is undecidable.

We now explain how the behavior of Ag;;, can be simu-
lated in DEL. We first show how to represent configurations
by infinite linear states.

4.2 Infinite Linear States

To represent infinite configurations of cellular au-
tomata, we introduce infinite linear states that are states
Z = (Z,(Ra)aecag, V. 0) where:

o Ry ={(k,k),(2k,2k + 1), (2k + 1,2k) | k € Z};
o Ry={(k k), (2k, 2k —1),(2k — 1,2k) | k € Z};
o O e V(k)iff kis even.

For a configuration (a two-way infinite word) ¢ € {0, 1}Z,
we define S. to be the infinite linear state such that p €
V (k) iff c[k] = 1. For example, consider the infinite word
(100)~110(100)%, where word 110 in the middle is anchored
in 0, namely, o[0] = 1,0[1] = 1,0[2] = 0. Its corresponding
infinite linear state® S(100)~110(100)~ has the form (with the
convention that we do not draw self-loops):

- OO0 -
< p Q O.p p v p v
Proposition 1 Given three finite words «, 3,y € {0,1}*
with |a, |y| > 1, Sqepye is automatic and has an effectively

computable automatic presentation.

We now turn to simulating the dynamics of Ag;;o which
will entail Theorem 4.

4.3 Epistemic Planning over Automatic Structures

The simulation of the cellular automaton Ag;;, (see Defini-
tion 1) over the configuration o 3v* follows the spirit of
Section 3, but by simplifying action F since linear states are
infinite: the initial configuration of Ag,, is represented by the
infinite linear state S, g,~. The application of f,, to each
cell is simulated by executing the public action Fgjo consist-
ing of a single event egy1o with pre(erijo) = T and whose
postcondition reflects fi;, and leaves © unchanged.The post-
condition of eg ¢ is a ‘single-bit’ version of the postcondition
for event e for action F' of Section 3, as only one proposition
is involved. post(eri10)(p) is:

(9= FuolBo(=9 Ap),p, Ka=0 Ap))) A

(59— fioKa(© Ap). . Ky (@ A D).

It is easy to see that the reachability problem for the cel-
lular automaton Ag;;, over a periodic background (given an
initial periodic background o* 3+*, does there exist a reach-
able configuration c that contains the finite word hgijo?) can
be rephrased as the epistemic planning problem over input

(Soe ey {FR110}, Cag(wenc(hrio)))-

Theorem 4 Given an automatic presentation of an infinite
linear state S (that requires only the 2 propositions Q and p),
it is undecidable to know whether or not some state satisfying
CAgwenc(hR] 10) can be reached by executing finitely many
times the public action Fgy .

PROOF.

We show a reduction from the undecidable reachability
problem of Theorem 3. An instance («, 3,7) of the lat-
ter is effectively translated into an automatic presentation of
Saw gy thanks to Proposition 1. ll

By Theorem 4, where only 1 public action (Fgjj¢) and 2
propositions (¢ and p) were involved, we get the following
corollary.

Corollary 2 The epistemic planning problem over automatic
2-agent S5 models is undecidable, even if the repertoire is

fixed to 1 public action, the goal is fixed to C’Agwenc(hR110)
and if we use at most 2 different propositions.

8We deliberately forget the word’s anchor in our notation.
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5 Common Knowledge Elimination

In this section, we explain how to remove the dual common
knowledge operator C’Ag from the two goal formulas. Since
the halting word (Agmim Or hriio) can be far from the actual
world, the basic idea is to apply shifts (whether rightward or
leftward) so that the window of the halting word is at the ac-
tual world. It can then be checked by a éAg—free goal formula.
Any new plan (if any) will then be comprised of an old plan
mingled with a shifting phase (i.e. a sequence of shifts).

We sketch a proof for finite states in Section 5.1, and then
proceed in a similar fashion with infinite ones in Section 5.2.

5.1 Finite States

We wish to clearly express the epistemic planning problem
with common knowledge associated to Smith’s cellular au-
tomaton (EPCgpim). As we only consider Agpq with its
DEL simulation as described in Section 3.3, both the checked
goal formula (Cygwenc(hsmin)) and the set of actions Agmin
(= {Fsmin}) are fixed, and so is the set of 6 propositions;
the only input is the initial state .S, which depends on finite
word o, as defined in the aforementioned section.

Now, we will define the epistemic planning problem with-
out common knowledge associated to Smith’s cellular au-
tomaton (EPKgnim), where the goal formula is now merely
wenc(hgmin) and the new set of actions Ag ., will also be
fixed, with the intent to reduce EPCspi, t0 EPKgmin. Inci-
dentally, the initial input state will be the same.

We enrich the set of actions Agpi of the initial DEL
model: we choose to set Ay v = {Fsmith, Rsmith, Lsmith }3
the two new actions are defined below:

o R (right shift) is defined by the same structure as
Fsmitm 18, except for the following postconditions on
event eg:for all ¢, p;’s assignement is replaced with
pi = (OANKy(=O Api)) V (=OAKu(QApi));

o Lgnim (left shift) is akin to Rgmin; let us just give the
postcondition for p; on ey since nothing else differs:
pi = (OANK(=QAp;)) V(=QAK(QApy)).

This construction amounts to allowing nondeterministic
shifts at any time, while still enforcing growth of the state
in order to avoid information overflow on each side. We can
now state the following theorem.

Theorem 5 EPCs,,;y, reduces to EPKgi,.

In a nutshell, the proof relies on the two following lem-
mas; here and later, we use the exponent and update product
notations somewhat freely to indicate iterating some action
application, as there is no ambiguity.

Lemma 1 If S is a finite linear state®, then, for all n € N,
(Sa k) }Z Wenc(hSmith)

iﬁ‘(S ® R?mirhv k+ n) >: Wenc(hSmiIh)

yﬁ‘(S ® Lgmizh’ k— TL) ): wenc(hSmi,h).

Recall that terminal and pre-terminal worlds encode _; this
property — which is an invariant — guarantees that there is no infor-
mation loss about non-blank symbols after any shift, since actions
Resmith and Lsmin are designed in such a way that only those worlds’
encodings cannot be transferred.
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Lemma 2 [f S is a finite linear state, then S Q@ Rgyin @ F spminn
is isomorphic to S QF gpign @ Rigmims the result still holds when
replac‘ing LSmith fOr RSmith-

Now, any plan in EPCgp, can be completed to a plan in
EPKgpmirn: indeed, if (S, ® 7, k) = wenc(hsmim) Where 7 is
a plan in EPCgpym, then, by Lemma 1, if £ > 0, 7 ® L’S“mith
is a plan in EPKgpim, and if £ < 0, 7 ® Rgn’fith is a plan in
EPKspith-

Conversely, given a plan 7 in EPKgpin, Lemma 2 allows
us to change its order to get an equivalent plan made up of
7' with no shifts catenated with a sequence of shifts; using
Lemma 1, we assert that 7 is a plan for EPCgpjh.

Since we enriched the initial DEL model with exactly 2
actions, we have the following corollary.

Corollary 3 The epistemic planning problem over finite lin-
ear initial states with 6 atomic propositions, with the fixed
set of actions {Fsmim, Lsmin, Resmim}, and the fixed goal
wenc(hgpin) is undecidable.

5.2 Infinite States

We now turn to the Rule 110 cellular automaton with the
same mindset: the epistemic planning problem with com-
mon knowledge associated to the Rule 110 cellular automa-
ton EPCgyjg relies on the simulation of Section 4, where
Ari1o = {Frio}, AP = {Q,p} and the goal formula is

C’Agwenc(thlo). Recall that the input (¢, 3,y) defines ini-
tial state Sqwgye.

Problem EPKgijp will have wenc(hgijo) as its goal
formula and the remainder of its setting will be that
of EPCRry1o, while its fixed set of actions is Ag,,, =
{FRri10, Lr110, RR110}. As states are infinite linear states,
these two shifting actions can be defined as public actions:

o R0 (right shift) is a public action whose single event
precondition is T and whose postcondition for p is

p=(QAK,(=QADP))V (=OA KL (QAp));
o Lgiio (left shift) is akin to Rgjjp; let us just give
the postcondition for p since nothing else differs:

pi=(VAK,(=QADP))V (=0 A Kp(Q ADp)).
Theorem 6 EPCg;j reduces to EPKg;jo.

Informally, the proof of Theorem 6 can be viewed as a
fairly straightforward deduction from the demonstration of
Theorem 5, through a projection of finite linear states onto
infinite ones, while reinterpreting Fry19, Rri10 and Lgjjo as
pruned versions of Fspit, Remitn and Lgmin respectively, and
adjusting propositions to the Rule 110 setting.

Notice that in the previous construction, both Rgjo and
Lgi10 are public actions as well as Frjjg, which gives us the
following corollary.

Corollary 4 The epistemic planning problem over automatic
structures with 2 atomic propositions, with the fixed set
of public actions {¥g;10, Lri0, Rri10}, and the fixed goal
wenc(hg;10) is undecidable.

Notice that actions Fr;j9 and Ry can be merged (so that
the final phase of any successful plan is some — possibly
empty — sequence of left shifts), although we did not proceed
with this optimization here for the sake of clarity.
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6 Conclusion

This work makes a connection between epistemic planning in
DEL and cellular automata. We claim that many other sim-
ilar undecidability results could be transferred to epistemic
planning. Decidability techniques (see [Codd, 1968]) could
be of use for finding decidable cases and for sharpening the
decidability/undecidability frontier of epistemic planning.
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