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Abstract
Epistemic planning extends classical planning with
knowledge and is based on dynamic epistemic logic
(DEL). The epistemic planning problem is unde-
cidable in general. We exhibit a small undecid-
able subclass of epistemic planning over 2-agent
S5 models with a fixed repertoire of one action, 6
propositions and a fixed goal. We furthermore con-
sider a variant of the epistemic planning problem
where the initial knowledge state is an automatic
structure, hence possibly infinite. In that case, we
show the epistemic planning problem with 1 public
action and 2 propositions to be undecidable, while
it is known to be decidable with public actions over
finite models. Our results are obtained by reducing
the reachability problem over small universal cel-
lular automata. While our reductions yield a goal
formula that displays the common knowledge op-
erator, we show, for each of our considered epis-
temic problems, a reduction into an epistemic plan-
ning problem for a common-knowledge-operator-
free goal formula by using 2 additional actions.

1 Introduction
Developing autonomous agents is central in artificial intel-
ligence. Agents should be able to plan their actions for
achieving a goal, and to reason about their knowledge and
other agents’ knowledge. Epistemic planning [Baral et al.,
2017] focuses on generating plans in a multi-agent con-
text. Goals can be epistemic (for instance, the goal could
be that “agent a knows that agent b does not know p”).
Some actions can change the physical world as well as the
knowledge of agents. Typical actions are public actions
where both knowledge and physical changes are commonly-
known by the agents [Kominis and Geffner, 2015]. Tra-
ditionally, goals are expressed in epistemic logic (the goal
above is expressed by formula Ka¬Kbp). On top of the clas-
sical planning setting with pre/post-conditions for actions,
the Dynamic Epistemic Logic [van Ditmarsch et al., 2007;
Bolander, 2017] framework offers a representation of knowl-
edge change: actions are graphs [Baltag et al., 1998] whose
nodes are events (with pre/post-conditions) while edges de-
note epistemic relations.

In this setting, the epistemic planning problem consists in
finding a sequence of actions leading to an epistemic state
satisfying the goal. The problem is undecidable in general;
there are several proofs in the literature, by reducing either the
halting problem of Turing machines [Bolander and Ander-
sen, 2011], or of two-counter machines [Aucher and Bolan-
der, 2013; Charrier et al., 2016]. Unfortunately, none of these
proofs exhibit bounds to parameters (number of actions, num-
ber of propositions, etc.) involved in the problem.

In order to bound the parameters, we suggest to focus on
one-dimensional three-neighbor cellular automata [von Neu-
mann, 1951]. First, small universal cellular automata [Smith,
1968; Wolfram, 2002] have been exhibited. Second, DEL
and cellular automata share theoretical features. On the one
hand, all cells in a cellular automaton update their own state
(called symbol later) synchronously according to a local rule.
On the other hand, knowledge update in DEL consists in syn-
chronously applying pre/post-conditions (that are local prop-
erties in epistemic logic) in several possible worlds.

Our first contribution is to take advantage of small uni-
versal cellular automata with a blank background (almost all
cells’ symbols except finitely many are ) to provide a small
class of instances for the epistemic planning problem that
is already undecidable (see Corollary 1). Interestingly, the
repertoire of actions (made up of one action) and the goal are
both fixed, only the initial knowledge state is part of the input.

Whereas public actions lead to decidability in epistemic
planning [Kominis and Geffner, 2015; Belardinelli et al.,
2017], the second contribution is that public actions are
enough for undecidability when the initial knowledge state
is automatic [Blumensath and Grädel, 2000] (the gap be-
tween finite and automatic for structures is analogous to the
gap between finite and regular for languages). This result is
quite surprising since leaping from finite to automatic struc-
tures usually maintains decidability, for instance for first-
order model checking. More surprisingly, undecidability is
obtained for a very small class of instances (see Corollary 2)
by taking advantage of Wolfram’s Rule 110.

In a last contribution, we show how to remove the common
knowledge operator from goal formulas (Corollaries 3 and 4).
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The paper is organized as follows. We first recall the DEL
setting and the epistemic planning problem in Section 2. Sec-
tions 3 and 4 are dedicated to the proofs of our two undecid-
ability results and contain the material on cellular automata.
Finally, Section 5 outlines the proof that common knowledge
can be avoided in the goal formulas.

2 Background on Epistemic Planning
Knowledge states A knowledge state is a pointed Kripke
model that describes an epistemic situation. In few words, it
is a graph whose vertices are possible worlds with a distin-
guished world w0. In the literature, such models are often de-
noted byM, w0, but here, we write them S for “states”; for
ease of notation, we will improperly write the ordered pair
(S,w) to denote state S whose actual world w0 has been re-
placed with w. Let Ag be a finite set of agents and AP be a
countable set of propositions.

Definition 1 A state S = (W, (Ra)a∈Ag, V, w0) is defined by
a non-empty setW of epistemic worlds, equivalence relations
Ra ⊆W×W called epistemic relations, a valuation function
V : W → 2AP , and a worldw0 ∈W called the actual world.

In Definition 1, the valuation function V is a labeling for
the worlds. The intuitive meaning of the epistemic relations
is: wRaw′ holds1 if agent a considers world w′ as possible in
world w. The assumption of epistemic relations being equiv-
alence relations is referred to as S5 [Chellas, 1980].

w0 w

p

a, b

(a) A state.

e0

e

a

pre : p

post : q := >

pre : >
post : r := >

(b) An action.

w0, e0

w0, e w, e

p, q

p, r r

a, b

a
a

(c) Product.

Figure 1: A state, an action and their product.

Consider the state S = (W, (Ra)a∈Ag, V, w0) where W =
{w0, w},Ra = Rb = W×W , V (w0) = {p}, and V (w) = ∅.
This state has 2 agents and 1 proposition, and is depicted in
Figure 1a, with the convention that the pointed world is in a
double circle and equivalent worlds are linked with plain lines
(in order to lighten the pictures, loops are omitted). In the
epistemic situation described by S, agents a and b do not dis-
tinguish w0 from w, and therefore do not know that p holds.

Epistemic language The language LEL extends the propo-
sitional language with epistemic modal operators and is de-
fined by: ϕ ::= > | p | ¬ϕ | (ϕ ∨ ϕ) | Kaϕ | CGϕ, with
p ∈ AP , a ∈ Ag, G ⊆ Ag. Formula Kaϕ is read “agent
a knows that ϕ holds” and formula CGϕ is read “ϕ is com-
monly known among agents in G”. We define the usual ab-
breviations (ϕ1 ∧ ϕ2) for ¬(¬ϕ1 ∨ ¬ϕ2), K̂aϕ for ¬Ka¬ϕ

1This is a standard notation for (w,w′) ∈ Ra.

and ĈGϕ for ¬CG¬ϕ. The semantics of LEL is defined by
induction over the formula (Boolean cases are omitted).

• (W, (Ra)a∈Ag, V, w) |= p if p ∈ V (w);

• (W, (Ra)a∈Ag, V, w) |= Kaϕ if
for all w′ s.t. wRaw′, (W, (Ra)a∈Ag, V, w

′) |= ϕ;

• (W, (Ra)a∈Ag, V, w) |= CGϕ if for all w′ s.t.
w
(⋃

a∈GRa
)∗
w′, (W, (Ra)a∈Ag, V, w

′) |= ϕ

where
(⋃

a∈GRa
)∗

is the reflexive and transitive closure of
the union of the Ra for a ∈ G.

Actions Actions are modeled by so-called pointed event
models2 [van Ditmarsch et al., 2007]. They are graphs whose
nodes are events with a distinguished event e0 that represents
the real event taking place (in the current world) when action
A is executed. In more formal words:

Definition 2 An action A = (E, (Ra)a∈Ag, pre, post, e0) is
given by a non-empty finite set of events E, equivalence rela-
tions (Ra)a∈Ag ⊆ E×E, a precondition function pre : E →
LEL, a postcondition function post : E × AP → LEL and
an event e0 ∈ E called the current event.

The precondition function defines under which condition
an event can take place. The postcondition decribes the effect
of an event on the world: after an event e has taken place,
the truth of p is assigned to the value post(e, p). Actions
made up of a single event (card(E) = 1) are public actions.
Figure 1b shows the action A where E = {e0, e}, Ra =
E × E, Rb = {(e0, e0), (e, e)}, pre(e0) = p, pre(e) = >,
post(e0, q) = > and post(e, r) = >. In figures and formal
definitions, when a postcondition post(e, p) is omitted, we
mean that post(e, p) = p.

Product The update of a state S by an action A is a new
state written S ⊗A and defined as a product.The product is
defined only if the current event in A can take place, namely
its precondition holds in the current world of S.

Definition 3 Let S = (W, (Ra)a∈Ag, V, w0) be a state
and A = (E, (Ra)a∈Ag, pre, post, e0) be an action.
If S |= pre(e0), we define the product of S and A as the
state S ⊗A = (W ′, (Ra)′, V ′, (w, e0)) where:

• W ′ = {(w, e) ∈W × E | (S,w) |= pre(e)};
• (w, e)R′a(w′, e′) iff wRaw′ and eRae

′;

• V ′((w, e)) = {p ∈ AP | (S,w) |= post(e, p)}.

Figure 1c shows the product S ⊗ A of state S of Fig-
ure 1a and action A of Figure 1b. For instance, formula
Kb(p ∧ q ∧ Ka(¬q → r)) holds in state S ⊗A. In the fol-
lowing, the expression S⊗A1, . . . ,Am is a concise notation
for (. . . ((S ⊗A1)⊗A2) · · · ⊗Am).

The epistemic planning problem introduced by [Bolander
and Andersen, 2011] can now be defined.

2In the literature, pointed event models are often denoted by E , e.
We also decided to simplify the notations and to call them actions.
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Figure 2: Rule 110 transition function (f110(1, 0, 1) = 1, etc.) and
some successive configurations.

Definition 4 (Epistemic planning problem)

• input: a state S, a finite set of actions A and a formula
ϕ ∈ LEL;

• output: yes if there exists a sequence of actions (a plan)
A1, . . . ,Am ∈ A such that S ⊗A1, . . . ,Am |= ϕ; no
otherwise.

3 Small Epistemic Planning Problems
In this section, we show the undecidability of two restrictions
of the epistemic planning problem, where A is fixed and no
longer part of the input. Undecidability is proven by reduc-
tion from undecidable reachability problems on cellular au-
tomata. From now on throughout the paper, Ag = {a, b}; re-
call that all models (i.e. states and actions) are S5 (epistemic
relations are equivalence relations).

3.1 Universal 1D Cellular Automata
In this article, we only consider one-dimensional three-
neighbor cellular automata. An infinite sequence of cells are
settled on a line; each cell is in a state represented by a sym-
bol3 of a finite alphabet Σ. Given a cell, a transition function
f maps a three-neighbor (left-cell symbol, current symbol,
right-cell symbol) to the new symbol of the cell.

Definition 5 A cellular automaton is a pair A = (Σ, f)
where Σ is a finite alphabet and f : Σ3 → Σ is a transi-
tion function.

Example 1 (Rule 110 [Wolfram, 2002]) The Rule 110 cel-
lular automaton is the two-symbol cellular automaton
AR110 = ({0, 1}, f110) where f110 is defined by the Boolean
formula f110(x, y, z) := (x∧ y ∧¬z)∨ (x∧¬y ∧ z)∨ (¬x∧
y ∧ z) ∨ (¬x ∧ y ∧ ¬z) ∨ (¬x ∧ ¬y ∧ z).

A configuration, that is the symbols of cells on an infinite
line, is modeled by an infinite word c ∈ ΣZ, that is, a map that
assigns a symbol c[i] to any integer i ∈ Z. A computation
step is performed by the following rule.

Definition 6 Given a cellular automatonA, given an infinite
word c ∈ ΣZ, we define the successor of c by A to be the
infinite word c′ defined by c′[i] := f(c[i − 1], c[i], c[i + 1]).
We write c→A c′.

Figure 2 shows the transition function f110 graphically and
some successive configurations.

3We use ‘symbol’ instead of ‘cell state’, to avoid confusion with
a knowledge state.

A cellular automaton is deemed universal if it can simulate
any Turing machine; the quest for finding such small univer-
sal cellular automata started in the 1960s. A common hy-
pothesis is to assume a blank background: we consider that
alphabets always contain a special symbol and that transi-
tion functions map to . Furthermore, we assume that
configurations are finite, in the sense that almost all cell sym-
bols are except a finite number – configurations are of the
form ωα ω where α is a finite word, called the support of
the configurations. Starting from a finite configuration only
leads to finite configurations.

Smith proved that any m-symbol n-state Turing machine
can be simulated by a one-dimensional (m + 2n)-symbol4
3-neighbor cellular automaton with a blank background (see
Theorem 4 in [Smith, 1968]). As Minsky constructed a 4-
symbol 7-state universal Turing machine MMinsky [Minsky,
1967], there exists a 4+2×7 = 18-symbol universal cellular
automaton ASmith = (ΣSmith, fSmith), that simulates MMinsky.
As a consequence, we obtain the following undecidability re-
sult for the reachability problem for ASmith with blank back-
ground.

Theorem 1 There exists a finite word5 hSmith such that it is
undecidable to determine, given a finite word α, whether
ωα ω →∗ASmith

c where the configuration c contains the pat-
tern hSmith.

3.2 Finite Linear States
The main result of this section is Corollary 1 which pro-
vides bounds to the parameters of the epistemic planning
problem. This is achieved by simulating executions of cel-
lular automata with blank background. First of all, we in-
troduce sufficiently many propositions to encode symbols of
the alphabet. Typically, for alphabet ΣSmith with 18 sym-
bols that we respectively write `0, `1, . . . , `17, only 5 propo-
sitions p1, . . . , p5 suffice. Given a symbol `, we note enc(`)
the encoding of `: enc(`0) = ¬p1 ∧ . . .¬p5, enc(`1) =
p1 ∧ ¬p2 . . .¬p5, etc. W.l.o.g., we suppose that symbol
is `0 and is encoded by the valuation making all pi’s false. In
the rest, ~p denotes the sequence of propositions pi’s.

Now, we encode the finite supports of configurations by
means of finite linear states – such states appear in real epis-
temic puzzles such as the consecutive number puzzle [van
Ditmarsch and Kooi, 2015]. They are states of the form
In = ({−n, . . . ,−1, 0, 1, . . . n}, (Ra)a∈Ag, V, 0) with odd n
and:

1. Ra = {(k, k) | k ∈ J1;nK}
∪
{

(2k, 2k + 1), (2k + 1, 2k) | −n+1
2 ≤ k ≤ n−1

2

}
;

2. Rb = {(k, k) | k ∈ J1;nK}
∪
{

(2k, 2k − 1), (2k − 1, 2k) | −n+1
2 ≤ k ≤ n−1

2

}
;

3. ♥ ∈ V (k) iff k is even;
4. for all i, pi 6∈ V (−n), V (−n+ 1), V (n− 1), V (n).
A finite linear state In encodes a finite configuration c

whose support is of length smaller than 2n − 3 when V (k)

4Referred to as (m+ 2n)-state in [Smith, 1968].
5According to the notation of Table 14.8-1 p. 279 in [Minsky,

1967], word hSmith is q30.
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makes enc(`i) true iff c[k] = `i; we require that the two ter-
minal (−n and n) and the two pre-terminal (n − 1, −n + 1)
worlds encode (Condition 4). For instance, the ASmith con-
figuration ω `9`5`2

ω where c[−1] = 9 can be repre-
sented by:

0−1−2−3 1 2 3
b a b a b a

♥, p1, p3 p2 ♥♥ p1, p4

Given a finite word α, let us set once and for all what finite
linear state Sα will encode α: substituting α m for α with
m ∈ {0, 1, 2, 3} so that |α| be congruent to 3 modulo 4, we
set Sα = (I |α|+3

2
, (Ra)a∈Ag, V, 0) where V (k− |α|−12 ) makes

enc(`i) true iff α[k] = `i for 0 ≤ k ≤ |α| − 1, and makes
enc( ) true outside of this range. These are only technical-
ities ensuring a sufficiently large odd index for the interval
state to respect constraints with a pseudo-centered word.

3.3 Simulating Cellular Automata in DEL
We define action F mimicking one computation step of the
cellular automaton: if S is a finite linear state encoding a con-
figuration c, then S⊗F is (isomorphic to) a finite linear state
encoding the successor of c.

e0e−1e−2e−3 e1 e2 e3
bab a b a

pre:K̂a♥∧K̂b♥pre:¬K̂a♥pre:¬K̂a♥pre:¬K̂a♥ pre:¬K̂b♥ pre:¬K̂b♥ pre:¬K̂b♥
post:♥ := > post:♥ := >

Figure 3: Skeleton of action F.

Action F is partially given by Figure 3. Intuitively, the
actual event e0 copies every non-terminal world; event e−1
keeps the left-tip world, while e−2 and e−3 clone it to append
two new worlds to the left. Events e1, e2, e3 play a similar
part. In the end, action F adds two new worlds on each side,
while preserving the canonical knowledge state structure that
we aim for, including the tips’ asymmetry relatively to the
agents.

We finish the definition of F by adding postconditions for
pj’s, corresponding to the application of a transition func-
tion f . Suppose w.l.o.g. that ♥ holds in a given world
k ∈ {−n+ 1, . . . , n− 1}. Bits of c[k − 1] are obtained by
taking the b-transition from the ¬♥-world of world k. They
are: 〈K̂b(¬♥∧pi)〉i. In the same way, the values of ~p in world
k+1 are given by the vector 〈K̂a(¬♥∧pi)〉i. The case where
♥ does not hold in the current world is symmetric. We model
f by Boolean formulas fj(~p−, ~p, ~p+) over three sequences
of atomic propositions ~p− (left cell symbol), ~p (middle cell
symbol), ~p+ (right cell symbol) that return the value of the
jth bit of the new symbol at the middle cell. Bits of the new
symbol are: 〈fj(~p−, ~p, ~p+)〉j .

The postconditions for pj’s in F is thus defined as follows.
First, post(ek)(pj) = ⊥ for all k 6= 0. Only e0 effectively
applies f and post(e0)(pj) is formula(
♥ → fj(〈K̂b(¬♥ ∧ pi)〉i, ~p, 〈K̂a(¬♥ ∧ pi)〉i)

)
∧(

¬♥ → fj(〈K̂a(♥ ∧ pi〉i), ~p, 〈K̂b(♥ ∧ pi)〉i)
)
.

We will refer to FSmith for the action model that cor-
responds to the transition function fSmith of the cellular
automaton ASmith.

On top of proposition ♥, when considering the particu-
lar cellular automaton ASmith, we need no more than 5 ex-
tra propositions to encode all symbols of alphabet ΣSmith of
cardinal 18, so that an overall set of 6 propositions suffices.

Now, we define formulas encoding the occurrence of a
pattern h in the configuration. We first define the for-
mula wenc(h) := wenc♥(h) ∨ wenc¬♥(h) where formulas
wenc♥(h) and wenc¬♥(h) are inductively defined by:

• wenc♥(ε) = ♥ and wenc¬♥(ε) = ¬♥;

• for all letters `, wenc♥(`h)=♥∧enc(`)∧K̂awenc¬♥(h);

• for all letters `, wenc¬♥(`h)=¬♥∧enc(`)∧K̂bwenc♥(h).

We can now state the following theorem that derives from
our ability to simulate the behavior of the cellular automaton
ASmith and the use of the dual of the common knowledge op-
erator ĈAg to search over a finite linear state for the pattern
wenc(hSmith).

Theorem 2 Given a finite linear state S over 6 propositions,
it is undecidable to determine whether or not a state satisfy-
ing ĈAgwenc(hSmith) is reachable from S by executing a finite
sequence of actions FSmith.

PROOF.
By reduction from the undecidable reachability problem of

Theorem 1. An instance α of the latter is translated into Sα.
�

Corollary 1 The epistemic planning problem over 2-agent
S5 finite models is undecidable, even if the repertoire is
{FSmith}, the goal is ĈAgwenc(hSmith) and we only use at most
6 different propositions.

The interested reader can run simulations in DEL of cel-
lular automata using the online software Hintikka’s world
[Schwarzentruber, 2018] available at the following address:
http://hintikkasworld.irisa.fr.

4 Epistemic Planning over Infinite States
We extend the epistemic planning problem to structures that
can be infinite, but which can be fully described by a finite
presentation, in the sense of automatic structures [Blumen-
sath and Grädel, 2000].

Automatic structures should be understood as all logical
structures whose domain and relations can be represented by
an encoding in some regular finite-word language and (multi-
tape) synchronous6 finite-state automata operating on said en-
coding, respectively.

In our setting, we let a state S = (W, (Ra)a∈Ag, V, w0) be
automatic if the following holds7.

6All heads of the tapes progress synchronously, provided the in-
puts have been “aligned” with a technical trick.

7We take the convention to use letter B for (multi-tape) finite-
state automata.
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• W can be encoded as a regular language, hence accepted
by some one-tape finite-state automaton BW over some
alphabet;
• both relationsRa andRb are characterized by some two-

tape automata Ba and Bb respectively: for two finite
words η and ζ accepted by BW (henceforth, they are en-
codings of two worlds wη and wζ) of S, the pair (η, ζ)
is accepted by the two-tape automaton Ba if, and only if,
wηRawζ (similarly for Bb);
• for each proposition p ∈ AP , there is a one-tape au-

tomaton Bp accepting exactly words η s. th. p ∈ V (wη).
If the word η encodes world w0, the tuple

(BW , (Ba)a∈Ag, (Bp)p, η) is called an automatic presen-
tation of (W, (Ra)a∈Ag, V, w0). We can now introduce the
following epistemic planning problem.

Definition 7 The epistemic planning problem over automatic
structures is the following.

• input: an automatic presentation of a state S, a finite set
of actions A and a formula ϕ;

• output: yes if there exists a sequence of actions (a plan)
A1, . . . ,Am ∈ A such that S ⊗A1, . . . ,Am |= ϕ; no
otherwise.

In order to prove this problem to be undecidable, we first
recall a well-known result on universal cellular automata
with periodic background.

4.1 Cellular Automata with Periodic Background
In an attempt to reduce the number of possible cell symbols
of universal cellular automata as introduced in Section 3, the
notion of periodic background was introduced: a periodic
background is of the form αωβγω , where α, β, γ ∈ Σ∗ and
|α|, |γ| > 1.

Lindgren and Nordahl exhibited a 7-symbol universal cel-
lular automaton [Lindgren and Nordahl, 1990]. Their results
were subsumed by Wolfram’s AR110 cellular automaton with
only 2 symbols [Wolfram, 2002]. Automaton AR110 displays
complex behaviors, and more importantly, is universal [Cook,
2008; 2004; Sutner, 2003]. As stated in [Larsson, 2013] (Th.
5.1), the following reachability problem is undecidable.

Theorem 3 ([Cook, 2008]) Given three finite words
α, β, γ ∈ {0, 1}∗ with |α|, |γ| ≥ 1, deciding whether
αωβγω →∗AR110

c where c contains the finite word
hR110 = 01101001101000 is undecidable.

We now explain how the behavior of AR110 can be simu-
lated in DEL. We first show how to represent configurations
by infinite linear states.

4.2 Infinite Linear States
To represent infinite configurations of cellular au-
tomata, we introduce infinite linear states that are states
Z = (Z, (Ra)a∈Ag, V, 0) where:
• Ra = {(k, k), (2k, 2k + 1), (2k + 1, 2k) | k ∈ Z};
• Rb = {(k, k), (2k, 2k − 1), (2k − 1, 2k) | k ∈ Z};
• ♥ ∈ V (k) iff k is even.

For a configuration (a two-way infinite word) c ∈ {0, 1}Z,
we define Sc to be the infinite linear state such that p ∈
V (k) iff c[k] = 1. For example, consider the infinite word
(100)ω110(100)ω , where word 110 in the middle is anchored
in 0, namely, σ[0] = 1, σ[1] = 1, σ[2] = 0. Its corresponding
infinite linear state8 S(100)ω110(100)ω has the form (with the
convention that we do not draw self-loops):

. . . 0−1−2−3−4 1 2 3 4
baba a b a b

♥ p ♥ ♥, p p ♥ p ♥

. . .

Proposition 1 Given three finite words α, β, γ ∈ {0, 1}∗
with |α|, |γ| ≥ 1, Sαωβγω is automatic and has an effectively
computable automatic presentation.

We now turn to simulating the dynamics of AR110 which
will entail Theorem 4.

4.3 Epistemic Planning over Automatic Structures
The simulation of the cellular automaton AR110 (see Defini-
tion 1) over the configuration αωβγω follows the spirit of
Section 3, but by simplifying action F since linear states are
infinite: the initial configuration ofAR110 is represented by the
infinite linear state Sαωβγω . The application of f110 to each
cell is simulated by executing the public action FR110 consist-
ing of a single event eR110 with pre(eR110) = > and whose
postcondition reflects f110 and leaves ♥ unchanged.The post-
condition of eR110 is a ‘single-bit’ version of the postcondition
for event e0 for action F of Section 3, as only one proposition
is involved. post(eR110)(p) is:(
♥ → f110(K̂b(¬♥ ∧ p), p, K̂a(¬♥ ∧ p))

)
∧(

¬♥ → f110(K̂a(♥ ∧ p), p, K̂b(♥ ∧ p))
)

.
It is easy to see that the reachability problem for the cel-

lular automaton AR110 over a periodic background (given an
initial periodic background αωβγω , does there exist a reach-
able configuration c that contains the finite word hR110?) can
be rephrased as the epistemic planning problem over input
(Sαωβγω , {FR110}, ĈAg(wenc(hR110))).

Theorem 4 Given an automatic presentation of an infinite
linear state S (that requires only the 2 propositions♥ and p),
it is undecidable to know whether or not some state satisfying
ĈAgwenc(hR110) can be reached by executing finitely many
times the public action FR110.

PROOF.
We show a reduction from the undecidable reachability

problem of Theorem 3. An instance (α, β, γ) of the lat-
ter is effectively translated into an automatic presentation of
Sαωβγω thanks to Proposition 1. �

By Theorem 4, where only 1 public action (FR110) and 2
propositions (♥ and p) were involved, we get the following
corollary.

Corollary 2 The epistemic planning problem over automatic
2-agent S5 models is undecidable, even if the repertoire is
fixed to 1 public action, the goal is fixed to ĈAgwenc(hR110)
and if we use at most 2 different propositions.

8We deliberately forget the word’s anchor in our notation.
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5 Common Knowledge Elimination
In this section, we explain how to remove the dual common
knowledge operator ĈAg from the two goal formulas. Since
the halting word (hSmith or hR110) can be far from the actual
world, the basic idea is to apply shifts (whether rightward or
leftward) so that the window of the halting word is at the ac-
tual world. It can then be checked by a ĈAg-free goal formula.
Any new plan (if any) will then be comprised of an old plan
mingled with a shifting phase (i.e. a sequence of shifts).

We sketch a proof for finite states in Section 5.1, and then
proceed in a similar fashion with infinite ones in Section 5.2.

5.1 Finite States
We wish to clearly express the epistemic planning problem
with common knowledge associated to Smith’s cellular au-
tomaton (EPCSmith). As we only consider ASmith with its
DEL simulation as described in Section 3.3, both the checked
goal formula (ĈAgwenc(hSmith)) and the set of actions ASmith
(= {FSmith}) are fixed, and so is the set of 6 propositions;
the only input is the initial state Sα, which depends on finite
word α, as defined in the aforementioned section.

Now, we will define the epistemic planning problem with-
out common knowledge associated to Smith’s cellular au-
tomaton (EPKSmith), where the goal formula is now merely
wenc(hSmith) and the new set of actions A′Smith will also be
fixed, with the intent to reduce EPCSmith to EPKSmith. Inci-
dentally, the initial input state will be the same.

We enrich the set of actions ASmith of the initial DEL
model: we choose to set A′Smith = {FSmith,RSmith,LSmith};
the two new actions are defined below:

• RSmith (right shift) is defined by the same structure as
FSmith is, except for the following postconditions on
event e0:for all i, pi’s assignement is replaced with
pi := (♥ ∧ K̂b(¬♥ ∧ pi)) ∨ (¬♥ ∧ K̂a(♥ ∧ pi));

• LSmith (left shift) is akin to RSmith; let us just give the
postcondition for pi on e0 since nothing else differs:
pi := (♥ ∧ K̂a(¬♥ ∧ pi)) ∨ (¬♥ ∧ K̂b(♥ ∧ pi)).

This construction amounts to allowing nondeterministic
shifts at any time, while still enforcing growth of the state
in order to avoid information overflow on each side. We can
now state the following theorem.

Theorem 5 EPCSmith reduces to EPKSmith.

In a nutshell, the proof relies on the two following lem-
mas; here and later, we use the exponent and update product
notations somewhat freely to indicate iterating some action
application, as there is no ambiguity.

Lemma 1 If S is a finite linear state9, then, for all n ∈ N,
(S, k) |= wenc(hSmith)
iff (S ⊗Rn

Smith, k + n) |= wenc(hSmith)
iff (S ⊗ LnSmith, k − n) |= wenc(hSmith).

9Recall that terminal and pre-terminal worlds encode ; this
property – which is an invariant – guarantees that there is no infor-
mation loss about non-blank symbols after any shift, since actions
RSmith and LSmith are designed in such a way that only those worlds’
encodings cannot be transferred.

Lemma 2 If S is a finite linear state, then S⊗RSmith⊗FSmith
is isomorphic to S⊗FSmith⊗RSmith; the result still holds when
replacing LSmith for RSmith.

Now, any plan in EPCSmith can be completed to a plan in
EPKSmith: indeed, if (Sα ⊗ π, k) |= wenc(hSmith) where π is
a plan in EPCSmith, then, by Lemma 1, if k ≥ 0, π ⊗ LkSmith
is a plan in EPKSmith, and if k < 0, π ⊗ R−kSmith is a plan in
EPKSmith.

Conversely, given a plan π in EPKSmith, Lemma 2 allows
us to change its order to get an equivalent plan made up of
π′ with no shifts catenated with a sequence of shifts; using
Lemma 1, we assert that π′ is a plan for EPCSmith.

Since we enriched the initial DEL model with exactly 2
actions, we have the following corollary.
Corollary 3 The epistemic planning problem over finite lin-
ear initial states with 6 atomic propositions, with the fixed
set of actions {FSmith, LSmith,RSmith}, and the fixed goal
wenc(hSmith) is undecidable.

5.2 Infinite States
We now turn to the Rule 110 cellular automaton with the
same mindset: the epistemic planning problem with com-
mon knowledge associated to the Rule 110 cellular automa-
ton EPCR110 relies on the simulation of Section 4, where
AR110 = {FR110}, AP = {♥, p} and the goal formula is
ĈAgwenc(hR110). Recall that the input (α, β, γ) defines ini-
tial state Sαωβγω .

Problem EPKR110 will have wenc(hR110) as its goal
formula and the remainder of its setting will be that
of EPCR110, while its fixed set of actions is A′R110 =
{FR110,LR110,RR110}. As states are infinite linear states,
these two shifting actions can be defined as public actions:
• RR110 (right shift) is a public action whose single event

precondition is > and whose postcondition for p is
p := (♥ ∧ K̂b(¬♥ ∧ p)) ∨ (¬♥ ∧ K̂a(♥ ∧ p));
• LR110 (left shift) is akin to RR110; let us just give

the postcondition for p since nothing else differs:
p := (♥ ∧ K̂a(¬♥ ∧ p)) ∨ (¬♥ ∧ K̂b(♥ ∧ p)).

Theorem 6 EPCR110 reduces to EPKR110.
Informally, the proof of Theorem 6 can be viewed as a

fairly straightforward deduction from the demonstration of
Theorem 5, through a projection of finite linear states onto
infinite ones, while reinterpreting FR110, RR110 and LR110 as
pruned versions of FSmith, RSmith and LSmith respectively, and
adjusting propositions to the Rule 110 setting.

Notice that in the previous construction, both RR110 and
LR110 are public actions as well as FR110, which gives us the
following corollary.
Corollary 4 The epistemic planning problem over automatic
structures with 2 atomic propositions, with the fixed set
of public actions {FR110,LR110,RR110}, and the fixed goal
wenc(hR110) is undecidable.

Notice that actions FR110 and RR110 can be merged (so that
the final phase of any successful plan is some — possibly
empty — sequence of left shifts), although we did not proceed
with this optimization here for the sake of clarity.
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6 Conclusion
This work makes a connection between epistemic planning in
DEL and cellular automata. We claim that many other sim-
ilar undecidability results could be transferred to epistemic
planning. Decidability techniques (see [Codd, 1968]) could
be of use for finding decidable cases and for sharpening the
decidability/undecidability frontier of epistemic planning.
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