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Abstract
In the context of probabilistic AAFs, we intro-
duce AAFs with marginal probabilities (mAAFs)
requiring only marginal probabilities of argu-
ments/attacks to be specified and not relying on the
independence assumption. Reasoning over mAAFs
requires taking into account multiple probability
distributions over the possible worlds, so that the
probability of extensions is not determined by a
unique value, but by an interval. We focus on the
problems of computing the max and min probabil-
ities of extensions over mAAFs under Dung’s se-
mantics, characterize their complexity, and provide
closed formulas for polynomial cases.

1 Introduction
Several frameworks based on the probability theory
have extended Dung’s Abstract Argumentation Framework
(AAF [Dung, 1995]) to take into account the uncertainty pos-
sibly affecting the occurrence of arguments and attacks in
the argumentation. In particular, in the constellations ap-
proach [Hunter, 2012; Hunter, 2014; Dondio, 2014; Doder
and Woltran, 2014; Rienstra, 2012; Dung and Thang, 2010;
Li et al., 2011; Fazzinga et al., 2015] the dispute is rep-
resented with a probabilistic AAF (prAAF), that encodes
the alternative possible worlds for the argumentation as a
set of (deterministic) AAFs, where each AAF is associated
with the probability of being the AAF actually occurring.
prAAFs can be divided in two categories: those relying on
the independence assumption (i.e. arguments are independent
from one another, and the occurrence of attacks is conditioned
only to the occurrence of the related arguments), and those
not. The latter allow the analyst to specify any probability
distribution function (pdf) over the possible worlds, but, in
fact, can be hardly used in complex scenarios: defining such
a pdf may require reasoning on a number of possible worlds
exponential w.r.t. the number of arguments and attacks, and
this in turn may require a strong effort and a deep knowledge
of the correlations between arguments and attacks, that often
is not available. On the other hand, the prAAFs assuming
independence are compact and user-friendly, as they require
only the specification of the marginal probabilities of argu-
ments/attacks (which implicitly define a pdf over the possi-

ble worlds). In fact, assigning suitable marginal probabilities
calls for reasoning over one argument/attack at the time, so is
much less burdensome than explicitly describing a pdf over
the possible worlds and does not require to have a precise
picture of how the arguments/attacks are correlated. For in-
stance, the probability of an argument (resp., attack) can be
modeled by looking into statistics about occurrences of single
arguments/attacks or by reasoning on the chances of partici-
pating to the dispute of the agents who propose the arguments
or perceive the attacks. Unfortunately, assuming indepen-
dence is often inadequate, since the existence of correlations
between arguments/attacks cannot be excluded.

In this paper, we introduce a new prAAF, called AAF with
marginal probabilities (mAAF), that is in between these two
categories: it requires to specify no pdf over the possible
worlds, but only the marginal probabilities of arguments and
attacks, while not assuming independence. This calls for a
reasoning paradigm different from the prAAFs in the litera-
ture, where a single (explicitly or implicitly encoded) pdf over
the possible worlds is considered: in mAAFs several pdfs
may be consistent with the marginal probabilities, thus the
probability of being extensions cannot measured by a unique
value. The following example clarifies this aspect, and gives
an insight on why assuming independence when correlations
are not known may result in incautious conclusions.

Example 1 Consider the argumentation graph below, re-
porting the marginal probabilities of arguments and attacks.

a

0.6

c

0.4

b

0.6

1 1

The numbers besides nodes and edges
are the marginal probabilities returned
by a function P (·)

As the three arguments are the only uncertain portions of
the argumentation, we have the 23 = 8 possible worlds
reported in the first column of the table below. The other
columns report three (out of many other) pdfs consistent with
the marginal probabilities. Specifically, π1 corresponds to
assuming independence between arguments/attacks, as it as-
signs to every possible world ωi the product of the marginal
probabilities (resp., complements of marginal probabilities)
of the arguments/attacks in ωi (resp., not in ωi). As for π3, it
corresponds to the case where a, b are positively correlated
and are in mutual exclusion with c (so that the only possible
scenarios for the argumentation are ω4 and ω5), while π2 to
the case where either a, b, c coexist, or at most one between

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

2613



a or b occurs. Observe that π2 (resp., π3) is a pdf minimizing
(resp., maximizing) the probability of ω5 (0 and 0.6 are the
min and max values since no pdf can assign to ω5 a probabil-
ity lower than 0 and higher than any of P (a), P (b), 1−P (c)).

possible world π1 π2 π3

ω1 = ⟨∅, ∅⟩ 0.096 0.2 0
ω2 = ⟨{a}, ∅⟩ 0.144 0.2 0
ω3 = ⟨{b}, ∅⟩ 0.144 0.2 0
ω4 = ⟨{c}, ∅⟩ 0.064 0 0.4
ω5 = ⟨{a, b}, ∅⟩ 0.216 0 0.6
ω6 = ⟨{a, c}, {(c, a)}⟩ 0.096 0 0
ω7 = ⟨{b, c}, {(c, b)}⟩ 0.096 0 0
ω8 = ⟨{a, b, c}, {(c, a), (c, b)}⟩ 0.144 0.4 0

Let S={a, b}. The only ωi where S is admissible is ω5. As in
prAAFs the probability that a set is an extension is the sum of
the probabilities of the possible worlds where the extension’s
conditions are met, the probability P (S) that S is admissible
is the probability of ω5. Therefore, from what said above on
the minimum and maximum probability of ω5, we conclude
that P (S) is in the range [π2(ω5)..π3(ω5)]= [0..0.6].

Now, suppose that the analyst is a lawyer, and that a, b are
arguments possibly claimed by the counterpart’s witnesses.
If the lawyer trusted the analysis under independence, they
would conclude that {a,b} is not a robust set of arguments,
since P (S) = π1(ω5) = 0.216 is rather low. Instead, taking
into account all the possible pdfs consistent with the marginal
probabilities, the lawyer would be aware that P (S) can be
rather high, as P (S) may be up to π3(ω5) = 0.6, thus they
can make more cautious decisions regarding the trial strategy.

1.1 Contributions
We introduce mAAFs along with the problems of maximizing
and minimizing the probability that a set is an extension over
an mAAF. We first focus on MAXP-VER, the decision coun-
terpart of the maximization problem, and provide a thorough
complexity analysis under Dung’s semantics for extensions.
We show that, depending on the semantics, MAXP-VER can
be polynomial-time solvable, NP -complete or Σp

2-complete.
For the PTIME cases, we provide elegant closed formulas re-
turning the maximum probability value. Furthermore, we
show the relation between mAAFs and the several prAAFs
proposed in the literature. Finally, we also analyze the dual
problem MINP-VER referring to the minimum probability,
providing a tight characterization under some semantics and
showing an interesting asymmetry w.r.t. MAXP-VER.

2 Preliminaries
An abstract argumentation framework (AAF) is a pair F =
⟨A,D⟩, where A is a set of abstract elements, called argu-
ments, and D a binary relation over arguments, called attack
relation. Given a ∈ A and S ⊆A, we say: “a is acceptable
w.r.t. S” if for every (c, a) ∈ D there is some (s, c) ∈ D with
s ∈ S. An attack (a, b) will be also denoted as δab.

Several semantics for AAFs have been proposed to iden-
tify “reasonable” sets of arguments, called extensions [Dung,
1995]. A set S ⊆ A is: a conflict-free extension (cf) iff
there is no attack involving arguments in S; an admissible

extension (ad) iff S is conflict-free and its arguments are ac-
ceptable w.r.t. S; a stable extension (st) iff S is conflict-free
and attacks each argument in A \ S; a complete extension
(co) iff S is admissible and contains all the arguments that
are acceptable w.r.t. S; a grounded extension (gr) iff S is
a minimal (w.r.t. ⊆) complete set of arguments; a preferred
extension (pr) iff S is a maximal (w.r.t. ⊆) complete set of
arguments. The set of extensions of an AAF F under a se-
mantics σ is denoted as Ext(F, σ). The verification problem
of deciding if S ∈Ext(F, σ) and is denoted as VER(F, S, σ).

3 AAFs with Marginal Probabilities (mAAFs)
We consider the case where the arguments and attacks that
may occur in the argumentation are known, but the exact
composition of the argumentation is not certain, as it is not
known which of the “possible worlds” (i.e. sets of arguments
and attacks) will be the actual argumentation. In particular,
we consider the scenario where a probabilistic measure of the
uncertainty is available, in terms of the marginal probabilities
of the arguments and attacks. Basically, the marginal prob-
ability of an argument represents the overall probability of
the possible worlds where the argument occurs. The meaning
of the marginal probability of an attack is analogous, but its
value is conditioned to the occurrence of the involved argu-
ments (e.g. “(a, b) has probability 1” means that the attack
occurs in all the scenarios where both a and b occur). This
naturally gives rise to the formal definition below.

Definition 1 (mAAF) An AAF with marginal probabilities
(mAAF) is a tuple ⟨A,D,P ⟩, where ⟨A,D⟩ is an AAF and
P : (A ∪D) → [0, 1] associates arguments and attacks with
probabilities. Arguments and attacks are said to be certain is
they are assigned probability 1 by P , uncertain otherwise.

Formally, given an mAAF F = ⟨A,D,P ⟩, a possible
world of F is any AAF ω = ⟨A′, D′⟩ with A′ ⊆ A,
D′ ⊆ (A′ × A′) ∩ D. We denote as PW (F ) the set
of the possible worlds of F . Given two possible worlds
ω = ⟨A,D⟩, ω′ = ⟨A′, D′⟩, we say that ω′ expands ω if
(A ∪ D) ⊂ (A′ ∪ D′). Differently from the probabilistic
extensions of AAFs in the literature (see the discussion on
constellations approaches in Section 5), mAAFs do not rely
on a unique probability distribution function (pdf) over the
possible worlds: different pdfs may be consistent with the
marginal probabilities characterizing arguments and attacks,
as discussed in Example 1 and below.

Example 2 Continuing Example 1, it is easy to see that also
π4, that assigns 0.4 to both ω2 and ω7, 0.2 to ω5 and 0 to
all the other possible worlds, is consistent with the marginal
probabilities. Observe that π4 maximizes the probability of
ω2 (containing only a): no consistent pdf can assign to ω2 a
value higher than any of P (a), 1− P (b), 1− P (c).

Given a pdf π over PW (F ) and a set of possible
worlds PW ′ ⊆ PW (F ), π(PW ′) =

∑
ω∈PW ′ π(ω)

denotes the overall probability assigned by π to the
possible worlds in PW ′. Then, we say that π is
consistent with the marginal probability of argument a
(resp., attack δab), written as π |= P (a) (resp., π |=
P (δab)) if P (a) =

∑
ω∈PW (F )|a∈ωπ(ω) (resp., P (δab) =
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∑
ω∈PW (F )|δ∈ωπ(ω)/

∑
ω∈PW (F )|a∈ω∧b∈ωπ(ω)). In turn,

π is consistent with P (π |= P ) if it is consistent with the
marginal probabilities of F ’s arguments/attacks. We denote
as Π(F ) the set of pdfs over PW (F ) consistent with P .

The presence of multiple possible worlds for the argumen-
tation, along the fact that each possible world may be asso-
ciated with different probabilities (since different pdfs over
PW (F ) may be consistent with F ), naturally call for re-
visiting the traditional way of considering extensions. In
this spirit, given a pdf π in Π(F ) and a semantics σ, we
define the probability that S is a σ-extension of F accord-
ing to π as: π(F, S, σ) =

∑
ω|S∈Ext(ω,σ) π(w), that is

the sum of the probabilities assigned by π to the possible
worlds where S is a σ-extension. Then, in order to take
into account that several probability assignments to the pos-
sible worlds can be consistent with the marginal probabili-
ties, we define: Pmin(F, S, σ) = minπ∈Π(F ) π(F, S, σ) and
Pmax(F, S, σ) = maxπ∈Π(F ) π(F, S, σ), i.e. the minimum
and maximum probabilities that S is a σ-extension.

Proposition 1 states two general properties: 1) there is al-
ways a pdf over PW (F ) consistent with P , and 2) the set of
probabilities that S is a σ-extension of F is a closed interval.
Proposition 1 Let F be an mAAF, S a set of arguments and
σ ∈ {cf, st, ad, co, gr, pr}. Then: 1) Π(F ) ̸= ∅, and 2)
for every p ∈ [Pmin(F, S, σ)..Pmax(F, S, σ)] there is a pdf
π ∈ Π(F ) such that p = π(F, S, σ).
1) follows from the existence of the pdf implied by assuming
independence, while 2) is a straightforward consequence of
the theory of probabilistic logics in [Nilsson, 1986], since the
probabilities of sentences entailed by a probabilistic sentence
are known to compose a closed interval.

Reasoning over Pmin(F, S, σ) and Pmax(F, S, σ) is obvi-
ously relevant for an analyst looking into an argumentation
modeled via an mAAF F , since this gives insights on the
extent to which S can be considered “robust”. Thus, we
address the decision problems MAXP-VER and MINP-VER,
that are natural adaptions of the classical verification problem
and that are the decision counterpart of finding Pmax(F, S, σ)
and Pmin(F, S, σ):
Problem statement: “Let F be an mAAF F , σ a semantics,
S a set of arguments, and p∗ a probability value. MAXP-
VER(F, S, σ, p∗) (resp., MINP-VER(F, S, σ, p∗)) is the
problem of deciding if there is a pdf π in Π(F ) such that
π(F, S, σ) ≥ p∗ (resp., π(F, S, σ) ≤ p∗)”.

4 Characterizing MAXP-VER and MINP-VER
We start with the problem MAXP-VER and show that it can
be solved in polynomial time under the conflict-free, admissi-
ble, and stable semantics, that it is complete for NP under the
complete and grounded semantics, and for Σp

2 under the pre-
ferred semantics. In particular, for the polynomial-time cases,
we provide closed formulas allowing an easy computation of
Pmax(F, S, σ). In the following, given a set of arguments X ,
we denote with M(X) = max{0, 1 − |X| +

∑
a∈X P (a)}

the minimum probability that, consistently with the marginal
probabilities, the arguments in X occur simultaneously.
Theorem 1 Given an mAAF F = ⟨A,D,P ⟩ and S ⊆ A:

1) Pmax(F, S, cf)=mins,t∈S

{(
1−P (δst)

)
·min{P (s),P (t)}

}
2) Pmax(F, S, st) = min

{
Pmax(F, S, cf),mina∈A\S{1 −

P (a) +
∑

s∈S P (δsa) ·M({s, a})
}

.

3) Pmax(F, S, ad) = min
{
Pmax(F, S, cf),mina∈A\S{(1 −

P (a))+mins∈S{(1−P (δas)) ·M({s, a})+
∑

t∈S P (δta) ·
M({t, a})}}

}
where min ∅ = 1 and P (δst) = 0 if δst ̸∈ D.

Proof of Case 1. Without loss of generality, we assume that
A and S coincide, as it is easy to see that, denoting as F ′ the
projection of F over S, for each π′ ∈ Π(F ′) there is a π ∈
Π(F ) such that π′(F ′, S,cf) = π(F, S,cf), and vice versa:
π′ can be obtained from π by marginalization, while π can be
obtained from π′ by distributing the marginal probabilities of
the arguments and attacks in F but not in F ′ over the possible
worlds of F expanding the possible worlds of F ′.

For any pair of (possibly coinciding) arguments s, t ∈ S,
let Xst be the set of the possible worlds containing s, t, and
no attack from s to t, and let Yst be the set of the possible
worlds containing s, t. It is straightforward to see that,
∀s, t ∈ S and ∀π ∈ Π(F ), the probability π(F, S, cf) that S
is a cf-extension is not greater than the overall probability
π(Xst), which, in turn, is equal to

(
1− P (δst)

)
· π(Yst).

Herein, π(Yst) ≤ min{P (s), P (t)}, since Yst is a subset
of the two sets Ys and Yt of the possible worlds containing
s and t, respectively (where, obviously, π(Ys) = P (s)
and π(Yt) = P (t)). Hence, we obtain that ∀π ∈ Π(F )
π(F, S, cf) ≤ mins,t∈S

{(
1− P (δst)

)
·min{P (s), P (t)}

}
.

Since the right-hand side of this inequality (from now on
denoted as MAX) coincides with the right-hand side of the
formula for Pmax, it remains to be proved only that there
is some π ∈ Π(F ) for which this inequality holds as an
equality. Let s1, . . . , sk be the arguments of S in ascending
order of marginal probability. We consider the k + 1 sets of
possible worlds: PW0, . . . , PWk where each PWi contains
the possible worlds containing all the arguments si+1, . . . , sk
(if i < k), but not s1, . . . , si (if i ≥ 1). Observe that PWk

contains only the empty possible world, and that PW0

contains, among others, the possible world ωcf consisting
of S and no attack between its arguments. Given this, in
order to make π(F, S, cf) = MAX, we set π(ωcf) = MAX.
Then, in order to guarantee that ∀s ∈ S π |= P (s), it
suffices to define π so that 1) π(PW0)=P (s1), 2) ∀i∈ [2..k]
π(PWi−1) = P (si)−P (si−1), 3) π(PWk) = 1−P (sk)
and 4) π(ω) = 0 for each possible world ω not in any
PWi. In particular, for each PWi, the overall probability
π(PWi) is distributed among the possible worlds in PWi

by making π consistent also with the attacks’ probabil-
ities. To this aim, for each s, t ∈ S, we first compute
P (δst)=

P (δst)·min{P (s),P (t)}
min{P (s),P (t)}−π(ωcf)

, if P (δst) ̸= 0, or P (δst)=0,
otherwise, that is the (conditioned) marginal probability
of δst “rescaled” against the overall probability of the
possible worlds different from ωcf and containing s and
t. Observe that, since π(ωcf) = MAX, P (δst) ≤ 1. Then,
∀i ∈ [0..k], ω ∈ PWi with ω ̸= ωcf, we set π(ω) =Xi·
Πδst∈ωP (δst) · Πδst ̸∈ω(1−P (δst)), where X0 = π(PW0)−
π(ωcf) and Xi=π(PWi), for i > 0, which ensures π |=P .
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Proof of Case 2. (Sketch) For every a ∈ A \S, the term
M ′(a)= 1−P (a)+

∑
s∈SP (δsa)·M

(
{s, a}

)
is the probability

that a does not occur (as measured by 1−P (a)), or is attacked
by S, assuming that the co-existence of a with each s ∈ S has
minimum probability. Observe that, in M ′(a), the sum over
the arguments in S means considering the attacks from differ-
ent arguments in S to a as alternative, as this maximizes the
probability that at least one of them occurs. Finally, taking
the minimum between Pmax(F, S, cf) and mina∈A\S M ′(a)
means maximizing the probability that S is conflict-free and,
for each a ∈ A\S, either a does not occur or is attacked by S.
Proof of Case 3. (Sketch)

(
1−P (δas)

)
·M

(
{s, a}

)
is the por-

tion of the probability space occupied by the possible worlds
where a does not attack s, when the probability that a and s
coexist is minimized. Then, M ′(a) = mins∈S{(1−P (δas)) ·
M

(
{s, a}

)
} is the maximum probability that a coexists with

all the arguments in S, but a attacks no s∈ S. Analogously,
M ′′(a) =

∑
t∈SP (δta) ·M

(
{t, a}

)
is the maximum proba-

bility that some t ∈ S attacks a, provided that the proba-
bility that a and t coexist is minimized. Hence, M ′′′(a) =(
1−P (a)

)
+M ′(a)+M ′′(a) is the maximum probability that a

does not occur or does not attack S or is counterattacked by S.
Correspondingly, min

{
Pmax(F, S, cf),mina∈A\S M ′′′(a)

}
is the maximum probability that S is conflict free and every
argument outside S either does not occur, or occurs but does
not attack S, or occurs and is counterattacked by S. ✷

Example 3 Applying the formulas above in Example 1,
we obtain Pmax(F, {a, b}, cf) = min

{(
1 − P (δaa)

)
·

min{P (a),P (a)},
(
1−P (δbb)

)
·min{P (b),P (b)},

(
1−P (δab)

)
·

min{P (a),P (b)},
(
1−P (δba)

)
·min{P (b),P (a)}

}
= 0.6. As

M({a, c})=M({b, c})= max
{
0, (0.6+0.4)−1

}
=0, the

formulas for σ ∈ {ad, st} simplify to Pmax(F, {a, b}, ad)=
min

{
0.6, (1 − P (c))

}
= 0.6 and Pmax(F, {a}, st) =

min
{
Pmax(F, {a}, cf),min{1− P (c), 1− P (b))}

}
=0.4.

As the formulas for Pmax in Theorem 1 can be evaluated
in time O(|A|2), we obtain the following corollary.

Corollary 1 Under σ ∈ {cf, st, ad}, MAXP-VER is in P .

Under the other Dungean semantics, MAXP-VER becomes
intractable. Interestingly, the intractability does not depend

(a) (b)

Figure 1: (a) The mAAF F (φ) and (b) the mAAF F ′(φ) for φ =
(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3) ∧ (x1 ∨ ¬x2 ∨ ¬x3)

on whether the uncertainty involves the arguments or the at-
tacks, since in both cases the problem becomes NP -complete
under σ ∈ {co, gr} and Σp

2-complete under σ = pr. We start
with showing the NP upper bound under σ ∈ {co, gr}, that
will be proved similarly to what done in [Georgakopoulos et
al., 1988] for proving that probabilistic SAT is in NP .

Theorem 2 Given an mAAF F = ⟨A,D,P ⟩ and S ⊆ A,
MAXP-VER(F, S, σ, p∗) is in NP under σ ∈ {co, gr}.

Proof. A π ∈ Π(F ) such that π(F, S, σ) ≥ p∗ can be
found by solving a system of (in)equalities S with a positive
variable π(ωi) for each ωi ∈ PW (F ). S contains:
1) the equality

∑
ωi∈PW (F ) π(ωi) = 1 (stating that the

overall probability of the possible worlds is 1);
2) ∀a ∈ A the equality

∑
ωi∈PW (F )|a∈ωi

π(ωi) = P (a)

and, ∀δab ∈ D, the equality
∑

ωi∈PW (F )|δab∈ωi
π(ωi) =

P (δab) ·
∑

ωi∈PW (F )|a,b∈ωi
π(ωi) (imposing π |= P );

3) the inequality
∑

ωi∈PW (F )|S∈Ext(S,σ) π(ωi) ≥ p∗ (impos-
ing that the overall probability of the possible worlds where
S is a σ-extension is not less than p∗).
S has m = |A| + |D| + 2 (in)equalities and O(2|A∪D|)
variables, thus, as entailed by linear programming the-
ory, if it has a solution, it has a basic solution with at
most m non zero values, where the size of each value
is polynomially bounded by m and the size of the con-
stants in S . Hence, MAXP-VER(F, S, σ) can be solved
by guessing a polynomial-size π over PW (F ) assigning
a non-zero probability to at most m possible worlds, and
then checking if π |= P and π(F, S, σ) ≥ p∗ (this can be
done in polynomial time, as VER is in P for σ∈{co,gr}). ✷

Theorem 3 states that NP is also a lower bound under σ ∈
{co, gr}. To prove this result, we rely on some symmetries
that arise when reasoning over the pdfs consistent with P ,
that are exploited to obtain reductions from the NP -complete
problem not-all-equals 3-SAT (NAE3SAT): “Given a 3CNF
formula ϕ, is there any truth assignment satisfying ϕ and such
that no clause contains all the three literals set to true?”.

Theorem 3 Given an mAAF F and S ⊆ A, under σ ∈
{co, gr}, MAXP-VER(F, S, σ, p∗) is NP -hard, even if: 1)
all the arguments are certain, 2) all the attacks are certain.

Proof. In what follows, when referring to CNF formulas, we
assume that their form is C1∧· · ·∧Cm, where each clause Cj

is the disjunction of kj literals
∨kj

h=1 l
j
h, and each ljh is a vari-

able or its negation. We denote the variables as x1, . . . , xn.
3CNF denotes formulas where ∀j∈ [1..m] kj = 3.
Case 1. We consider σ = co (an analogous reasoning on the
same construction works for σ = gr). We first introduce
the construction of the mAAF F (φ) = ⟨A,D,P ⟩ encoding a
generic CNF formula φ. Herein, A consists of an argument s,
an argument cj for each clause Cj , and the arguments xi,¬xi

for each variable xi; D contains, for each i ∈ [1..n], the de-
feats (s, xi), (s,¬xi), (xi, xi) and (¬xi,¬xi), as well as, for
each clause Cj and literal lji in Cj , the attack (lji , cj). Fi-
nally, P assigns probability 1

2 to the attacks (s, xi), (s,¬xi)
(for i ∈ [1..n]), and 1 to all the other attacks and arguments.
Fig. 1(a) depicts an example of F (φ).
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We show a reduction from NAE3SAT. Given an in-
stance ϕ of NAE3SAT, let ϕ̂ = ϕ ∧ ϕ ∧ ϕX , where:
ϕ =

∧k
j=1(¬l

j
1 ∨ ¬lj2 ∨ ¬lj3) and ϕX =

∧n
i=1(xi ∨ ¬xi). We

now show the equivalence: “The instance ϕ of NAE3SAT is
true” ⇔ “MAXP-VER(F (ϕ̂, {s}, co, 1) is true”.
(⇒) As ϕ is a true instance of NAE3SAT, not only there
is a truth assignment t satisfying ϕ, but also the com-
plement t′ of t satisfies ϕ, and both t and t′ set at least
one literal in every clause to false (with “complement”
we mean: ∀i ∈ [1..n], t′(xi) = ¬t(xi)). Hence, t and
t′ make also ϕ̂ satisfied. Let F (ϕ̂) = ⟨Â, D̂, P ⟩ and
ω = ⟨A,D⟩, ω′ = ⟨A′, D′⟩ be the possible worlds of F (ϕ̂)

such that: 1) A = A′ = Â, and 2) D = D̂ \{(s, li) | (li =
xi ∧ t(xi) = true) ∨ (li = ¬xi ∧ t(xi) = false)}, and 3)

D′=D̂\{(s, li) | (li=xi∧t′(xi)= true)∨(li=¬xi∧t′(xi)=
false)}). Now, {s} is an extension in ω and ω′, as t and t′

make ϕ̂ satisfied (thus every cj is attacked by some xi or
¬xi not attacked by s). Let π be the pdf over PW (F (ϕ̂))
assigning probability 1

2 to both ω and ω′, and 0 to the other
possible worlds. By construction of ω, ω′, it follows that
π |= P . Hence, since {s} is a co-extension in ω and ω′,
and π(ω)+π(ω′) = 1, MAXP-VER(F (ϕ̂), {s}, co, 1) is true.
(⇐) As MAXP-VER(F (ϕ̂), {s}, co, 1) is true, there are k ≥
0 possible worlds ω1, . . . , ωk of F (ϕ̂) such that 1) {s} is a
complete extension of ω1, . . . , ωk, and 2) there is a pdf π ∈
Π(F (ϕ̂)) assigning non-zero probability only to ω1, . . . , ωk.

We first prove that, for each i ∈ [1..n], j ∈ [1..k] ωj

contains exactly one of the attacks (s, xi) or (s,¬xi). Rea-
soning by contradiction, assume that there is a ωj contain-
ing both (s, xi) and (s,¬xi). This implies that the argu-
ment corresponding to the clause (xi ∨ ¬xi) ∈ ϕ̂ is ac-
ceptable w.r.t. {s} in ωj , thus contradicting that {s} is a
complete extension in ωj . Vice versa, assume that there is
an ωj not containing (s, xi) and (s,¬xi). Since (s, xi) and
(s,¬xi) do not occur simultaneously in any possible world
in ω1, . . . , ωj−1, ωj+1, . . . , ωk, it follows that P ((s, xi)) +
P ((s,¬xi)) = 1 − π(ωj). But π(ωj) > 0 and P ((s, xi)) =
P ((s,¬xi)) =

1
2 , thus we reach the contradiction 1

2 +
1
2 < 1.

Given that ω1 contains, for each variable xi, exactly one of
the attacks (s, xi) or (s,¬xi), the relation t between the vari-
ables and the truth values true, false defined below is a truth
assignment over x1, . . . , xn: ∀xi ∈ {x1, . . . , xn}, t(xi) =
true if (s, xi) ∈ ω1, and t(xi) = false if (s,¬xi) ∈ ω1. It
is easy to see that t makes ϕ̂ true, as for each Cj in ϕ̂
there is at least one argument li (of the form xi or ¬xi)
attacking the argument cj such that (s, li) does not appear
in ω1 (otherwise, {s} would not be a complete extension
in ω1). This ends the proof, since the satisfiability of ϕ̂, by
construction, implies that ϕ is a true instance of NAE3SAT.
Case 2. We reason analogously to Case 1, but use a
new construction. For any CNF formula φ, we con-
sider the mAAF F ′(ϕ) = ⟨A,D,P ⟩ where: A con-
tains ∀i ∈ [1..n] the arguments xi,¬xi, nai, and ∀j ∈
[1..k] an argument cj ; D contains, ∀i ∈ [1..n], the
attacks (xi, nai), (¬xi, nai), (xi, xi) and (¬xi,¬xi), and,

∀j ∈ [1..k], the attacks (lj1, cj), (l
j
2, cj), (lj3, cj). P as-

signs 1 to every attack and to na1, . . . , nan, c1, . . . , ck,
and 1

2 to x1, . . . , xn,¬x1, . . . ,¬xn. An example of
F ′(φ) is in Fig. 1(b). Then, similarly to Case 1, the
equivalence “An instance ϕ of NAE3SAT is true” ⇔
“MAXP-VER(F ′(ϕ), ∅, co, 1) is true” can be proved. The
difference here is that a truth assignment t can be encoded
by a possible world containing, ∀i ∈ [1..n], either xi or ¬xi,
where t(xi) = true (resp., false) is encoded by the presence
of xi (resp., ¬xi). Then, the fact that a clause Cj is made true
by having assigned true (resp., false) to xi is encoded by the
presence of the attack (xi, cj) (resp., (¬xi, cj)). ✷

Proposition 2 relates MAXP-VER with the verification
problem INCVER over incomplete AAFs (iAAF), that are
AAFs where some arguments and attacks are marked as un-
certain (with no measure of their uncertainty). Herein, IN-
CVER(F i, S, σ) asks if S is a σ-extension in some possible
world of F i. This proposition states that INCVER can be re-
duced in polynomial time to MAXP-VER, and will be used
to characterize the complexity of MAXP-VER under σ = pr.
However, it is of independent interest, and it will be exploited
in the next section, where we discuss the relationship between
mAAFs and variants of AAFs dealing with uncertainty.

Proposition 2 There is a Karp reduction from INCVER to
MAXP-VER adding no new uncertain arguments and attacks.

Proof. Given INCVER(F i, S, σ), where A and D (resp., A?

and D?) are the certain (resp., uncertain) arguments and at-
tacks of F i, let F = ⟨A ∪ A?, D ∪ D?, P ⟩ be the mAAF
where ∀x ∈ A ∪ D P (x) = 1 and ∀x ∈ A? ∪ D?

P (x) = 1/2. Let π be the following pdf over PW (F ):
π(ω) = Πa∈A?1/2 · Πδab∈D?|a,b∈ω

1/2. Basically, π is the
pdf entailed by assuming independence between the argu-
ments and conditioned independence between attacks, thus

π |= P . Let p∗ = minω∈PW (F ) π(ω) =
(
1
2

)|A?| ×
(
1
2

)|D?|
.

It is easy to see that the answers of INCVER(F i, S, σ) and
MAXP-VER(F, S, σ, p∗) coincide. ✷

Theorem 4 MAXP-VER(F, S, σ, p∗) is Σp
2-complete under

σ=pr, even if all the arguments or all the attacks are certain.

Proof. The membership proof is analogous to Theorem 2:
solving VER over a possible world now requires an NP or-
acle, thus the problem is in NPNP . Proposition 2 and the
Σp

2-hardness of INCVER (when the arguments or the attacks
are certain [Baumeister et al., 2018]) imply the hardness. ✷

We now turn our attention to MINPVER, the dual problem
referring to the minimum probability. Its complexity is char-
acterized by the following theorem.

Theorem 5 Given an mAAF F = ⟨A,D,P ⟩ and S ⊆ A,
1) MINP-VER(F, S, cf, p∗) is in P , and Pmin(F, S, σ) =
max{0,M(S)−

∑
a,b∈S P (δab) ·M({a, b})};

2) MINP-VER(F, S, pr, p∗) is NP -complete;
3) MINP-VER is in NP under σ ∈ {ad, st, co, gr}.

Proof. 1) and 3) can be obtained reasoning analogously to
the proofs of Theorems 1 and 2, respectively. As for σ = pr,
the membership to NP follows from modifying the proving

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

2617



strategy of Theorem 2 by replacing inequality I3 with an I ′3
imposing that the overall probability that S is not preferred
is not less than 1 − p∗, and making the guess-phase include
also a witness for each of the guessed π(ωi) involved in I ′3
certifying that S is not preferred in ωi. A reduction from
the complement of VER(F, S, pr) implies the hardness (it
suffices to translate F into an mAAF F ′ with no uncertain
arguments/attacks and decide MINP-VER(F ′, S, pr, 1/2)). ✷

The case σ = pr is particularly interesting, since it shows
an asymmetry between MAXP-VER and MINP-VER. We
conjecture that an asymmetry holds also under σ ∈ {co, gr}
as replacing the max operator with min when moving
from MAXP-VER to MINP-VER does not allow the form
of exclusive disjunction exploited in our reductions. Thus,
overall, we conjecture that the upper bound in point 2) is not
tight, and MINP-VER is in P under σ ∈ {ad, st, co, gr}.

5 Relationship with Probabilistic AAFs and
Further Related Work

mAAFs are in the family of probabilistic AAFs adopting
the constellations approach (denoted as prAAFs), as their
semantics (differently from the epistemic approach [Hunter
and Thimm, 2014; Hunter et al., 2020; Baier et al., 2021;
Potyka, 2021], where probabilities are degrees of belief in ar-
guments’ acceptance) is based on considering different pos-
sible worlds for the argumentation. The prAAFs in the liter-
ature typically consider a single pdf over the possible worlds
and differ in how this pdf is encoded. Exhaustive prAAFs
(EX [Dung and Thang, 2010]) enumerate the possible worlds
ω1, . . . , ωk having a chance to be the actual argumentation,
and assign a probability to each of them. Evaluating the prob-
ability of extensions over EX reduces to solving VER over ev-
ery ωi (with i ∈ [1..k]). Hence, MAXP-VER over EX is in
P under σ ∈ {cf, ad, st, co, gr}, for which VER is in P ,
and is in P ||NP under σ ∈ {pr}, as in this case it is solv-
able with k parallel invocations of an NP -oracle solving VER.
This seems to mean that MAXP-VER over EX is never more
complex than over mAAFs: in particular, it is easier under
σ ∈ {co, gr} (where it is in P over EX and NP -complete
over mAAFs) and under σ ∈ {pr} (where it is in P ||NP over
EX and NPNP -complete over mAAFs). However, these dif-
ferences “in favor of” EX follow from the explicit representa-
tion of the pdf in the encoding of EX. Thus, the measure of
computational complexity over EX benefits from a discount
of one exponential level compared with mAAFs, where enu-
merating the possible worlds has an exponential cost. In fact,
such a discount is paid when an EX is defined, as the analyst
is due to enumerate all the alternative scenarios, and this may
be prohibitive when the possibilities are many. Things change
significantly when considering general prAAFs (GEN [Fazz-
inga et al., 2019]), where the pdf over the possible worlds
is compactly encoded via world-sets descriptors: here, eval-
uating the probabilities of extensions becomes #P -hard for
all the Dungean semantics (while MAXP-VER over mAAFs
may be in P , NP -complete or Σp

2-complete, depending on σ).
Finally, independence-based prAAFs (IND [Li et al., 2011;
Fazzinga et al., 2015]) share with mAAFs the specifica-
tion of the marginal probabilities of arguments/attacks, but

they assume independence, thus a unique pdf over the pos-
sible worlds. Here, evaluating extensions’ probabilities can
be done in PTIME under σ ∈ {cf, ad, st} (the same as
MAXP-VER over mAAFs) and is FP#P -complete for the
other semantics. Although a precise characterization of the
decision problem MAXP-VER over IND is not in the litera-
ture, we can draw some conclusions: under σ ∈ {co, gr},
MAXP-VER over IND cannot be simpler than over mAAFs
(where it is NP -complete), as the fact that the minimum dif-
ference between the probabilities of two possible worlds is
known and of polynomial size allows for exploiting a polyno-
mial number of invocations to a MAXP-VER’s solver to ob-
tain an extension probability. If MAXP-VER over IND were
in NP , this would imply FP#P = FPNP .

mAAFs are also related to iAAFs [Baumeister et al., 2018;
Alfano et al., 2022]: Proposition 2 states the reducibility of
the verification problem INCVER over iAAFs to MAXP-VER.
From our results, it turns out that reasoning over iAAFs is of
the same complexity as over mAAFs under σ ∈ {cf, ad, st}
and σ = pr, where both problems are in P and Σp

2-complete,
respectively, while, under σ ∈ {co, gr}, reasoning over
iAAFs is strictly simpler than over mAAFs (as INCVER
is in P [Fazzinga et al., 2020] while MAXP-VER is NP -
complete). Overall, mAAFs are between iAAFs and IND:
introducing measures of uncertainty on top of iAAFs (thus
obtaining mAAFs) can increase the computational complex-
ity, as well as introducing the independence assumption on
top of mAAFs (thus obtaining IND). Intuitively, a reason for
the raise in complexity when moving to IND is that the inde-
pendence assumption restricts Π(F ) to a singleton, and this
can allow, under some semantics, a form of counting (as the
cardinality of a set of possible worlds can be inferred from its
overall probability).

Further works related to ours are those introducing proba-
bilistic variants of AAFs generalizations (such as probabilis-
tic bipolar AAFs [Fazzinga et al., 2018], probabilistic Control
AFs [Gaignier et al., 2021], probabilistic Abstract Dialectical
Frameworks [Polberg and Doder, 2014]) as well as those ex-
tending AAFs with preferences [Amgoud and Vesic, 2011],
degrees of beliefs [Santini et al., 2018], social values [Bench-
Capon, 2003; Atkinson and Bench-Capon, 2016].

6 Conclusions and Future Work
We have introduced AAFs with marginal probabilities
(mAAFs), where arguments and attacks are probabilistic
events whose marginal probability is known (under no inde-
pendence assumption). We have characterized the complexity
of MAXP-VER and MINP-VER, that are the decision coun-
terparts of maximizing and minimizing the probability that
a set is an extension. In future work, we plan to prove our
conjectures on the complexity of MINP-VER stated in Sec-
tion 4, and to extend mAAFs with the specification of corre-
lations among arguments/attacks, as done for iAAFs [Fazz-
inga et al., 2021a; Fazzinga et al., 2021b; Mailly, 2021]. This
would exclude pdfs assigning non-zero probability to unreal-
istic possible worlds from the reasoning. Another interesting
direction for future work is the investigation of constraint-
programming approaches for the NP -hard cases.
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