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Abstract

In early years, paraphrase generation typically
adopts rule-based methods, which are interpretable
and able to make global transformations to the orig-
inal sentence. But they struggle to produce fluent
paraphrases. Recently, deep neural networks have
shown impressive performances in generating para-
phrases. However, the current neural models are
black boxes and are prone to make local modifica-
tions to the inputs. In this work, we combine these
two approaches into RULER, a novel approach that
performs abstract RUle LEaRning for paraphras-
ing. The key idea is to explicitly learn generalizable
rules that could enhance the paraphrase generation
process of neural networks. In RULER, we first
propose a rule generalizability metric to guide the
model to generate rules underlying the paraphras-
ing. Then, we leverage neural networks to generate
paraphrases by refining the sentences transformed
by the learned rules. Extensive experimental results
demonstrate the superiority of RULER over previ-
ous state-of-the-art methods in terms of paraphrase
quality, generalization ability and interpretability.

1 Introduction

Paraphrase generation aims to restate the given sentence with
different expressions while preserving the original semantics.
It has been widely used in various downstream tasks such
as information retrieval [Knight and Marcu, 2000], dialogue
systems [Gao et al., 2020], serving as a fundamental task in
natural language processing (NLP).

In early years, paraphrasing was typically accomplished
by knowledge-based or statistical machine translation (SMT)
based approaches. Knowledge-based (also called rule-based)
paraphrasing methods manually design explainable hand-
crafted rules [Barzilay and Lee, 2003] or automatically ex-
tract transforming patterns [Zhao et al., 2009]. Though these
paraphrasers provide robust out-of-domain quality, the gen-
erated sentences lack the fluency that readers usually expect.
The SMT-based methods [Quirk et al., 2004] formulate para-
phrasing as a monolingual translation task based on sufficient
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Abstract rule learning

what makes tornado happen — what could be the reason of tornado
Input sentence

Target sentence

}
r(z): what makes $z happen — what could be the reason of $z

Rule transformations

(@ what makes volcanic eruption happen— r(z="volcanic eruption")

@what makes vote-a-rama happen — r(z="vote-a-rama")
(rare word)

@ what makes the global pandemic — r(z="the global ...")
of COVID 2019 happen (long phrase)

Input sentences Generated paraphrases

— Direction of information flow  — Direction of rule transformation
Figure 1: An example of the learning and transformation of an ab-
stract rule 7. $z is a symbol (placeholder) that can be assigned to
various words during rule transformations.

parallel corpus. These SMT-based approaches are also eas-
ily explained but struggle to handle the sentences not seen
before.

Recently, neural networks have made impressive success
in various NLP tasks, including paraphrase generation. Con-
ventional neural-based approaches formulate paraphrasing as
a supervised encoding-decoding problem [Wang et al., 2019].
For instance, Prakash et al. [2016] use stacked residual LSTM
networks to generate paraphrases. To improve the diversity of
generated sentences, Gupta et al. [2018] introduce the varia-
tional auto-encoder (VAE) to perform paraphrase generation.
But those generated paraphrases tend to only make trivial
changes to original sentences, such as modifications from sin-
gular to plural. To be a good paraphrase, a sentence should
share similar semantics but have noticeable syntactically or
lexically differences from the original one.

To further push paraphrases lexically away from original
sentences, SEPARATOR [Hosking and Lapata, 2021] first en-
codes the syntax and meaning separately and then decodes
paraphrases by perturbing syntactic encodings. However, in
such latent sampling procedures, the generated paraphrases
are less “controllable” in the meaning preservation and lack
interpretability of how the predictions are made.

In this work, we integrate the advantages of the rule-
based and neural-based methods into RULER, an inter-
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pretable framework that generates paraphrases by abstract
RUle LEaRning. The abstract rule is the generalizable trans-
formation from perceptual inputs to desired outputs. Our key
idea is to learn abstract rules underlying paraphrasing that
benefit the paraphrase generation process of neural networks.
In particular, we first propose an evaluation metric to indicate
the rule generalizability. Next, a rule learner learns to gener-
ate rules by maximizing the expected rewards (i.e., rule gen-
eralizability). Then, we select a suitable rule from the learned
rules for the coming sentence and apply symbolic rule trans-
formation. Finally, a neural network takes the transformed
sentence as a reference to generate the paraphrase.

The advantage of performing paraphrasing by abstract rule
learning is multi-fold: (1) Since rules are explicit knowledge
(compared to neural networks), RULER presents good inter-
pretability of why it produces such paraphrases. (2) RULER
enjoys better generalizability to out-of-domain sentences due
to symbolic rule transformations (Figure 1). (3) The rule
transformation makes it possible to perform global modifica-
tions, which is a long-standing goal of paraphrase generation.

We evaluate the effectiveness of our method on two bench-
mark paraphrasing datasets, namely, Quora and Wikianswers.
Experimental results show that RULER achieves a new state-
of-the-art performance in terms of both automatic metrics
and human evaluation. Moreover, we observe that RULER
achieves better generalizability to the out-of-domain data.

2 Related Work

Traditional paraphrase generation methods mainly comprise
rule-based methods [Mckeown, 1983; Barzilay and Lee,
2003; Zhao et al., 2009; Lin and Pantel, 2001] and statisti-
cal machine translation (SMT) based methods [Quirk et al.,
2004]. In particular, Mckeown [1983] proposes to leverage
rules extracted from the parsed grammatical tree to perform
the transformations of given sentences. Lin and Pantel [2001]
assume that dependency trees with similar arguments (leaves)
are close in meaning. Based on the assumption, they extract
paraphrasing rules to improve question answering. However,
these rule-based systems can hardly ensure the fluency of the
generated sentences. The SMT-based methods perform bet-
ter in the quality of the generated paraphrases by calculat-
ing the translation probability from given inputs to the out-
puts [Dolan ez al., 2004].

With the development of deep learning, neural networks
have become a prevailing approach to paraphrase generation,
e.g., using VAE [Gupta et al., 2018], residual LSTM [Prakash
et al., 2016] and the latent bag-of-words model [Fu et al.,
2019]. To improve the dissimilarity between the outputs and
input sentences, Lin and Wan [2021] leverage multi-round
paraphrase generation and back translation. Also, Liu et
al. [2021] propose multi-round modification in hope of lex-
ically different sequences (e.g., paraphrases). In addition, Li
et al. [2019] generate paraphrases of a sentence at different
levels of granularity in a disentangled way. However, the
granularity of structures is hard to divide, which needs labor-
intensive annotations to guide the learning.

Our work is also related to rule-enhanced neural networks.
Hu et al. [2016] harness deep neural networks with a few
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manually-designed rules to perform text classification. But
it could not be used in text generation and does not involve
learning rules. To our knowledge, RULER is the first work of
learning the transforming rules in paraphrase generation.

3 The Proposed Method

To learn to generate high-quality paraphrases, our method
RULER consists of two processes, i.e., the abstract rule learn-
ing and the rule-enhanced generation, which will be elabo-
rated in the rest of this section.

3.1 Abstract Rules in Paraphrase Generation

The abstract rule was first introduced to study the language
acquisition of infants [Marcus ez al., 1999]. In this paper, we
use an abstract rule to represent a type of paraphrase trans-
formation. Let WV be the word vocabulary and Z be the vo-
cabulary of the symbols (placeholders) that can be assigned
to various words. An abstract rule r = w — v is an im-
plication corresponding to the conditional statement: “if w
is matched, then produce v”, where w = [wy,...,wy, ] and
v = [v1,...,vr,] are the abstract patterns of the input sen-
tence and the corresponding paraphrase, respectively. L,, and
L, are the lengths of tokens of w and v. Note that w and v
are not sentences because they commonly contain symbols.

Formally speaking, a rule r describes the mapping from the
input sentence to its paraphrase, which is of the form

JZiyeey 20,2 € 2,0 €1,2,..., L,
r(z) =w — v =|wy,...,wg,] = [v1,...,v5,] (D
wivk EWU2Z L €1,2, ... Lysk€1,2,..., Ly,
where L is the number of the symbols in rule r.
To apply rule r to transform a given sentence X, the first

step is to check whether the sentence X follows the pattern
w and determine the words that the symbols z correspond to.

2 = Match(r, X), 2)
where function “Match” performs token-wise alignment to
identify the words in sentence X that match symbols in z
(Figure 1). If sentence X is not matched to the rule, func-
tion “Match” returns a special token “[None]”. Based on
the assigned symbols 2, the transformed sentence is

X, =r(z=2), 3)
where 7(-) produces the sequence v but all symbols in v are

assigned to the corresponding words. For notation simplicity,
we use T (r, X) to represent the whole rule transformation.

T(r,X) = X, = r(z = Match(r, X)). “)

z=|z,...

3.2 Abstract Rule Learning

As shown in Figure 2(a), the rule learning process mainly in-
volves a rule learner and a rule evaluation module. The rule
learner takes a data point (including both the input sentence
X and its paraphrase Y') as input and generates a candidate
rule underlying this data point. The rule evaluation module
assesses the generalizability of the extracted rules, and thus
guides the learning of the rule learner. The rest of this sec-
tion will first formulate the rule generation subtask and then
elaborate on these two components in detail.
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Figure 2: The overview of RULER framework.

Formulation of the Rule Generation. The rule generation
subtask is to extract generalizable rules from a given data
point. Let GG be the rule learning agent. It functions as

r=G(X,Y). )
However, if we generate the rule expression (i.e., Equa-
tion 1) token by token, the generative complexity is O(|W U
Z|E+K), which will result in low search efficiency. Consider-
ing the evaluation of each rule is time-consuming (explained
later), it will take a long time to figure out a suitable rule for
a data point, making it intractable to train a rule learner. In
this work, we try to simplify the rule generation subtask by
restricting the output space of the rule learner.

Considering that the extracted rule r is expected to charac-
terize the general mapping of the given data point, we assume
that, the tokens of an abstract rule are either the words in the
given data point or symbols. Specifically, for each word Y; in
the target paraphrase Y, the rule learner predicts a tag Oy, de-
ciding whether the word should be preserved (i.e., the action
of holding) or symbolized (i.e., the action of symbolizing).

O =[04,...,01,] = RuleLearnerg(X,Y), (6)

where 6 denotes all model parameters and O; €
{hold, symbolize}. O is the output of the rule learner and
L, is the length of the output O. Note that, to have a one-to-
one mapping between the output and the target paraphrase,
the length of the output is the same as the target paraphrase.
Based on the sequence of binary decisions of the rule
learner, it is not difficult to align the symbols to the target
paraphrase and the input sentence. Therefore, the abstract
rule is obtained by
r=G(X,Y) = AlignAndMatch(O, X,Y), @)

where “AlignAndMatch” stands for the computations from
the output of the rule learner to the generated rule.
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In this way, the generation complexity is reduced to
O(2F), significantly lower than the original one.

Rule Learner. We use the standard Transformer architec-
ture [Vaswani et al., 2017] as the rule learner. Since both the
input sentence and the target paraphrase are inputs of the rule
learner, we insert a special separator token [SEP] between
them and feed their concatenation into Transformer, given by

RuleLearner(X,Y) = Transformer([ X, [SEP|, Y]). (8)

Rule Evaluation Module. Besides the huge search space,
the lack of direct supervision is the second challenge of rule
learning. In this work, we develop a rule evaluation module
to automatically assess its quality. We consider the quality of
a rule in two aspects, namely, the coverage of the rule and the
usefulness of the rule for paraphrase generation.

First, the rule evaluation module tries to figure out how
many data points that rule » covers. The wider coverage of
a rule, the better generalization it possesses. Therefore, it
calculates the coverage score by counting the samples from
the training data that comply with the abstract rule r

D, = {(X,Y)Match(r, X) # [None] and (X,Y) € D}, (9)
where D is the training dataset and Match(r, X) # [None]
denotes the event that sentence X follows rule r. Thus, D,. is
the collection of matched samples of rule 7.

In order to avoid enumerating all the training data, we stip-
ulate a minimum number C,,;,, of samples the rule should
cover. If the matched samples are more than C,;,,, the cov-
erage score is 1. Otherwise, it is the ratio of the number of
matched samples to C',;,,, computed by
|Dr|
where |D,.| is the size of collection D,.. Hence, for the eval-
uation of a rule, we only keep up to C,,;, samples in D, to

Sc(r) = min{
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Figure 3: The architecture of the rule evaluation module.

accelerate the evaluation speed.

Second, the rule evaluation module tries to answer the
question how many data points that rule r can help to per-
form paraphrasing. We suppose that, if the sentence trans-
formed by rule r provides more information for paraphrase
generation than the original sentence X, rule r is useful to
X. As shown in Figure 3, the rule evaluation module lever-
ages a trained paraphrase generator PG, to evaluate the dif-
ficulty of the paraphrasing based on the given inputs. For
a rule r that is useful to sentence X, we expect the out-
put PG, (X, T (r, X)) is of better quality than the output
PG4 (X, X). Considering one of the paraphrases of the input
sentence X is available (i.e., Y'), the rule evaluation module
adopts the reduction of the generation loss induced by the rule
r to indicate the improvement of the generation:

Sreau(r, X, Y) =L(PGo (X, X),Y) an
_[’(PGOL(X7 T(T> X))7 Y)7
where L is the cross-entropy loss of the model to generate
target sentence Y from the inputs. o denotes the parameters
of PG,. To eliminate the influence of noises, we impose a
hyperparameter 7; If the reduction s.q, is greater than 7, we
call rule r succeeds to help the paraphrase generation task.

The paraphrase generator is also implemented by a Trans-
former model, given by

PGo (X, X gus) = Transformer([ X, [SEP], X 4u4)), (12)
where X, is the auxiliary input of PG, such as the sen-
tences transformed by rules.

To reflect a statistical assessment of rule 7 in terms of use-
fulness, the rule evaluation module computes an average suc-
cess rate of the r in helping the paraphrase generator over all
the matched sentences
_ Z(X,Y)NDT Lisean(r, X, ¥)>7)

Dy | ’

13)

s4(r)
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which is used to indicate the usefulness of 7. Iy is an indica-
tor that yields 1 when its argument is true, and O otherwise.
Finally, the rule evaluation module combines the coverage
score and the usefulness score into an overall score to repre-
sent the generalizability of the given rule, computed by
S(r) = se(r) - su(r) (14)
Optimization of Rule Learner. After determining the rule
generation process and the evaluation of the rule, there is still
a difficulty in optimizing the rule learner. That is, the labels
contain only ultimate scores (i.e., S(r)), instead of full super-
vision to the each action. We therefore apply reinforcement
learning to train our rule learner. Concretely, we define the
generalizability score produced by the evaluation module as
the reward of the rule learner. To maximize the expected re-
ward, we compute the gradient of the policy, given by
VHJZEWQVGS(T) 10gﬂ9(0|X7Y)7 (15)
where 79(O|X,Y) stands for the probability of generating
the output O given data point (X,Y"). We use REINFORCE
algorithm [Williams, 1992] and follow the practical tech-
niques in Liu er al. [2018] to train the rule learner.
When the abstract rule learning process is finished, we ob-
tain a collection of the generated rules R, given by

R={r|S(r) >0andr =G(X,Y)and (X,Y) € D}. (16)
As the rules whose rewards are zeros have no contributions to
paraphrase generation, they are not considered in R.

3.3 Rule-enhanced Paraphrase Generation

For a sentence X with a suitable abstract rule r, we pre-
sume that it is easier to generate its paraphrase from the
transformed sentence 7 (r, X) than the original sentence X.
Thus, we aim to train a powerful generator PGg to perform
paraphrasing based on the learned rules (Figure 2(b)), where
3 denotes the parameters of the paraphrase generator PGg.

We adopt same loss function for the paraphrase generator
PGg as used in the rule evaluator module, but with a differ-
ent training set. In the rule-enhanced generation process, we
add the transformed sentence as the auxiliary input into the
training data of the paraphrase generator. Specifically, we se-
lect the matched rule with the highest reward to perform the
transformation for each sample. Therefore, we have the rule-
enhanced training dataset:

DQ :{(XvT(T7X)7Y)|(X7Y) € D and

r= 17}'16%(5(7’) : I{Match(r,X);é[None]})}' (17)

When coming a new sentence X for testing, we also per-
form the same procedures to obtain the auxiliary input (i.e.,

T (r,X)). Then we feed these two types of inputs into the
trained PGg to generate the final paraphrase Y, given by

r= I}lea%(s(r) : [{Maach(nk)#mone]})

. X X (18)
Y = PGa(X, T (7, X)).

4 Experiments

4.1 Datasets

We evaluate RULER on two widely used datasets, namely,
the Quora question pairs and Wikianswers datasets. The
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Quora Wikianswers
Model iBLEU BLEU METEOR iBLEU BLEU METEOR
Copy -7.17  32.61 60.06 -4.03  37.10 63.17
tf-idf [Hosking and Lapata, 2021] -2.63 2273 - 998  25.08 -
ParaNMT [Wieting and Gimpel, 2017] 0.04 2424 - 232 2042 -
SOW/REAP [Goyal and Durrett, 2020] 1.59  12.64 - 12.04  33.09 -
Autoencoder [Hosking and Lapata, 2021] 1.99  19.90 - 536 40.10 -
LBoW [Fu et al., 2019] 262 16.17 47.28 1371 3496 47.36
VAE [Gupta ef al., 2018] 296 19.36 50.41 8.35 4026 55.83
DiPS [Kumar er al., 2019] 319 1847 - 8.56  24.90 -
VQ-VAE [Van den Oord et al., 2017] 343 16.19 - 847 4026 -
SEPARATOR 548 1435 45.14 14.84  36.36 49.81
HardMatch (degenerated RULER) 342 17.28 51.17 835 41.05 56.94
RULER 586 15.02 46.19  15.07 36.69 50.25

Table 1: Paraphrasing performance on the Quora and Wikianswers datasets. The best scores are highlighted in bold.

Relevance Dissimilarity
Model
Mean Score  Agreement Mean Score  Agreement
LBoW 3.28 0.39 3.19 0.50
VAE 3.31 0.42 2.56 0.55
SEPARATOR 2.97 0.48 3.78 0.54
RULER 3.44 0.45 3.50 0.49

Table 2: Human evaluation.

Quora dataset contains approximately 140K parallel sen-
tences, which are sourced from question answering forum
Quora. The Wikianswers dataset [Fader et al., 2013] com-
prises 2.3M pairs of question paraphrases scraped from the
Wikianswers website. On these two datasets, we adopt the
same data splits with Hosking and Lapata [2021] for a fair
comparison. Due to the complexity of rule learning, we
limit our work to questions for the following two consider-
ations: (1) The space of possible rules is smaller for ques-
tions than generic utterances, making the rule learning task
more tractable; (2) It is more clearly defined for the concept
of question paraphrases (i.e., corresponding to the same an-
swer), thus leading to a better quality of the datasets.

4.2 Implementation Details

The paraphrase generators PG, and PGg adopt the Trans-
former architecture and the previous best performing para-
phraser model (i.e., SEPARATOR), respectively. To have a
fair comparison with SEPARATOR, we use the same hyper-
parameters with it.

The other hyperparameters involved in our method include
the minimum number C,,;,, of the matched samples for a rule
and the improvement threshold 7 of the generator loss. As the
training of the rule learner is time-consuming (approximately
8 days), these two hyperparameters were selected by manual
tuning towards the paraphrasing performance on the valida-
tion set on Quora. The minimum number C,,;,, of matched
samples was set to 16. The improvement threshold 7 of the
generator loss is 0.2.

4.3 Competing Methods and Metrics

The competing methods used in our work include SEPARA-
TOR [Hosking and Lapata, 2021], vector-quantized varia-
tional autoencoder (VQ-VAE) [Van den Oord et al., 20171,

diverse paraphraser using submodularity (DiPS) [Kumar et
al., 20191, and latent bag-of-words (LBoW) [Fu et al., 20191,
paraphraser by neural machine translation (ParaNMT) [Wiet-
ing and Gimpel, 2017], and neural syntactic preordering (de-
noted by SOW/REAP) [Goyal and Durrett, 2020].

Besides the neural-based approaches, we would compare
RULER with the rule-based methods. However, the extracted
rules of early work [Mckeown, 1983; Barzilay and Lee, 2003]
were not available. We are unable to compare them in this
paper. Therefore, we implement a rule-based control model
named HardMatch. HardMatch shares the same framework
with RULER but generates rules by the token-wise matching
rather than the rule learner. The extracted rules of HardMatch
are scored using iBLEU instead of S(r). We also include a
simple baseline named tf-idf. It retrieves the most similar
sentences from the training set using tf-idf scores.

We adopt BLEU, iBLEU, and METEOR scores as au-
tomatic metrics to evaluate the generation performance.
Among them, iBLEU is the BLEU score penalized by the
similarity with the original sentence. It is more comprehen-
sive for evaluation, and thus we take it as our major metric.

iBLEU = ABLEU(Y,)) — (1 — A)BLEU(Y, X), (19)

where ) is the reference cluster of the input. We follow Hosk-
ing and Lapata [2021] to set A to 0.7.

4.4 Results

Table 1 presents the performance of all competing methods
on Quora and Wikianswers. We observe that, the Copy, tf-
idf and ParaNMT methods show high BLEU scores but the
lowest iBLEU scores, indicating that they are just parroting
input sentences. The encoder-decoder frameworks, including
Transformer, LBoW, VAE and SEPARATOR achieve higher
iBLEU scores, which is mainly benefited from the supervised
training data. However, such improvement comes with the re-
duction of the similarity with references. We further observe
that RULER yields better results than the other paraphrasing
systems, even the previous state-of-the-art model (i.e., SEP-
ARATOR). In addition, the generation performance of Hard-
Match is also impressive, reflecting that the extracted rules by
hard matching could also enhance the paraphrase generation
process. But RULER can outperform it by a noticeable mar-
gin. This comparison shows that the rules underlying para-
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Wikianswers—Quora Quora— Wikianswers
Model iBLEU BLEU METEOR iBLEU BLEU METEOR
Unsupervised Copy -7.17  32.61 60.06 -4.03  37.10 63.17
Domain adapted CGMH [Miao et al., 2019] -1.08  15.79 44.35 -0.32  18.13 31.87
P UPSA [Liu et al., 2020] -0.33  17.85 47.82 0.28  20.83 33.25
LBoW [Fu et al., 2019] 1.24 7.05 27.16 3.71 16.87 29.03
No adantion VAE [Gupta er al., 2018] 1.29 7.28 27.23 0.13 2841 49.83
P SEPARATOR [Hosking and Lapata, 2021] 1.78 6.28 27.03 6.09 17.32 29.76
RULER 2.57 7.79 28.13 6.15 17.62 30.36

Table 3: Cross-domain performance from the Quora (or Wikianswers) dataset to the Wikianswers (or Quora) dataset.

Method iBLEU BLEU METEOR
RULER 5.86  15.02 46.19
PGg inference w/o rules transformation 5.69 14.87 45.79
PGy training w/o rules 548 1435 45.14

Table 4: Ablation study.

phrasing can not be well extracted by simple matching.

It is curious to see how the paraphrase generators perform
on a new domain where most sentences are not seen before.
In this experiment, a supervised model is trained on one do-
main and directly tested on the other. As shown in Table 3,
the generation performance of supervised methods decreases
drastically on out-of-domain sentences. In addition, we also
add two domain-adapted methods, including CGMH [Miao
et al., 2019] and UPSA [Liu et al., 2020] into comparison.
They are unsupervised paraphrasing methods but also per-
form adaption to the target domain. We find that our approach
RULER still obtains better results than all the other methods.
We conjecture this is because some of the extracted rules are
shared across different domains, which makes RULER more
generalizable to the out-of-domain data.

Human Evaluation. In addition to automatic evaluation,
we ask three human annotators to evaluate the paraphrases
generated by several competing generators (including SEPA-
RATOR, VAE and LBoW). We use a total of 200 questions
sampled equally from both Quora and Wikianswers. Each an-
notator is asked to evaluate generated paraphrases in terms of
semantic relevance and expression dissimilarity, scoring from
1 to 5. Note that this experiment is conducted in a blind man-
ner. The average human scores and Cohen’s kappa scores are
shown in Table 2. Most of the agreement scores are above
0.4, indicating moderate inter-annotator agreement. We ob-
serve RULER achieves the highest human satisfaction scores
in terms of semantic relevance, and SEPARATOR performs
better in expression dissimilarity. Compared with SEPARA-
TOR, RULER presents a large advantage in semantic rele-
vance and small drops in dissimilarity.

5 Model Analysis

Ablation Study. We then probe the influences of differ-
ent design choices of the paraphrase generator to the per-
formance of RULER. As shown in Table 4, if the generator
PGg uses the rules for training but does not use the rules to
transform the input, the performance decreases by about 0.1
iBLEU. However, if we do not use any rules for training, the
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Input How do i become an investment banker? What do they do
Matched rule How do i become $2? What do they do —

What is the best way to be $z
RULER What is the best way to be an investment banker
SEPARATOR How can i become an investment banker

Input What is Taylor Swift ’s nationality

Matched rule What is $z ’s nationality — What nationality is $z
RULER ‘What nationality is Taylor Swift

SEPARATOR What is Taylor Swifts nationality and why

Do wild animals suffer immensely when hunted by a
Input wild predator, or are there mechanisms at work (such

as adrenaline) that alleviate any suffering
Matched rule None

Does wild animal suffer immensely when hunted by a
RULER . .

wild predator, or are there any related mechanisms
SEPARATOR Are wild animals more dangerous than wild animals

Table 5: Paraphrases generated by RULER and SEPARATOR.

performance decreases heavily, suggesting the superiority of
RULER mainly stems from the improvement of the quality
of training data. We hope this observation provides a new
perspective on how to use rules in neural networks.

Case Study and Error Analysis. We showcase several
generated rules and corresponding paraphrases in Table 5.
We see qualitatively that RULER produces more reasonable
paraphrases than SEPARATOR in terms of both closeness in
meaning and difference in expressions. In these examples,
SEPARATOR just changes a few inconsequential words. By
leveraging learned rules, RULER can make global modifica-
tions to the inputs. Meanwhile, RULER fails to provide suit-
able rules for some complicated sentences.

6 Conclusion and Future Work

Abstract rule learning is the ability to find generalizable
transformations from the perceptual input to the desired out-
put [Marcus er al., 1999]. In this paper, we explore it in a
specific problem, i.e., paraphrase generation. Our proposed
method, RULER, first learns the abstract rules by reinforce-
ment learning and then generates paraphrases by taking the
rule-enhanced input as an auxiliary input. In the future, we
plan to perform symbolic reasoning based on learned rules in
hopes of generating more syntactically different sentences.
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