Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

Competitive Analysis for Multi-Commodity Ski-Rental Problem

Binghan Wu, Wei Bao, Dong Yuan and Bing Zhou
Faculty of Engineering, The University of Sydney

biwu6051 @uni.sydney.edu.au, {wei.bao, dong.yuan, bing.zhou } @sydney.edu.au

Abstract

We investigate an extended version of the classical
ski-rental problem with multiple commodities. A
customer uses a set of commodities altogether, and
he/she needs to choose payment options to cover
the usage of each commodity without the knowl-
edge of the future. The payment options of each
commodity include (1) renting: to pay for an on-
demand usage and (2) buying: to pay for the life-
time usage. It is a novel extension of the classical
ski-rental problem which deals with only one com-
modity. To address this problem, we propose a new
online algorithm called the Multi-Object Break-
Even (MOBE) algorithm and conduct competitive
analysis. We show that the tight lower and upper
bounds of MOBE algorithm’s competitive ratio are
—<7 and 2 respectively against adaptive adversary
under arbitrary renting and buying prices. We fur-
ther prove that MOBE algorithm is an optimal on-
line algorithm if commodities have the same rent-
to-buy ratio. Numerical results verify our theoret-
ical conclusion and demonstrate the advantages of
MOBE in a real-world scenario.

1 Introduction

The classical ski-rental problem [Karlin er al., 2003] de-
scribes the dilemma where a customer trades off between two
payment options for one commodity without the knowledge
of the future: 1) renting, the customer only pays for an on-
demand usage; 2) buying: the customer pays for lifetime us-
age at once, and no further payment will be incurred after
that. Existing works have obtained the optimal online algo-
rithm by minimizing the competitive ratio and extending the
problem to adopt more complex payment options [Fujiwara
et al., 2020; Patt-Shamir and Yadai, 2020; Wang et al., 2020;
Wu et al., 2021].

However, literature performs sub-optimally when the cus-
tomer uses a set of commodities altogether and each com-
modity is rented/brought individually. In this paper, we fo-
cus on this multi-commodity ski-rental problem. In this case,
simply applying the classical ski-rental algorithm causes de-
graded performance in terms of competitive ratio. For exam-
ple, we consider a ski-helmet-suit rental problem as follows:

4672

When a customer goes skiing, he/she needs a pair of skis, a
helmet, and a suit (three commodities) every time. Each com-
modity is rented or bought individually. Suppose the prices
of buying each commodity are all $10, and the rental prices
are all $0.1. If we employ the classical ski-rental algorithm
on each commodity, the customer will buy all commodities
when he/she goes skiing for the hundredth time. Then, the

competitive ratio is % = 1.99. (Note that by em-
ploying the classical ski-rental algorithm, 2 bounds the com-
petitive ratio for all possible situations [Karlin et al., 2003],
and 1.99 is the optimal competitive ratio in this example.)
However, what out of the expectation is that 1.99 is no longer
the optimal competitive ratio here. The customer can buy
the three commodities at the 45®, 77%, and 100™ time of use
respectively. It surprisingly reduces the competitive ratio to

4.447.649.9430 __ : ;
ity = 1.73. The ratio of 1.73 is reached when

three commodities are used 100 times.

An online algorithm jointly considering multiple com-
modities can improve the competitive ratio, however, the
problem then becomes more challenging due to the follow-
ing reasons. First, arbitrary commodities can be involved in
the system. We need to design an algorithm to systematically
consider all involved commodities and their payment options,
which produce a large solution space. Second, different com-
modities may have different rent-to-buy ratios. Such unbal-
anced commodities further complicate choices between rent-
ing and buying. Finally, although we may reduce the compet-
itive ratio through the joint considerations of commodities,
this reduction should have a limit. We also aim to answer
how much the competitive ratio can be reduced.

Please note that besides the aforementioned ski-helmet-suit
rental problem, there are many real-world examples of the
multi-commodity ski-rental problem. Here are some more
examples.

1. Bahncard problem [Fleischer, 2001] with bus and
train. A customer takes the bus and train (two commodities)
to go to work. For each type of transportation (commodity),
he/she has two payment options. The first option is paying for
a one-time ride (renting), and the other is purchasing a Bahn-
card to cover the monthly ride (buying). In the past, one could
reliably estimate the times of commutes per month to decide
whether to buy a Bahncard. However, due to the COVID-19
pandemic, people may work from home for a number of days
in a month, and the number of commutes in one month is

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

uncertain.

2. Cloud service acquisition problem with multiple ser-
vice components [Wang et al., 2015]. The customer utilizes
multiple service components (commodities) including virtual
machines, storage, and serverless messaging to implement a
cloud application. Every time the application is used, the
customer must choose among payment options of each ser-
vice component (commodity) to cover the usages. The pay-
ment options include 1) pay-as-you-go (PAYG): to pay for the
on-demand usage of one service component (renting), and 2)
reservation: to pay an up-front fee without further cost for
one service component (buying). By convention, the litera-
ture assumes no prior statistics of the usages due to the high
fluctuations [Guo et al., 2019] of the workloads and statisti-
cally non-stationary demands [Stewart et al., 2007]. Please
note that we use this scenario in our trace-driven experiment
in Section 6.2.

Our Contributions. In this paper, we investigate the
multi-commodity ski-rental problem. Given a commodity
set with multiple commodities and the corresponding rent-
ing/buying costs, our objective is to minimize the overall
competitive ratio. To address this issue, we propose Multi-
Object Break-Even (MOBE) algorithm with N thresholds of
cost corresponding to the N commodities. When the accumu-
lated rental cost of a commodity reaches its threshold, the al-
gorithm buys this commodity. Otherwise, the algorithm rents
it to cover the usage. We prove an —*5 tight lower bound
for the competitive ratio of MOBE, and further show that this
bound is optimal when all the commodities share the same
rent-to-buy ratio. In addition, we propose an O(N?) algo-
rithm to obtain the N thresholds for the MOBE algorithm.
We prove that the calculated thresholds lead to the optimal
competitive ratio with the same rent-to-buy ratio commodi-
ties. Finally, we perform a trace-driven experiment to ver-
ify our theoretical analysis and compare the performance in a
real-world scenario with benchmarks.

2 Related Work

The ski-rental problem [Karlin et al., 2003] deals with the
trade-off between “renting” or “buying” without the knowl-
edge of the future. It is a typical online scheme addressed
by minimizing the competitive ratio. Recent works have
investigated many variants of the classical ski-rental prob-
lem. [Fujiwara er al., 2020; Hu and Xu, 2017] studied the
multi-slope ski-rental problem where the customer was pro-
vided with multiple extra payment options that charged both
a one-shot up-front fee and per-use fees. [Ai er al., 2014,
Wang et al., 2020] studied the multi-shop ski-rental problem
where different shops had different rent/buy prices. [Patt-
Shamir and Yadai, 2020] analyzed the non-linear ski-rental
problem where the pay-per-use cost is a continuous mono-
tonic function of time. [Zhang and Conitzer, 2020] consid-
ered the system with multiple resources and the buying cost
was a submodular function of the complementary set of what
had been brought. [Wu ef al., 2021] proposed the two-level
ski-rental problem with multiple commodities. In addition to
renting or buying a single commodity, all commodities could
be brought together as a “combo purchase”. However, when

4673

the “combo purchase” is disabled, their work is reduced to N
independent classical ski-rentals for N commodities, which
is essentially different from ours. [Fleischer, 2001] studied
the Bahncard problem where the customer can buy a Bahn-
card to receive a discount on the rental cost.

The ski-rental problem is widely applied in real-world ICT
systems where many problems can be modeled as the “rent
or buy” predicament. [Wang et al., 2015] investigate the
problem of reserving homogeneous infrastructure as a service
(IaaS) instances. At each time, the user may request mul-
tiple instances, and the decision-maker must decide to rent
or buy enough instances to satisfy the request. [Khanafer et
al., 2013] studied the trade-off in web applications. For each
query, a web application can choose whether to save (buy) the
response in the cache, so as to avoid repeat computation (rent)
in the future. [Saha et al., 2018] applied the ski-rental prob-
lem to the wireless channels leasing problem. The operator
has to choose between better but paid channel quality and de-
graded channel quality with no charges without knowing the
customer’s demands and the channel availability. Their work
proves that the competitive ratio’s upper bound is strictly less
than 4. Different from all the above works, this paper utilizes
the characteristic that the customer uses multiple commodi-
ties altogether as a novel extension of the classical ski-rental
problem.

3 Problem Formulation

3.1 System Overview

The system is formulated by a commodity set S consisting
of multiple commodities, which a customer will use unpre-
dictably. Whenever the commodity set is used, all commodi-
tiess; €S, i =1,2,...,|S| are used once, and the decision-
maker (customer) needs to pay for the use of them all. There
are two payment options for each usage of commodity s;: (1)
Renting: the user pays d; for the on-demand usage. We as-
sume that every time of use incurs the same cost d; for s;.
(2) Buying: the customer immediately pays c;, and the com-
modity will not incur any further payment. Let the set of all
possible commodity sets as S. In general, the commodities

81,82, .-.,8|s|in S € S can be either homogeneous (d; = d
and ¢; = ¢y, Vi, i’ € {1,2,...,]S|}) or heterogeneous (not
homogeneous).

Whenever the commodity set is used, the customer must
choose between the two payment options to cover the usage
cost of each commodity in S. Let d;(j) and 7;(j) be the 0-1
decision on commodity s; made by the customer at the " use
of the commodity set, where

. 1, if the customer pays by renting,
0;(j) =) 1
() {0, otherwise, M

. 1, if the customer buys s;

; —))) 2
7)) {O, otherwise. &

For any given system, the input can be defined by the total
times of use of the commodity set, so the input space is Z* =
{1,2,3,...}. For any feasible input € Z™, the cost of any

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

given algorithm ALG is defined as the following:

z ||

=2 (6

Jj=11i=1

ALG a? S +'72) z) 3)

Please note that for the j™ use, it must be covered either by
renting of the j™ use or buying on or before the ;™ use.

3.2 Online Environment

In this paper, we assume no prior usage statistics. We apply
an adaptive adversary who knows the algorithm taken by the
customer, and it can decide whether there will be another use
of the commodity set according to history decisions. It is the
most general type of adversaries [Boyar et al., 2020].

Conventionally, in this environment, the performance of
the customer’s commodities acquisition algorithm is mea-
sured by the competitive ratio [Karlin er al., 2003]. To in-
troduce this concept, we need to first introduce the offline op-
timal algorithm which serves as the performance benchmark.
For each commodity, the offline optimal algorithm either buys
it at the very beginning or rents it forever. Suppose « is the to-
tal number of uses chosen by the adversary and is also known
by the offline optimal algorithm, the optimal algorithm can
simply make decisions by taking the minimum between the
renting cost and the buying cost. Formally, let OPT(z, S)
be the cost of the offline optimal algorithm that knows z in
advance, then we have

S|

OPT(z,S) Zmln x-d;,c). 4)

The notion of competition ratio is how close the perfor-
mance of the online algorithm is to the performance of the
offline optimal algorithm. As defined by (5), the competitive
ratio is the maximum ratio between the online algorithm’s
cost and the offline optimal algorithm’s cost among all pos-
sible inputs, which serves as the “worst” case performance
guarantee. Since the online algorithm could not perform bet-
ter than the offline optimal algorithm, R*(S) > 1 for all S.
The smaller the competitive ratio, the better the online algo-
rithm.

AL
R*(S) = arg max G(z,8)

z€Zt OPT(ZZZ S) (5)

Please note that if we consider all commodities in S as
a whole with renting cost d = ZS es di and buying cost
¢ = Y, cs Ci» the problem can be modeled by the classical
ski-rental problem [Karlin et al., 2003]. It has been proved
that the best possible competitive ratio for the classical ski-
rental problem against the adaptive adversary approaches to
2. However, this method shrinks the solution space and ig-
nores that the customer utilizes commodities altogether. On
the contrary, we allow buying some commodities first while
buying others later. In this case, the solution space is larger,
and thus we have a chance to obtain a better competitive ra-
tio.

4674

4 MOBE Algorithm

4.1 Preliminaries

Suppose it is the J" time to use the commodity set. We define
the typical cost for the commodity s; as the following:

> 6i(4)ds. 6)

J€[L,J]

o; stands for the rental cost on commodity s; until now (the
J® usage). For the current usage, we let §;(j) = 1 to calcu-
late the typical cost even though the algorithm has not made
any decision.

Let® = {91,92,...,
ties in S where

f)s|} be the thresholds for commodi-

Whenever the typical cost of commodity s; exceeds 6;, we
buy commodity s;. At that time, the algorithm invests ¢; with-
out incurring any further rental cost on s;.

4.2 MOBE Algorithm

Algorithm 1 defines MOBE algorithm formally. The algo-
rithm is awakened when the commodity set is used (Line 1).
For each commodity, if it has been brought, then there is no
further decision needed (Line 3). Otherwise, the algorithm
computes the typical cost for the commodity (Line 4). If the
typical cost o; of commodity s; reaches 6;, the algorithm buys
s; (Lines 5). Otherwise, when the typical cost is smaller than
the threshold, the algorithm covers the payment by renting
(Line 6).

MOBE algorithm buys a commodity if it has incurred
enough costs by renting, which is defined by the correspond-
ing threshold and measured by the typical cost. The perfor-
mance of MOBE algorithm relies heavily on the thresholds.
Our designed thresholds for MOBE algorithm are calculated
by Algorithm 2. Please note that Algorithm 2 further calls Al-
gorithm 3 to search for subsets of thresholds by binary search.

4.3 Discussion on Threshold Solver and
Sub-Threshold Solver
To solve the thresholds for commodities, we need to consider

two characterizing dimensions: (1) rent-to-buy ratio; (2) buy-
ing cost. The rent-to-buy ratio measures the relative price

Algorithm 1: Multi-Object Break-Even (MOBE)

input: S = {81782, ce ,SN}, e = {91792, AN ,9]\]}
(To be computed by
Threshold_Solver (S))

1 if the commodity set S is used then

2 for i < 1to N do

3 if s; has not been brought then

4 compute 0,

5 if o; > 0, then buy commodity s;;
6 else rent commodity s;;

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

between renting and buying. First, the rent-to-buy ratio in-
fluences the decision. For example, we are not urgent to buy
a $100 commodity if the rental price is only $1. However,
we may have to be decisive if the rental price is raised up to
$80 because the cost of renting twice is more expensive than
buying. Second, the buying cost influences the decision in an-
other way. Suppose we have two commodities with the same
rent-to-buy ratio, and the buying costs are $1 and $100. We
tend to buy the cheaper one before the more expensive one
because once we buy a commodity, the buying cost becomes
our sunk cost, and we are more conservative to a larger sunk
cost.

Algorithm 2 solves the thresholds for all S € S. Following
the above observation, Algorithm 2 first separates S into mu-
tually exclusive subsets S7 Vj = 1,2,...,T by descending
order of rent-to-buy ratio in Lines 1-2. Then, within each S,
Algorithm 2 sorts commodities by the ascending order of the
buying cost in Line 4.

In Line 7, we call Algorithm 3 to solve thresholds
for commodities in each S7. Please note that all the
thresholds of commodities are computed exactly once since
Ujoro,. 7S =SandS'NSI = ¢ Vi # j.

Define S, C S by

5. —{s

S, is the set of commodity sets where all commodities have
the same rent-to-buy ratio. Please note that S7 € S,, Vj =
1,2,...,T.

Algorithm 3 is designed to solve sub-problems produced
by Algorithm 2. The input is VS € S,, and it computes
thresholds by performing a binary search on 6;. First, it ini-
tializes the maximum and minimum bounds of #; (Lines 1—

SESandd%:dj:,Vsi,SjGS}. ®)

C; ¢y

2). In the loop, it iteratively computes 65, 63, . .., 65 accord-
ing to the following formula in Line 6:
di C;
. 1—1 i—1
i <Zq_1 04 + Zp:l Cp)

Algorithm 2: Threshold_Solver

input : S = {s1,52,...,5n}
output: © = {0;,0,,...,0n}
1 71,72,...,r7 = all T different values of% in

descending orderVs; € S;
2 SV = {si‘d“’ =ry, Vs; € S} Vi=1,2,...,T;

Ci

3 for j < 1toT do

4 sort 87 in ascending order of buying cost;
5 denote S7 as {s{,séw..,sgw};
6 denote 1d (j,i) as the index ofsg in set S, i.e.

J _ .

Si = Sid(ji) >

7 9id<j,1>,91d<j,2),-~-,9id(j,M) =
Sub_Threshold_Solver (S7);

8 rgturn@ ={01,04,...,0N}

4675

Algorithm 3: Sub_Threshold_Solver

input :S = {s1,82,...,5n8}
output: © = {6,,0,...,0x}

el,max = C1;

ol,min = O;

while true do
91 = (el,max + Hl,min)/Q;
fori + 2to N do

L compute 0; according to (9);

if |05 — cn| < € then break;
elseif O > cn then 01 yax = 01
else 01 min = 01;

return © = {60,605, ...

=7 I N R SR

e ® 3

agN}

—
>

If Oy is close enough to ¢y, we stop the loop and return the
results (Line 7). Otherwise, we update the upper/lower bound
(Lines 8-9), and then update 6, (Line 4) in the next iteration.
Please note that the termination condition in Line 7 implies
that thresholds are optimal when 0y = cy.

5 Performance Analysis

As a specification of (3), we define ALG(x, S, ©) as the cost
of MOBE given input z € Z* on the commodity set S € S
with threshold ©, and

ALG(z,S,0)
OPT(z,S)
as the competitive ratio of MOBE on the commodity set S

with threshold ©.
For any given input S € S and the corresponding threshold

©, we are interested in the competitive ratio R*(S, ©). We
have the following theorem to compute it numerically.

R*(S,0) = arg max

z€eZt

(10)

Theorem 1. Algorithm 2 solves the numerical competitive
ratio for all S € S for MOBE algorithm.

Given Theorem 1, we can compute the competitive ratio
before the actual operation, so that we can have a clear ex-
pectation of how MOBE performs.

Beyond the numerical competitive ratio of a specific S, we
can bound the competitive ratio for all possible commodity
sets to develop an explicit frame of what performance we can
expect from MOBE algorithm. To show this bound, we have
the following two theorems:

Theorem 2. The competitive ratio of MOBE algorithm is
bounded by —% and 2, i.e. for all commodity sets S € S

e—1

we have arg ming R*(S,0) € [- 2}.

e—17

One step further, we also have Theorem 3 to show that this
bound is tight.

Theorem 3. [<

e—1?

2} is the tight bound of MOBE algorithm.

It is neutral to see 2 serves as the upper bound, because
[S| = 1 is the special case when it is reduced to the clas-
sical ski-rental problem and 2 is reached. —=5 =~ 1.582 is
a neat lower bound of the competitive ratio. This bound is

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

reached when S contains a large number of homogeneous
commodities (same d; and same ¢; for all s;). When |S| =
10, 20, 50, and 100 (homogeneous commodities), numerical
results show the competitive ratios are 1.631,1.606, 1.592,
and 1.587, respectively, approaching —<5.

In many real-world cases, the commodities in the commod-
ity set have the same rent-to-buy ratio. For example, rent-to-
buy ratios of AWS saving plans for nano, small, medium, and
large EC2 are the same [AWS, 2021c]. In that case, there is
a need to further investigate the performance of MOBE given
the set of commodities with the same rent-to-buy ratio. First,
we prove that for all deterministic online algorithms, —<= is

e—1
the lowest possible competitive ratio by Theorem 4.

Theorem 4. VS € S, (same rent-to-buy ratio), =5 is the
optimal competitive ratio lower bound for any deterministic

online algorithm.

Further, we have Theorem 5 to show that the thresholds
calculated by Algorithm 2 are optimal for all S € S,..

Theorem 5. VS € S, Algorithm 2 returns optimal thresh-
olds.

Theorem 5 means that with the special case of S € S,., our
algorithm is the best possible solution, and MOBE algorithm
is the optimal algorithm.

In addition to the above performance bounds, an ideal al-
gorithm should solve the problem efficiently. However, solv-
ing the competitive ratio can be very costly because the so-
lution space grows exponentially with the number of com-
modities. We have the following theorem which ensures that
Algorithm 2 works in polynomial time.

Theorem 6. Algorithm 2 operates in O(|S|?).

6 Evaluation

In this section, we first verify the theoretical performance of
MOBE algorithm. Then we conduct a trace-driven experi-
ment to compare the performance with benchmarks.

6.1 Competitive Ratio Verification

Define S, C S as the set of all commodity sets with homo-
geneous commodities, i.e. VS € S, we have d; = d;, and
C; = Cy, VSi,Sj eS.

We show how (9) minimizes the competitive ratio for S €
Sp and S € S, by Fig. 1. In Fig. 1-(a), we adopt 5 homoge-
neous commodities with d = 1 and ¢ = 100, and in Fig. 1-
(b), we adopt commodities with renting costs 1, 1.5,1.5,2, 3;
and 1(1)—0 as the rent-to-buy ratio. In both figures, we can see
five peaks in the ratio between the MOBE’s cost and the of-
fline optimal algorithm’s cost, which are caused by buying
commodities as the number of uses grows. (9) ensures all the
peaks have the same online/offline cost ratio, so it minimizes
the maximum ratio between MOBE algorithm’s cost and the
optimal cost.

Fig. 2 verifies the numerical competitive ratio for non-
uniform rent-to-buy ratio commodities. We demonstrate three
groups of experiments by sub-figures (a), (b), and (c), and
each group contains four rounds of experiments with differ-
ent buying costs and rent-to-buy ratios. The yellow bar shows

Group | Renting Cost | Round Rent-to-buy Ratio
A T T T T I
80’ 80’ 80’ 80 100
B B R S |
) b))
1 1,1,1,1,1 C U L
R0’ R0’ 100 100° 100
D T 1 I I 1
802 100 100 100’ 100
E T 1 1 1 1
50° 50° 507 50° 100
F 11T 1 1 1
2 1,1,1,1,1 502 50° 50° 100 100
T G 11 1T 1 "1
50’ 50’ 100° 100° 100
H 1 I T 1 1
502 100 100 700’ 100
i 11T -1 "1 T
80’ 80’ 80’ 80’ 100
1] T T 1 1 1
3 1,2.3.3,3 302 80’ 80’ 100° 100
T K I -1 1T "1 "1
80’ 80’ 100 100° 100
L T 1 1 T 1
R0 100 100 1002 100
Table 1: Experiment parameters for Figure 2
1.7 ma e 1.7 (=mopmmge o mmg == -
_816 I l' 1 1 : _816 1 H I :
815 :,;'\ 8150 % '\N/\'\!
5,_1.4 ! i - 1.4 i H
g1.3 P -X- alg/opt | 8137 | N--- alg/opt
512 | : 12 | *
< 1.1 P R <ll ! ---- R
1.0 1.0 { o

0 20 40 60 80100
number of calls

0 20 40 60 80100
number of calls

(a) Homogeneous service com- (b) Same rent-to-buy ratio ser-

ponents vice components

Figure 1: ALG/OPT ratio with different number of uses

the numerical competitive ratio for MOBE algorithm, and the
blue dots show experimental competitive ratios given random
inputs. Each yellow bar (one round) contains 50 blue dots
(experimental ratios). The detailed experiment parameters
are shown in Table 1.

As shown in Fig. 2, all the experimental ratios are less
or equal to the numerical competitive ratio. All the groups
have the experimental ratio equal to the numerical competi-
tive ratio, which shows that the numerical competitive ratio
can be reached and the bound is tight. Comparing Group 1
and Group 2, in the case of the same renting price, the more
the rent-to-buy ratio tends to be the same, the better the com-
petitive ratio. Comparing Group 1 with Group 3, when the
rent-to-buy ratios of the two groups are equal, the more the
renting costs within the group tend to be equal, the better the
competitive ratio.

6.2 Trace-driven Experiment

In this subsection, we adopt our results in the cloud service
acquisition problem with multiple service components (i.e.,
commodities) with a real-world data set [Kamal, 2019], as de-
scribed by example 2 in the introduction. Our commodity set
implements a flexible fire alarm web application. It consists
of service components that aim to provide fire information
when a forest fire happens. The web service utilizes the AWS
Fargate and AWS SageMaker notebook xlarge serverless
technologies. We set three typical configurations for Fargate
instances: (1) web server: 8 vCPU and 16 GB memory; (2)

4676

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

2.4 . 2.4 .
_32_2 - experiment _22_2 - experiment
©2.0 R* ©2.0 R*
2 1.8 - . 2 1.8 .
816 i ! 816 Vi
514 | & 514| | | e
©1.2 s ©1.2 i
1.0 A B C D 1.0 E F G H
different S different S
(a) Group 1 (b) Group 2
2.6 .
024 - experiment
?S 2.2 R *
Z20 .
21.8 . * .
L1.6(. i]
214 I
1.2 I 0 | i
1.0 | J K L
different S
(c) Group 3

Figure 2: R™ of different rent-to-buy ratio service components

Component PAYG/hour (rent) | Reservation (buy)
Web Server $0.395 $4982
Micro Service $0.790 $9964
Middle-Ware $0.466 $5879
AWS SageMaker $0.408 $4699

Table 2: Service Components Price

micro service server: 16 vCPU and 32 GB memory; (3) mid-
dle ware (e.g. zookeeper, katka) 8 vCPU and 32 GB memory.
The pricing information is given in Table 2 [AWS, 2021b;
AWS, 2021al.

We added up the number of forest fires from 2008 to 2011
in the data set and obtained the number of forest fires in each
state in 3 years as the input. We assume that our flexible fire
alarm system needs to be on duty for 8 hours every time a
forest fire occurs.

We conduct the experiment in three groups. Group 1 uses
six web servers to simulate a small web application, Group
2 consists of 4 web servers, 8 micro services, and 6 middle-
wares to emulate a large web application, and Group 3 adds
4 SageMaker notebooks for fire forecasting upon Group 2.
In each experiment, we randomly select a state’s three-year
total number of forest fires from the data set. The results are
shown in Fig. 3. We evaluate the following algorithms and
benchmarks. (1) OP: the offline optimal algorithm; (2) MB:
MOBE algorithm; (3) SR: the classical ski-rental algorithm
for each service component; (4) AP: always choose PAYG
(rent); (5) AR: always reserve (buy).

The experiment is repeated 100 times for each group, and
we add up the total PAYG costs, the total reservation costs,
the total number of reserved service components, and the total
number of service components that are not reserved.

In all three groups, the accumulated cost of MOBE algo-
rithm is smaller than all online benchmarks. Compared to the
classical ski-rental algorithm, MOBE algorithm may reserve

le6

I reservation
I PAYG

4| EEE reservation

cost

o N W

OP MB SR AP AR

OP MB SR AP AR
(a) Experiment group 1: Fargate homogeneous

le7

I reservation
I PAYG

PAYG
HEl reservation

OP MB SR AP AR OP MB SR AP
(b) Experiment group 2: Fargate compound

le7

23500 mmm reservation

o
-5 3000

[
.§ 2500 PAYG
© 2000
‘6 1500

PAYG
HEl reservation

OP MB SR AP AR OP MB SR AP AR

(c) Experiment group 3: Fargate + Sagemaker

Figure 3: Performance comparison

a service component when the accumulated PAYG cost is less
than its reservation cost, and the performance is improved by
this early reservation. The number of service components re-
served by the classic ski-rental algorithm and the number re-
served by the offline optimal algorithm are always the same.
Compared with both of them, MOBE algorithm usually re-
serves more service components. So the early reservation
also brings risks of over-reservation. The power of MOBE
algorithm is the ability to balance the under-reservation and
the over-reservation. In sum, MOBE algorithm outperforms
the benchmarks in the average performance.

7 Conclusion

In this paper, we investigate the multi-commodity ski-rental
problem to resolve the dilemma of renting or buying a set of
commodities. We address this problem with competitive anal-
ysis and extend the results of the classical ski-rental problem.
We propose MOBE algorithm to compute the numerical com-
petitive ratio, and show that the tight lower and upper bounds
of MOBE algorithm’s competitive ratios are —; and 2 re-
spectively. This bound neatly extends the 2 competitive ratio
given by the classical ski-rental algorithm. Furthermore, we
prove that the competitive ratio is minimized and MOBE is
the optimal online algorithm when S € S, (same rent-to-buy
ratio). The MOBE algorithm is also efficient as the thresh-
old values can be derived in O(|S|?). Finally, we perform a
trace-driven experiment to verify the theoretical competitive
ratio and the results show that MOBE algorithm also outper-
forms benchmarks in terms of the average performance.

4677

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

References

[Ai et al., 2014] L. Ai, X. Wu, L. Huang, L. Huang, P. Tang,
and J. Li. The multi-shop ski rental problem. SIGMET-
RICS 2014 - Proceedings of the 2014 ACM SIGMETRICS
International ARTICLE on Measurement and Modeling of
Computer Systems, pages 463—475, 2014.

[AWS, 2021a] AWS. Amazon sagemaker pricing. https:
/laws.amazon.com/sagemaker/pricing/, 2021. Accessed:
2021-10-10.

[AWS, 2021b] AWS. Aws fargate pricing. https://aws.
amazon.com/fargate/pricing/nc=sn&loc=2, 2021. Ac-
cessed: 2021-10-10.

[AWS, 2021c] AWS. Compute savings plans. https://aws.
amazon.com/savingsplans/compute-pricing/?nc1=h_Is,
2021. Accessed: 2021-10-10.

[Boyar et al., 2020] J. Boyar, F. Ellen, and K.S. Larsen. Ran-
domized distributed online algorithms against adaptive of-
fline adversaries. Information Processing Letters, 161,
2020.

[Fleischer, 2001] R. Fleischer. On the bahncard problem.
Theoretical Computer Science, 268(1):161-174, 2001.

[Fujiwara er al., 2020] H. Fujiwara, K. Shibusawa, K. Ya-
mamoto, and H. Yamamoto. Bounds for the multislope
ski-rental problem. IEICE Transactions on Information
and Systems, E103D(3):481-488, 2020.

[Guo et al., 2019] J. Guo, Z. Chang, S. Wang, H. Ding,
Y. Feng, L. Mao, and Y. Bao. Who limits the resource
efficiency of my datacenter: An analysis of alibaba data-

center traces. Proceedings of the International Symposium
on Quality of Service, IWQoS 2019, 2019.

[Hu and Xu, 2017] M. Hu and W. Xu. A better bound of
randomized algorithms for the multislope ski-rental prob-
lem. RAIRO - Theoretical Informatics and Applications,
51(2):91-98, 2017.

[Kamal, 2019] Sani Kamal. Forest fires in india. https:
/Iwww.kaggle.com/sanikamal/forest-fires-in-india, 2019.
Accessed: 2021-09-19.

[Karlin et al., 2003] A.R. Karlin, C. Kenyon, and D. Ran-
dall. Dynamic tcp acknowledgement and other stories
about e/(e - 1). Algorithmica (New York), 36(3):209-224,
2003.

[Khanafer et al., 2013] A. Khanafer, M. Kodialam, and
K.P.N. Puttaswamy. The constrained ski-rental problem
and its application to online cloud cost optimization. Pro-
ceedings - IEEE INFOCOM, pages 1492-1500, 2013.

[Patt-Shamir and Yadai, 2020] Boaz Patt-Shamir and Evy-
atar Yadai. Non-linear ski rental. Annual ACM Symposium
on Parallelism in Algorithms and Architectures, page 431
— 440, 2020.

[Sahaeral,2018] G. Saha, A.A. Abouzeid, and
M. Matinmikko-Blue. Online algorithm for leasing
wireless channels in a three-tier spectrum sharing
framework. IEEE/ACM Transactions on Networking,
26(6):2623-2636, 2018.

4678

[Stewart et al., 2007] C. Stewart, T. Kelly, and A. Zhang. Ex-
ploiting nonstationarity for performance prediction. Oper-
ating Systems Review (ACM), pages 31-44, 2007.

[Wang et al., 2015] W. Wang, B. Liang, and B. Li. Op-
timal online multi-instance acquisition in iaas clouds.

IEEE Transactions on Parallel and Distributed Systems,
26(12):3407-3419, 2015.

[Wang et al., 2020] S. Wang, J. Li, and S. Wang. Online al-
gorithms for multi-shop ski rental with machine learned
advice. Advances in Neural Information Processing Sys-
tems, 2020-December, 2020.

[Wu et al., 2021] Binghan Wu, Wei Bao, and Dong Yuan.
Competitive analysis for two-level ski-rental problem.
Proceedings of the AAAI ARTICLE on Artificial Intelli-
gence, 35(13):12034-12041, May 2021.

[Zhang and Conitzer, 2020] H.Zhang and V. Conitzer. Com-
binatorial ski rental and online bipartite matching. EC
2020 - Proceedings of the 21st ACM ARTICLE on Eco-
nomics and Computation, pages 8§79-910, 2020.

https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/sagemaker/pricing/
https://aws.amazon.com/fargate/pricing/?nc=sn&loc=2
https://aws.amazon.com/fargate/pricing/?nc=sn&loc=2
https://aws.amazon.com/savingsplans/compute-pricing/?nc1=h_ls
https://aws.amazon.com/savingsplans/compute-pricing/?nc1=h_ls
https://www.kaggle.com/sanikamal/forest-fires-in-india
https://www.kaggle.com/sanikamal/forest-fires-in-india

	Introduction
	Related Work
	Problem Formulation
	System Overview
	Online Environment

	MOBE Algorithm
	Preliminaries
	MOBE Algorithm
	Discussion on Threshold Solver and Sub-Threshold Solver

	Performance Analysis
	Evaluation
	Competitive Ratio Verification
	Trace-driven Experiment

	Conclusion

