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Abstract

We study how to incentivize agents in a target sub-
population to produce a higher output by means
of rank-order allocation contests, in the context of
incomplete information. We describe a symmet-
ric Bayes–Nash equilibrium for contests that have
two types of rank-based prizes: (1) prizes that are
accessible only to the agents in the target group;
(2) prizes that are accessible to everyone. We also
specialize this equilibrium characterization to two
important sub-cases: (i) contests that do not dis-
criminate while awarding the prizes, i.e., only have
prizes that are accessible to everyone; (ii) contests
that have prize quotas for the groups, and each
group can compete only for prizes in their share.
For these models, we also study the properties of
the contest that maximizes the expected total out-
put by the agents in the target group.

1 Introduction
Contests—situations where multiple agents compete for valu-
able prizes—are prevalent in many real-life situations, includ-
ing sports, R&D races, crowdsourcing, college admissions
and job recruitment.1

The dominant paradigm in contest theory is to assume that
the principal designs the prize structure so as to incentivize
the agents to produce a higher total output. In this model, the
designer values the contribution from each agent equally, i.e.,
the marginal output produced by any agent contributes the
same marginal value to the designer’s objective. In this paper,
we break away from this assumption: instead, we assume that
the agents belong to two different groups and the designer
may want to prioritize one group—the target group—over the
other, non-target group.

Contests that give special importance to agents from a par-
ticular group are not uncommon in practice. Conferences give
best student paper awards, in addition to best paper awards.

∗Full version of the paper is available at http://arxiv.org/abs/22
04.14051.

1See the book by Vojnovic [2016] for an introduction to contest
theory and relevant resources.

Many competitions and hackathons are organized to elicit en-
gagement from underrepresented groups: for example, re-
cently Microsoft organized a hackathon as an intervention to
get women interested in AI.2 Contests are widely used for
crowdsourcing, which is also an important source of training
data for machine learning algorithms; in this context, eliciting
input from disadvantaged groups is particularly important, as
it helps the algorithms to learn decision-making rules that re-
flect opinions and preferences of such groups. Our work pro-
vides a better understanding of how to encourage contributors
from such groups.

In this paper, we study an incomplete information
(Bayesian) model. We assume that each agent is associated
with an ability, which captures the amount of output they can
produce per unit effort. In an incomplete information model
for contests, it is generally assumed that the abilities of the
agents are selected i.i.d. from a given distribution F . In our
model, based on the assumption that the agents belong to one
of the two groups, the abilities of the agents in the target and
the non-target group are sampled from two distinct distribu-
tions F and G, respectively. Each agent belongs to the tar-
get group with a fixed probability µ.3 The agents know the
prize allocation scheme, their own ability, and the prior dis-
tributions of other agents’ abilities. They act strategically to
maximize their expected utility, where the utility of an agent
is the prize they receive minus the effort they exert, and reach
a Bayes–Nash equilibrium. The contest designer knows the
prior distributions of the agents’ abilities, and therefore can
reason about the equilibrium behavior of the agents. She de-
signs the prize allocation scheme so as to elicit equilibrium
behavior that optimizes her own objective. We assume that
the contest designer has a budget of 1 to use for the prizes.

The contest ranks the agents based on their outputs and
awards the prizes based on the ranks. In our general model,
we assume that contests have two sequences of prizes, one
available to all agents, and the other available to the target
group only. A conference sponsoring a best student paper

2https://news.microsoft.com/europe/features/bridging-the-stem
-divide-ai-hackathon-helps-young-women-excel-in-computer-sci
ence/

3We assume that µ is known based on historical data on the num-
ber of participants from the target group compared to the total num-
ber of participants. Similarly, the distributions F and G are also
known from historical data.
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award in addition to a best paper award is an example of such
a contest. We also study two specific variants of this model.
In the first variant, all prizes in the contest are equally ac-
cessible to all agents, and there are no group-specific prizes.
One could come across such a design preference in situa-
tions where the contest designer does not want to discrimi-
nate among the agents, but still wants to incentivize an under-
represented agent group. In this case, the contest does not
discriminate while awarding the prizes, but the design of the
prize structure (i.e., the value of the first prize, second prize,
and so on) can incorporate the information about the ability
distribution of the agents. This model captures an equal op-
portunity employer that treats all applicants equally, but has
a preference to increase the diversity in the workplace. In
the second variant, the contest has group-specific prizes only,
with no prizes available to the entire population; examples in-
clude a hackathon for women in CS, or a hiring/scholarship
contest with a strict group-specific quota.

We assume that the contest designer wants to maximize the
expected output of the agents in the target group only. With
minor changes, the techniques can be extended to an objective
that maximizes the weighted sum of the group outputs and
other similar objectives.

1.1 Our Contribution
We initiate a theoretical study of contest design to
elicit higher participation by agents from under-represented
groups, and propose tractable models for doing so. We an-
alyze the equilibrium behavior of the agents for three cases:
general prizes only, where there is a sequence of rank-ordered
prizes accessible to all agents, whether in the target or the
non-target group; group-specific prizes only, where there are
two different sequences of prizes, each accessible to one of
the groups; both general and target group-specific prizes,
where there are prizes accessible to both groups as well as
prizes accessible to the target group only. The techniques
used to analyze the equilibrium in these contests can be ex-
tended to related prize structures.

Based on these equilibrium characterizations, we study the
properties of the contest that maximizes the total expected
output of the agents from the target group. For the setting
where all prizes are general, we prove that the optimal con-
test awards a prize of 1/` to the first ` agents and 0 to the
remaining agents, where ` is a function of the relative fre-
quency of target group agents, µ, and the ability distributions
of the target group, F , and the non-target group, G. We give
a closed-form formula for `. We also study the effect of first-
order and second-order stochastic dominance of F on G, and
vice versa, on the optimal contest. For the setting where all
prizes are group-specific, we show that it is optimal to award
the full prize budget to the top-ranked agent, irrespective of
the distributions F and G. This result matches similar results
on maximizing total output [Moldovanu and Sela, 2001]. We
also compare general prizes and group-specific prizes, and
show that either of these choices may be preferred depending
upon the distributions F and G, and also upon the frequency
of the target group agents in the population, µ, even if F = G.

All proofs and a few additional examples are given in the
full version of the paper.

1.2 Related Work
We discuss literature in contest theory directly relevant to our
work; we point the readers to the book by Vojnovic [2016]
for a broader survey on contest theory.

Moldovanu and Sela [2001] characterize the Bayes–Nash
equilibrium for contests with rank-order allocation of prizes
assuming incomplete information with i.i.d. types; Chawla
and Hartline [2013] prove the uniqueness of this equilibrium.
Moldovanu and Sela [2001] also show that awarding the en-
tire prize to the top-ranked agent is optimal when the agents
have (weakly) concave cost functions, but the optimal mech-
anism may have multiple prizes for convex cost functions. In
contrast, we observe that even for linear cost functions, it may
be beneficial to have multiple prizes to maximize the expected
output from the target group.

The standard assumption in mechanism design and its sub-
area of contest design is that the agents’ types are sampled
i.i.d. from some distribution. Our paper extends the equilib-
rium analysis of Moldovanu and Sela [2001] to an asymmet-
ric model where the agents are from two groups with dif-
ferent distributions. Amann and Leininger [1996] study an
asymmetric model with two agents with types sampled inde-
pendently from two different distributions; our analysis uses
the idea of the function ‘k’ introduced by them, see The-
orem 1. Characterizing equilibrium in contests with many
agents with types sampled independently from different dis-
tributions has remained technically challenging; recently Ol-
szewski and Siegel [2016; 2020] made progress by assuming
very large numbers of agents and prizes, where an individual
agent has infinitesimal effect on the equilibrium.

Bodoh-Creed and Hickman [2018] model affirmative ac-
tion in college admissions using contests. Their model has
general non-linear utility and cost functions, but, like Ol-
szewski and Siegel [2016; 2020], they assume that the num-
bers of agents and prizes are very large. They give first-order
equilibrium conditions and show that two types of affirmative
actions—(i) admissions preference schemes, where the out-
puts of agents from the target group are (artificially) amplified
before ranking and prize allocation, and (ii) quotas, where
there are separate pools of seats for the different groups (sim-
ilar to our group-specific prizes only model, Section 3.3)—
have the same sets of equilibria with identical actions by the
agents and identical outcomes. Our model makes a stronger
linearity assumption regarding the utility and the cost func-
tions, which allows us to better characterize the equilibrium
and study the optimal contest (prize) design problem.

There is a long line of literature on the effect of differ-
ent types of affirmative action on contests. This literature
generally assumes that there is only one prize, which ei-
ther gets allocated to the top-ranked agent or gets allocated
proportionally (Tullock [1980] contests and their generaliza-
tions), and the contest designer introduces different kinds of
interventions in the allocation of this prize. One such in-
tervention is favoritism, where the objective is to maximize
the total output by giving head-starts or handicaps to cer-
tain agents (see, e.g., [Kirkegaard, 2012; Fu and Wu, 2020;
Deng et al., 2021]). A head-start adds a bonus to an agent’s
output, while a handicap decreases an agent’s score by a fixed
percentage. See [Chowdhury et al., 2020] for a survey on

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

280



contests and affirmative action.
Our work deviates from the widely studied objective of

maximizing total output, by focusing on the output of a target
group. Several papers have studied objectives other than the
total output, such as maximum individual output [Chawla et
al., 2019], cumulative output from the top k agents [Archak
and Sundararajan, 2009; Gavious and Minchuk, 2014], total
output of agents producing output in a given range [Elkind et
al., 2021]. Elkind et al. [2021] target agents based on their
output level, and therefore, effectively, based on their abili-
ties; our work targets agents based on their group association,
with the assumption that exogenous factors may have caused
agents in some groups to have acquired less ability.

There are also several papers that perform equilibrium
analysis and optimal contest design in the complete informa-
tion setting (e.g., [Baye et al., 1996; Barut and Kovenock,
1998; Siegel, 2009]).

2 Model and Preliminaries
There are n agents. Any given agent belongs to the target
(resp., non-target) group with probability µ (resp., (1 − µ)),
independently of the other agents. Let v = (v1, v2, . . . , vn)
be the ability profile of the agents, where vi values are in-
dependent and identically distributed (i.i.d.) random vari-
ables from continuous and differentiable distributions F or
G with support [0, 1], depending upon whether agent i be-
longs to the target or the non-target group, respectively. Let
f and g be the probability density functions (PDFs) of F and
G. The n agents simultaneously produce the output profile
b = (bi)i∈[n], so that the cost of agent i is bi/vi.

The contest awards two sequences of prizes w1 ≥ w2 ≥
. . . ≥ wn and ω1 ≥ ω2 ≥ . . . ≥ ωn, where the prize wj
is given to the j-th ranked agent overall (we call these prizes
general prizes), and the prize ωj is given to the j-th ranked
agent among the agents in the target group (we call these
group-specific prizes), with ties broken uniformly.4 We as-
sume that

∑
j wj +

∑
j ωj ≤ 1, i.e., the contest designer has

a unit budget. Given a vector of outputs b, let the allocation
of general prizes be given by x(b) = (xi,j(b))i,j∈[n], where
xi,j = 1 if agent i is awarded the j-th prize and xi,j = 0
otherwise. Similarly, let y(b, t) = (yi,j(b, t))i,j∈[n] be the
allocation of target group prizes, where t = (ti)i∈[n] is the
group label vector; ti ∈ {T,N}, ti = T if the agent is in the
target group, ti = N if not. We shall suppress the notation
for t and write y(b) instead of y(b, t).

If agent i is in the target group, her utility is given by

uT (vi, b, t) =
∑
j∈[n]

wjxi,j(b) +
∑
j∈[n]

ωjyi,j(b)− bi/vi

4In our model, it does not matter how we break ties, so w.l.o.g.,
we can assume uniform tie breaking. In more detail, for a tie to hap-
pen, two players must produce exactly identical output. In our set-
ting, this happens with zero probability, as there are no point masses
in the probability distributions F and G, and the distributions of
the output generated by the agents (that we derive as a result of our
equilibrium analysis) also do not have any point masses.

≡ vi

∑
j∈[n]

wjxi,j(b) +
∑
j∈[n]

ωjyi,j(b)

− bi, (1)

where the equivalence is true because scaling the utility func-
tion by a constant does not change the strategy of an agent.
Similarly, the utility of an agent i in the non-target group is
given by

uN (vi, b, t) = vi
∑
j∈[n]

wjxi,j(b)− bi. (2)

2.1 Mathematical Preliminaries
Let pHj (v) denote the probability that a value v ∈ [0, 1] is the
j-th highest among n i.i.d. samples from a distribution H ,
given by the expression

pHj (v) =

(
n− 1

j − 1

)
H(v)n−j(1−H(v))j−1.

A key role in the Bayes–Nash equilibrium of rank-order
allocation contests is played by the order statistics. Let fHn,j
be the PDF of the j-th highest order statistic out of n i.i.d.
samples from H (with PDF h), given by the expression

fHn,j(v) =
n!

(j − 1)!(n− j)!
H(v)n−j(1−H(v))j−1h(v).

(3)
We shall also frequently use the following two identities for
order statistics:

H(v)fHn−1,j(v) =
n− j
n

fHn,j(v);

(1−H(v))fHn−1,j(v) =
j

n
fHn,j+1(v).

Definition 1 ((Weak) First-Order Stochastic (FOS) Domi-
nance). A distribution F FOS dominates another distribution
G, if for every x, F gives at least as high a probability of re-
ceiving at least x as does G: 1 − F (x) ≥ 1 − G(x) ⇐⇒
F (x) ≤ G(x).

Definition 2 ((Weak) Second-Order Stochastic (SOS) Domi-
nance). A distribution F SOS dominates another distribution
G, if for every x:

∫ x
−∞[F (t)−G(t)]dt ≤ 0.

FOS dominance implies SOS dominance. Another suffi-
cient condition for SOS dominance: F SOS dominates G if
G is a mean-preserving spread of F .

Let us denote the inner product of two functions ψ, φ :
[0, 1]→ R+ by

〈ψ, φ〉 =

∫ 1

0

ψ(x)φ(x)dx.

When appropriately normalized, 〈ψ, φ〉measures the similar-
ity between the functions ψ and φ.

2.2 Equilibrium and Objective Function
We shall study the Bayes–Nash equilibrium of the agents,
where the agents in the target group use a symmetric strategy
α(v) (symmetric across the agents in the group), where α(v)

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

281



is the output of an agent with ability v; similarly, the agents
in the non-target group use a symmetric strategy β(v). The
objective of the contest designer is to maximize the expected
total output generated by the agents in the target group:∑

i∈[n]

Evi∼F [α(vi)]P[ti = T ] = n · µ · Evi∼F [α(vi)],

which is equivalent to maximizing Ev∼F [α(v)] because n and
µ are (fixed) parameters given to the model.

3 Equilibrium Analysis
In this section, we characterize a symmetric Bayes–Nash
equilibrium (symmetric across the agents in a given group).
We first solve for the equilibrium of the contest with both
general and target group-specific prizes, then we specialize
it for the two special cases: (1) only general prizes; (2) only
group-specific prizes.

3.1 Both Target Group and General Prizes
In the next theorem, we focus on contests that have a se-
quence of general prizes (wj)j∈[n] and a sequence of tar-
get group-specific prizes (ωj)j∈[n]. We will characterize a
Bayes–Nash equilibrium where a player in the target group
plays an action α(v) as a function of her ability v ∼ F and a
player in the non-target group plays an action β(v) as a func-
tion of her ability v ∼ G. Note that all the players in the
target group use the same strategy α and the players in the
non-target group use the same strategy β.
Theorem 1. A contest with general prizes (wj)j∈[n] and tar-
get group-specific prizes (ωj)j∈[n] has a Bayes–Nash equi-
librium where an agent with ability v ∈ [0, 1] uses strategy
α(v) if she is in the target group and strategy β(v) if she is in
the non-target group, where α(v) and β(v) are defined as:

β(v) =

∫ v

0

(µf(k(y))k′(y) + (1− µ)g(y))A(y)ydy,

α(v) =

{
β(k−1(v)), 0 ≤ v ≤ k(1)

β(1) +
∫ v
k(1)

µf(y)C(y)ydy, k(1) ≤ v ≤ 1
,

where:
• k is a function defined over [0, 1] and is the solution to

the following ordinary differential equation, with bound-
ary condition k(0) = 0,

k′(v) =
(1− µ)g(v)(v − k(v))A(v)

µf(k(v))(k(v)A(v) + k(v)B(v)− vA(v))
.

• A(v) =
∑
j∈[n] wjψj(µF (k(v)) + (1− µ)G(v)).

• B(v) =
∑
j∈[n] ωjψj(µF (k(v)) + (1− µ)).

• C(v) =
∑
j∈[n](wj + ωj)ψj(µF (v) + (1− µ)).

• ψj(x) =
(
n−1
j−1
)
xn−j−1(1−x)j−2((n− j)− (n− 1)x).

Notice that Theorem 1 does not provide a closed-form so-
lution for α(v) and β(v), it rather provides a characterization
using the function k(v) that relates α(v) and β(v). Standard
equilibrium analysis techniques using first-order equilibrium

conditions will give a system of differential equations in α(v)
and β(v). Using the function k(v) = α−1(β(v)), we convert
this system of differential equations in α(v) and β(v) to a
comparatively simpler single first-order explicit ordinary dif-
ferential equation in only one dependent variable k(v). After
solving the ordinary differential equation for k(v), we can use
k(v) to compute α(v) and β(v) as described in the theorem
statement. This technique of using the function k(v) is mo-
tivated by the work of Amann and Leininger [1996], where
they use to it analyze two-agent asymmetric contests.

If the distributions F or G, or the prizes (wj)j∈[n] or
(ωj)j∈[n], are non-trivial, then it may be intractable to cal-
culate the analytical solutions for α(v) and β(v) derived in
Theorem 1, but numerical solutions may be computed. An
example in the full version of the paper illustrates the use of
Theorem 1 to compute α(v) and β(v) for a particular instan-
tiation of the problem.

Theorem 1 characterizes an equilibrium assuming that all
players in a given group use the same strategy (α(v) or β(v)),
and that α(v) and β(v) are strictly increasing and (almost
everywhere) differentiable functions of v. We believe that
these assumptions are reasonable and the equilibrium is the
most natural one for this model. It remains open to prove the
uniqueness of this equilibrium or to characterize the set of all
possible equilibria.

3.2 General Prizes Only
A contest designer may want to only award prizes that are
equally accessible to all the agents. This model is particu-
larly appealing for several real-life applications, because, al-
though the design of the prize structure may incorporate dis-
tributional information about the ability of the agents in the
two groups, the contest itself is completely unbiased.

In our model, this design choice corresponds to setting
ωj = 0 for all j ∈ [n]. For this case, the expected utility
for a target group agent and a non-target group agent for a
given pair of ability v and output b is the same. We can spe-
cialize the equilibrium characterization in Theorem 1 to this
case as follows:
Theorem 2. A contest with only general prizes (wj)j∈[n] has
a Bayes–Nash equilibrium where an agent with ability v ∈
[0, 1] in the target or non-target group uses the strategy α(v),
where α(v) is defined as:

α(v) =
∑

j∈[n−1]

(wj − wj+1)

∫ v

0

yf
µF+(1−µ)G
n−1,j (y)dy.

This equilibrium is unique, as follows from a result by
Chawla and Hartline [2013]. They prove that if a contest
is anonymous (does not discriminate among the agents) and
the abilities of the agents are sampled i.i.d. from a distribu-
tion, then the equilibrium is unique. With only general prizes,
the contest is (i) anonymous because the general prizes are
awarded without any bias towards players from any group,
and (ii) effectively, the abilities of the agents are sampled i.i.d.
from the distribution µF (v) + (1− µ)G(v).

3.3 Group-Specific Prizes Only
In this case, there are no general prizes accessible to agents
from both groups: all the prizes are allocated based on strict
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quotas for the groups. This model is similar to the model of
seat quotas for college admissions studied by Bodoh-Creed
and Hickman [2018]. Technically, in this case we assume
that wj = 0 for all j ∈ [n]. Here we focus on the target
group; a similar result also holds for the non-target group, if
there are any prizes reserved for them.
Theorem 3. A contest with target only group-specific prizes,
(ωj)j∈[n], has a Bayes–Nash equilibrium where an agent with
ability v ∈ [0, 1] in the target group uses strategy α(v), where
α(v) is defined as:

α(v) =
∑

j∈[n−1]

(ωj − ωj+1)

∫ v

0

yf
µF+(1−µ)
n−1,j (y)dy.

Chawla and Hartline [2013]’s uniqueness result also ap-
plies to this equilibrium characterization, as it did for only
general prizes (Section 3.2). We can transform an instance
of our problem (without changing its set of equilibria) to sat-
isfy these requirements: the abilities of the players are picked
i.i.d. from the distribution µF (v) + (1 − µ) and the contest
awards prizes without discriminating among the players.

4 Designing Prizes to Incentivize the Target
Group

Based on the equilibrium characterizations in the previous
section, in this section we investigate the properties of the
optimal contest that maximizes the total output of the target
group. We characterize the optimal contests for only gen-
eral prizes and for only group-specific prizes. Characteriza-
tion of the optimal contest for both general and group-specific
prizes is a non-trivial open problem because of the absence of
a closed-form equilibrium characterization for the case (the
characterization in Theorem 1 involves an ordinary differen-
tial equation).

In the full version of the paper, we compare the choice be-
tween only general and only group-specific prizes; we ob-
serve that either of them may be a better choice depending
upon the situation. Even if the distributions of the target and
the non-target group are the same, the relative frequency of
target group agents, measured by µ, determines which prize
allocation scheme is better. If µ is sufficiently high, then it is
better to have only group-specific prizes, while the converse
is true if µ is very low.

4.1 General Prizes Only
The strategy used by the agents in the target group is α(v), as
derived in Theorem 2. It can be rewritten as

α(v) =
∑

j∈[n−1]

(wj − wj+1)

∫ v

0

yf
µF+(1−µ)G
n−1,j (y)dy

=
∑

j∈[n−1]

γj
1

j

∫ v

0

yf
µF+(1−µ)G
n−1,j (y)dy, (4)

where γj = j(wj − wj+1). Instead of optimizing over
(wj)j∈[n], we can optimize over (γj)j∈[n−1] with constraints
γj ≥ 0 and

∑
j γj = 1, to find the optimal contest that maxi-

mizes the target group’s output.

Theorem 4. The contest with only general prizes that max-
imizes the expected total output of the agents in the target
group awards a prize of 1/k∗ to the k∗ top-ranked agents
and a prize of 0 to the remaining n − k∗ agents, where k∗ is
defined as

k∗ ∈ arg max
j∈[n−1]

〈ψ, fµF+(1−µ)G
n,j+1 〉

for ψ(x) = x(1−F (x))
1−µF (x)−(1−µ)G(x) .

Let H(x) denote µF (x) + (1 − µ)G(x). The function
ψ(x) = x 1−F (x)

1−H(x) in Theorem 4 is independent of the prize
structure: it depends only on µ, F , and G, which are param-
eters given to the contest designer. The function fHn,j+1(x) is
the PDF of the (j + 1)-th highest order statistic of the distri-
bution H . The optimal j = k∗ maximizes the inner product
between ψ and fHn,j+1, and therefore, the similarity between
them. In other words, the optimal j = k∗ selects the order
statistic that is as similar to ψ as possible.

Note that when we are maximizing the total output, then
instead of an inner product of the order statistic with ψ(x)
in Theorem 4, we take an inner product with just x. As x is
monotonically increasing, the order statistic that is most simi-
lar to x and that maximizes the inner product with x is the one
with j = 1, as shown by Moldovanu and Sela [2001]. This
provides an argument in favor of allocating the entire prize
budget to the first prize. In contrast, when we focus on the tar-
get group only, it may be optimal to distribute the prize among
several top-ranked agents. This also means that we may lose
a portion of the total output, and this loss can be Ω(n) as
shown in Example 1. Also, by the single-crossing property,
see Vojnovic [Vojnović, 2016] Chapter 3, if we flatten the
prize structure then we increase the output of the agents with
low ability and decrease the output of the agents with high
ability.

We have partially omitted calculations from the examples
in this section. These examples are presented in the full ver-
sion of the paper with more details.
Example 1. Let F (x) = 1 − (1 − x)n−1, G(x) = ((n −
1)x − F (x))/(n − 2), and µ = 1/(n − 1). We get H(x) =
µF (x) + (1−µ)G(x) = x, which is the uniform distribution
over [0, 1]. Note that ψ(x) = x(1−F (x))

1−H(x) = x(1− x)n−2.
It can be checked that the order-statistic that maximizes

the inner-product with ψ(x) is fHn,n−1(x) = n(n − 1)x(1 −
x)n−1. So, the optimal value is k∗ = n− 2. The total output
generated for k∗ = n − 2 is 2

n(n+1) . On the other hand, we
know that the expected total output is maximized by j = 1

and is equal to (n−1)
n(n+1) . The ratio between the two quantities

is (n− 1)/2 = Ω(n).
In the above example, the distribution of the target group F

was first-order stochastic (FOS) dominated by the distribution
of the general population H . For this case, we observed that
awarding prizes to more than one agent increases the expected
output of the target group. F being FOS dominated by H
means that the agents in the target group have lower ability
than the general population. As flattening the prize structure
increases the output of the lower ability agents and decreases
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the output of the higher ability agents, it makes sense that
having a flatter prize structure incentivizes them.

The above result raises the question: What if the target
group is equally able or stronger than the general population,
i.e., if the distribution of the ability of an agent in the target
group, F , FOS dominates the distribution of the ability of an
agent in the non-target group, G; is it then optimal to award
the prize to the top-ranked agent only? When F = G = H ,
we know that it is optimal to give prize to the top-ranked agent
only, so when F FOS dominates H , one might expect this to
be the case as well. However, the example below illustrates
that this is not true.5

Example 2. Let µ = 1/8, F (x) = 1 − S(x), G(x) = (x −
µF (x))/(1− µ), where S(x) is given by:

S(x) =


1, if x < 3/4

16(1− x)2, if 3/4 ≤ x < 15/16

1− x, if x ≥ 15/16

.

It can be verified that F (x) and G(x) are continuous cumu-
lative distribution functions. The distribution of the general
population is H(x) = µF (x) + (1 − µ)G(x) = x. Also,
F (x) ≤ H(x) for every x (and strict for some values of x),
and therefore, F FOS dominates H . The optimal number of
prizes k∗ need not be 1; for example, for n = 50, k∗ = 11.

Now we consider the case where F and H have the same
mean but different variance, which implies second-order
stochastic (SOS) dominance. The distribution with lower
variance SOS dominates the one with higher variance, as-
suming both distributions have the same mean. The results
are similar to FOS dominance: it may be optimal to have
multiple prizes irrespective of whether F or H has a higher
variance, as shown in the following examples. Note that FOS
dominance implies SOS dominance, but not vice-versa.
Example 3. Let µ = 2/3, F (x) = 3x2 − 2x3, and G(x) =
3x − 6x2 + 4x3. Observe that H(x) = µF (x) + (1 −
µ)G(x) = x, and the variance of H is 1/12 while the vari-
ance of F is 1/20, and both have mean 1/2.

Solving for k∗, we get k∗ = 5n
6 −

√
7n2+30n+39

6 + 1
2 . For

example, for n = 50, k∗ = 19.
Example 4. Let µ = 1/4, F (x) = 1 − S(x), and G(x) =
(x− µF (x))/(1− µ), where S(x) is given by:

S(x) =


1− 48x/31, if x < 31/96

1/2, if 31/96 ≤ x < 3/4

8(1− x)2, if 3/4 ≤ x < 7/8

1− x, if x ≥ 7/8

It can be checked that F (x) and G(x) are valid and for
the distribution of the general population we have H(x) =

5In the preliminaries we assumed F to be continuous, strictly
increasing, and differentiable in [0, 1]. In the following and the sub-
sequent examples, the distribution F is continuous and weakly in-
creasing but may not be strictly increasing and differentiable every-
where. If F is not strictly increasing, we can add a slight gradient
to resolve the issue; on the other hand, we can smooth out the finite
number of points where it is not differentiable. These changes will
have a minimal effect on the objective value and our analysis holds.
For ease of presentation, we shall not discuss these issues.

µF (x) + (1 − µ)G(x) = x. It can also be checked that the
mean of all the distributions is 1/2, and the variance of H
is 1/12 ≈ 0.083 while the variance of F is 6703/55296 ≈
0.121 > 1/12. The optimal number of prizes k∗ need not be
1; for example, for n = 50, k∗ = 11.

4.2 Group-Specific Prizes Only
In this section, we study the optimal prize structure when the
prizes are accessible to the target group only. This models
situations when there are separate contests for the target and
the non-target group (there can be a separate contest for only
non-target group agents, this will not have any affect on the
strategy of the target group agents). We see that the optimal
contest allocates the entire prize budget to the first prize, i.e.,
gives a prize of 1 to the top-ranked agent in the group (Theo-
rem 5). The proof of Theorem 5 extends the techniques used
to provide a similar result for total output [Moldovanu and
Sela, 2001].

Theorem 5. The contest with only group-specific prizes that
maximizes the output of the target group awards a prize of 1
to the top-ranked agent and 0 to others.

5 Conclusion
Our paper studies rank-order allocation of prizes that aim to
maximize the output of a target group. We provide equilib-
rium characterization for these contests and study the proper-
ties of the optimal contest. For unbiased contests (i.e., with
general prizes only), although it is preferable to award the
prize to the top-performing player if the target group play-
ers are similar to the overall population, if the target group
players are very different, then we may want to flatten out
the prize structure. This does not only mean that we flatten
out the prizes if the target group players are weaker than oth-
ers; we also demonstrate that if the target group players are
stronger but quite different from others, it may still be a good
idea to flatten out the prizes. However, for contests with fixed
prize quotas (i.e., with group-specific prizes only), it may not
be useful to flatten the prizes. Comparing unbiased contests
and fixed quota contests, the size of the target group in pro-
portion to the size of the population plays an important role.

An important open problem is to understand the properties
of the optimal contest that has both group-specific and gen-
eral prizes. We characterize the equilibrium for this problem
and analyze the optimal contest for specific sub-cases, but
the general problem is open. One way to make this tractable
may be to assume large numbers of agents and prizes; such
assumptions allow for a stronger and more tractable equi-
librium characterization by making the influence of an in-
dividual agent infinitesimal [Olszewski and Siegel, 2016].
Our work focused on contests with a rank-order allocation
of prizes with incomplete information and linear cost func-
tions. Instead of rank-order allocation of prizes, we can study
a proportional allocation of prizes or its generalizations (see,
e.g., [Tullock, 1980]); one motivation for proportional alloca-
tion is the randomness and unpredictability of outcome in the
real world. Similarly, we may relax the assumption of linear
cost functions, or we can study complete information models
instead of incomplete information.
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Ethical Statement
There may be both short-term and long-term implications for
designing contests specifically to incentivize a target group.
For example, even if the contest itself is unbiased (Section
4.1), optimizing the expected total output of the players in
the target group may mean that we decrease the expected to-
tal output of the entire population, and in particular decrease
the expected total output of the non-target group. Moreover,
such effects can be stronger if the target group forms a smaller
fraction of the participants. Our analysis and examples try to
capture such effects. For any given contest, this means that
we are optimizing for the target group with a cost to soci-
ety. But for a longer time frame, the answer is less obvious,
and we believe that it is out of the scope of our paper. This
question concerns whether practices such as affirmative ac-
tion have an overall positive or negative impact on the society
in the long run. Our paper addresses the following question:
if we do want to use affirmative action in contests to incen-
tivize the target group (with particular design choices, such as
the prize allocation scheme being unbiased), how do we do it
most effectively, and how does it affect the output of all the
players in the given contest.
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