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Abstract
The sequential recommendation systems capture
users’ dynamic behavior patterns to predict their
next interaction behaviors. Most existing sequen-
tial recommendation methods only exploit the lo-
cal context information of an individual interac-
tion sequence and learn model parameters solely
based on the item prediction loss. Thus, they usu-
ally fail to learn appropriate sequence representa-
tions. This paper proposes a novel recommendation
framework, namely Graph Contrastive Learning for
Sequential Recommendation (GCL4SR). Specifi-
cally, GCL4SR employs a Weighted Item Tran-
sition Graph (WITG), built based on interaction
sequences of all users, to provide global context
information for each interaction and weaken the
noise information in the sequence data. Moreover,
GCL4SR uses subgraphs of WITG to augment the
representation of each interaction sequence. Two
auxiliary learning objectives have also been pro-
posed to maximize the consistency between aug-
mented representations induced by the same inter-
action sequence on WITG, and minimize the dif-
ference between the representations augmented by
the global context on WITG and the local repre-
sentation of the original sequence. Extensive ex-
periments on real-world datasets demonstrate that
GCL4SR consistently outperforms state-of-the-art
sequential recommendation methods.

1 Introduction
In recent years, deep neural networks have been widely ap-
plied to build sequential recommendation systems [Wang et
al., 2019; Lei et al., 2021a]. Although these methods usu-
ally achieve state-of-the-art sequential recommendation per-
formance, there still exist some deficiencies that can be im-
proved. Firstly, existing methods model each user interac-
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tion sequence individually and only exploit the local con-
text in each sequence. However, they usually ignore the cor-
relation between users with similar behavior patterns (e.g.,
with the same item subsequences). Secondly, the user behav-
ior data is very sparse. Previous methods usually only use
the item prediction task to train the recommendation models.
They tend to suffer from the data sparsity problem and fail to
learn appropriate sequence representations [Zhou et al., 2020;
Xie et al., 2021]. Thirdly, the sequential recommenda-
tion models are usually built based on implicit feedback se-
quences, which may include noise information (e.g., acciden-
tally clicking) [Li et al., 2017].

To remedy above issues, we first build a Weighted Item
Transition Graph (WITG) to describe item transition patterns
across the observed interaction sequences of all users. This
transition graph can provide global context information for
each user-item interaction [Xu et al., 2019]. To alleviate the
impacts of data sparsity, neighborhood sampling on WITG
is performed to build augmented graph views for each inter-
action sequence. Then, graph contrastive learning [Hassani
and Khasahmadi, 2020; Zhang et al., 2022] is employed to
learn augmented representations for the user interaction se-
quence, such that the global context information on WITG
can be naturally incorporated into the augmented representa-
tions. Moreover, as WITG employs the transition frequency
to describe the importance of each item transition, it can help
weaken the impacts of noise interactions in the user interac-
tion sequences, when learning sequence representations.

In this paper, we propose a novel recommendation model,
named GCL4SR (i.e., Graph Contrastive Learning for Se-
quential Recommendation). Specifically, GCL4SR leverages
the subgraphs sampled from WITG to exploit the global con-
text information across different sequences. The sequen-
tial recommendation task is improved by accommodating the
global context information through the augmented views of
the sequence on WITG. Moreover, we also develop two auxil-
iary learning objectives to maximize the consistency between
augmented representations induced by the same interaction
sequence on WITG, and minimize the difference between the
representations augmented by the global context on WITG
and the local representation of original sequence. Extensive
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experiments on public datasets demonstrate that GCL4SR
consistently achieve better performance than state-of-the-art
sequential recommendation approaches.

2 Related Work
In this section, we review the most relevant existing methods
in sequential recommendation and self-supervised learning.

2.1 Sequential Recommendation
In the literature, Recurrent Neural Networks (RNN) are usu-
ally applied to build sequential recommendation systems. For
example, GRU4Rec [Hidasi et al., 2016] treats users’ behav-
ior sequences as time series data and uses a multi-layer GRU
structure to capture the sequential patterns. Moreover, some
works, e.g., NARM [Li et al., 2017] and DREAM [Yu et al.,
2016], combine attention mechanisms with GRU structures to
learn users’ dynamic representations. Simultaneously, Con-
volutional Neural Networks (CNN) have also been explored
for sequential recommendation. Caser [Tang and Wang,
2018] is a representative method that uses both horizontal
and vertical convolutional filters to extract users’ sequential
behavior patterns. Recently, SASRec [Kang and McAuley,
2018] and BERT4Rec [Sun et al., 2019] only utilize self-
attention mechanisms to model users’ sequential behaviors.
Beyond that, HGN [Ma et al., 2019] models users’ dynamic
preferences using hierarchical gated networks. Along another
line, Graph Neural Networks (GNN) have been explored to
model complex item transition patterns. For instance, SR-
GNN [Wu et al., 2019] converts sequences to graph struc-
ture data and employs the gated graph neural network to per-
form information propagation on the graph. GC-SAN [Xu et
al., 2019] dynamically builds a graph for each sequence and
models the local dependencies and long-range dependencies
between items by combining GNN and self-attention mecha-
nism. In addition, GCE-GNN [Wang et al., 2020] builds the
global graph and local graph to model global item transition
patterns and local item transition patterns, respectively.

2.2 Self-supervised Learning
Self-supervised learning is an emerging unsupervised learn-
ing paradigm, which has been successfully applied in com-
puter vision [Jing and Tian, 2020] and natural language pro-
cessing [Devlin et al., 2019]. There are several recent works
applying self-supervised learning techniques in recommen-
dation tasks. For example, [Zhou et al., 2020] maximizes the
mutual information among attributes, items, and sequences
by different self-supervised optimization objectives. [Xie
et al., 2021] maximizes the agreement between two aug-
mented views of the same interaction sequence through a
contrastive learning objective. [Wu et al., 2021] proposes a
joint learning framework based on both the contrastive learn-
ing objective and recommendation objective. Moreover, in
[Wei et al., 2021], contrastive learning is used to solve the
cold-start recommendation problem. In [Zhang et al., 2022],
a diffusion-based graph contrastive learning method is de-
veloped to improve the recommendation performance based
on users’ implicit feedback. Additionally, self-supervised
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Figure 1: An example showing the transition graph construction pro-
cedure, where (a) shows the observed user behavior sequences, and
(b) illuminates the weighted transition graph.

learning has also been applied to exploit the item multi-
modal side information for recommendation [Liu et al., 2021;
Lei et al., 2021b].

3 Preliminaries
In this work, we study the sequential recommendation task,
where we have the interaction sequences D of a set of users
U over a set of items V . For each user u ∈ U , we use a
list S = {v1, v2, · · · , vn} to denote her interaction sequence,
where vt is the t-th interaction item of u, and n denotes the
number of items that have interactions with u. Moreover, we
denote the user u’s embedding by pu ∈ R1×d and the item
i’s embedding by ei ∈ R1×d. E(0)

S ∈ Rn×d is used to denote
the initial embedding of the sequence S, where the t-th row
in E

(0)
S is the embedding of the t-th node in S. Similarly,

E ∈ R|V |×d is used to denote the embeddings of all items.
Differing from existing methods that model the sequential

transition patterns in each individual sequence, we first build
a weighted item transition graph G fromD to provide a global
view of the item transition patterns across all users’ behavior
sequences. The construction of the global transition graph
G follows the following strategy. Taking the sequence S as
an example, for each item vt ∈ S, if there exists an edge
between the items vt and v(t+k) in G, we update the edge
weight as w(vt, vt+k) ← w(vt, vt+k) + 1/k; otherwise, we
construct an edge between vt and vt+k in G and empirically
set the edge weight w(vt, vt+k) to 1/k, where k ∈ {1, 2, 3}.
Here, the score 1/k denotes the importance of a target node
vt to its k-hop neighbor vt+k in the sequence. This empirical
setting is inspired by the success of previous work [He et al.,
2020]. After repeating the above procedure for all the user
sequences in D, we re-normalize the edge weight between
two nodes vi and vj in G as follows,

ŵ(vt, vj) = w(vt, vj)
( 1

deg(vi)
+

1

deg(vj)

)
, (1)

where deg(·) denotes the degree of a node in G. Note that G
is an undirected graph. Figure 1 shows an example about the
transition graph without edge weight normalization.
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Figure 2: The framework of the proposed GCL4SR model.

4 The Proposed Recommendation Model
Figure 2 shows the overall framework of GCL4SR. Observe
that GCL4SR has the following main components: 1) graph
augmented sequence representation learning, 2) user-specific
gating, 3) basic sequence encoder, and 4) prediction layer.
Next, we introduce the details of each component.

4.1 Graph Augmented Sequence Representation
Learning

Graph-based Augmentation
Given the weighted transition graph G, we first construct two
augmented graph views for an interaction sequence S through
data augmentation. The motivation is to create comprehen-
sively and realistically rational data via certain transforma-
tions on the original sequence. In this work, we use the ef-
ficient neighborhood sampling method used in [Hamilton et
al., 2017] to generate the augmented graph views from a large
transition graph for a given sequence. Specifically, we treat
each node v ∈ S as a central node and interatively sample its
neighbors in G by empirically setting the sampling depth M
to 2 and the sampling size N at each step to 20. In the sam-
pling process, we uniformly sample nodes without consider-
ing the edge weights, and then preserve the edges between
the sampled nodes and their weights in G. For a particular se-
quence S, after employing the graph-based augmentation, we
can obtain two augmented graph views G′

S = (V
′

S , E
′

S ,A
′

S)

and G′′

S = (V
′′

S , E
′′

S ,A
′′

S). Here, V
′

S , E
′

S , and A
′

S are the set
of nodes, the set of edges, and the adjacency matrix of G′

S , re-
spectively. Note that G′

S and G′′

S are subgraphs of G, and the
adjacency matrix A

′

S and A
′′

S store the normalized weights
of edges defined in Eq. (1).

Shared Graph Neural Networks

Following [Hassani and Khasahmadi, 2020], two graph neu-
ral networks with shared parameters are used to encode G′

S

and G′′

S . Taking G′

S as an example, the information propa-
gation and aggregation at the t-th layer of the graph neural
networks are as follows,

a(t)vi
= Aggregate(t)

(
{h(t−1)

vj
: vj ∈ N

′

vi
}
)
,

h(t)
vi

= Combine(t)
(
a(t)vi

,h(t−1)
vi

)
, (2)

where N
′

vi
denotes the set of vi’s neighbors in G′

S , h(t−1)
vi

denotes the representation of item vi at the t-th GNN layer.
h
(0)
vi is vi’s representation ei shared with the basic sequence

encoder network. In Eq. (2), Aggregate(·) is the function
aggregating the neighborhood information of a central node
vi, and Combine(·) is the function that combines neighbor-
hood information to update the node embedding. After mul-
tiple layers of information propagation on G′

S , we denote
the embeddings of the nodes in S at the last GNN layer by
H

′

S ∈ Rn×d, which is the augmented representation of S

based on G′

S . Similarly, we can obtain another augmented
representation H

′′

S ∈ Rn×d of S based on the augmented
graph view G′′

S . In this work, these two GNNs are imple-
mented as follows. At the first layer, we use Graph Neural
Network (GCN) with the weighted adjacency matrix of an
augmented graph to fuse the node information. Then, we fur-
ther stack a GraphSage [Hamilton et al., 2017] layer that uses
mean pooling to aggregate the high-order neighborhood in-
formation in the augmented graph.
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Graph Contrastive Learning Objective
In this work, we use graph contrastive learning [Hassani
and Khasahmadi, 2020] to ensure the representations de-
rived from augmented graph views of the same sequence to
be similar, and the representations derived from augmented
graph views of different sequences to be dissimilar. An aux-
iliary learning objective is developed to distinguish whether
the two graph views are derived from the same user interac-
tion sequence. Specifically, the views of the same sequence
are used as positive pairs, i.e., {(G′

S ,G
′′

S)|S ∈ D}, and the
views for different sequences are used as negative pairs, i.e.,
{(G′

S ,G
′′

K)|S,K ∈ D, S ̸= K}. Then, we use the following
contrastive objective to distinguish the augmented represen-
tations of the same interaction sequence from others,

LGCL(S) =
∑
S∈D
− log

exp
(
cos(z

′

S , z
′′

S)/τ
)∑

K∈D exp
(
cos(z

′
S , z

′′
K)/τ

) , (3)

where z
′

S and z
′′

S ∈ R1×d are obtained by performing mean
pooling on H

′

S and H
′′

S respectively, cos(·, ·) is the cosine
similarity function, and τ is a hyper-parameter that is empiri-
cally set to 0.5 in the experiments.

4.2 User-specific Gating
As each individual user may only be interested in some
specific properties of items, the global context information
should be user-specific. Following [Ma et al., 2019], we de-
sign the following user-specific gating mechanism to capture
the global context information tailored to the user’s personal-
ized preferences,

Q
′

S = H
′

S ⊗ σ
(
H

′

SWg1 +Wg2p
⊤
u ), (4)

where Wg1 ∈ Rd×1 and Wg2 ∈ RL×d, σ(·) is the sigmoid
function, ⊗ is the element-wise product. Here, the user em-
bedding pu describes the user’s general preferences. Simi-
larly, for augmented view G′′

S , we can obtain Q
′′

S .

Representation Alignment Objective
The maximum mean discrepancy (MMD) [Li et al., 2015] is
then used to define the distance between the representations
of personalized global context (i.e., Q

′

S and Q
′′

S) and the local
sequence representation E

(0)
S . Formally, the MMD between

two feature distributions X ∈ Rm×d and Y ∈ Rm̃×d can be
defined as follows,

MMD(X,Y) =
1

m2

m∑
a=1

m∑
b=1

K(xa,xb)

+
1

m̃2

m̃∑
a=1

m̃∑
b=1

K(ya,yb)−
2

mm̃

m∑
a=1

m̃∑
b=1

K(xa,yb), (5)

where K(·, ·) is the kernel function, xa and yb denote the
a-th row of X and the b-th row of Y, respectively. In this
work, Gaussian kernel with bandwidth ρ is used as the kernel

function, i.e.,K(x,x′
) = e

− ||x−x
′
||2

2ρ2 . Then, we minimize the
distance between the representations of personalized global
context and the local sequence representation as follows,

LMM (S) = MMD
(
E

(0)
S ,Q

′

S

)
+MMD

(
E

(0)
S ,Q

′′

S

)
. (6)

4.3 Basic Sequence Encoder
Besides the graph augmented representations of a sequence,
we also employ traditional sequential model to encode
users’ interaction sequences. Specifically, we choose SAS-
Rec [Kang and McAuley, 2018] as the backbone model,
which stacks the Transformer encoder [Vaswani et al., 2017]
to model the user interaction sequences. Given the node rep-
resentation Hℓ−1 at the (ℓ− 1)-th layer, the output of Trans-
former encoder at the ℓ-th layer is as follows,

Hℓ = FFN
(
Concat(head1, . . . , headh)Wh

)
,

headi = Attention
(
Hℓ−1WQ

i ,H
ℓ−1WK

i ,Hℓ−1WV
i

)
, (7)

where FFN(·) denotes the feed-forward network, h repre-
sents the number of heads, WQ

i ,W
K
i ,WV

i ∈ Rd×d/h, and
Wh ∈ Rd×d are the projection matrices. Specifically, we use
the shared embedding E

(0)
S with learnable position encoding

as the initial state H0. Here, the Residual Network, Dropout,
and Layer Normalization strategies are omitted in the formula
for convenience. Then, the attention mechanism is defined as,

Attention(Q,K,V) = softmax
(QK⊤
√
d

)
V, (8)

where Q, K, and V denote the queries, keys, and values re-
spectively, and

√
d is the scaling factor.

4.4 Prediction Layer
We concatenate the representations Q

′

S and Q
′′

S obtained
from the augmented graph views and the embeddings at the
last layer of the Transformer encoder Hℓ as follows,

M = AttNet
(
Concat

(
Q

′

S ,Q
′′

S ,H
ℓ
)
WT

)
, (9)

where M ∈ R1×d, WT ∈ R3d×d is the weight matrix, and
AttNet(·) denotes the attention network. Then, given the
user interaction sequence S with length n, the interaction
probabilities between the user and items at the (n+1)-th step
can be defined as follows,

ŷ(S) = softmax(ME⊤), (10)

where ŷ(S) ∈ R1×|V |, and the j-th element of ŷ(S) denotes
the interaction probability of the j-th item.

4.5 Multi Task Learning
Sequential recommendation aims to predict the next item
that the user u would like to interact with, based on
her interaction sequence Su (Here, we include the sub-
script u for clear discussion). Following [Tang and Wang,
2018], we split the sequence Su = {v1u, v2u, · · · , v

|Su|
u }

into a set of subsequences and target labels as follows:
{(S1:1

u , v2u), (S
1:2
u , v3u), · · · , (S

1:|Su|−1
u , v

|Su|
u )}, where |Su|

denotes the length of Su, S1:k−1
u = {v1u, v2u, · · · , vk−1

u }, and
vku is the target label of S1:k−1

u . Then, we formulate the fol-
lowing main learning objective based on cross-entropy,

Lmain = −
∑

Su∈D

|Su|−1∑
k=1

log

(
ŷ(S1:k

u )(vk+1
u )

)
, (11)
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Home Phones Comics Poetry
# Users 66,519 27,879 13,810 3,522
# Items 28,237 10,429 16,630 2,624
# Interactions 551,682 194,439 343,587 40,703
# Nodes of G 28,237 10,429 16,630 2,624
# Edges of G 1,617,638 430,940 1,310,952 122,700

Table 1: The statistics of experimental datasets.

where ŷ(S1:k
u )(vk+1

u ) denotes the predicted interaction proba-
bility of vk+1

u based on the subsequence S1:k
u using Eq. (10).

In this work, we jointly optimize the main sequential predic-
tion task and other two auxiliary learning objectives. The fi-
nal objective function of GCL4SR is as follows,

L = Lmain +
∑

Su∈D

|Su|−1∑
k=1

λ1LGCL(S
1:k
u ) + λ2LMM (S1:k

u ),

(12)
where λ1 and λ2 are hyper-parameters. The optimization
problem in Eq. (12) is solved by a gradient descent algorithm.

5 Experiments
In this section, we perform extensive experiments to evaluate
the performance of the proposed GCL4SR method.

5.1 Experimental Settings
Datasets. The experiments are conducted on the Amazon
review dataset [He and McAuley, 2016] and Goodreads re-
view dataset [Wan et al., 2019]. For Amazon dataset, we
use two 5-core subsets for experimental evaluations: “Home
and Kitchen” and “Cell Phones and Accessories” (respec-
tively denoted by Home and Phones). For Goodreads dataset,
we choose users’ rating behaviors in “Poetry” and “Comics
Graphic” categories for evaluation. Following [Zhou et al.,
2020], we treat each rating as an implicit feedback record.
For each user, we then remove duplicated interactions and
sort her historical items by the interaction timestamp chrono-
logically to obtain the user interaction sequence. To guaran-
tee each user/item has enough interactions, we only keep the
“5-core” subset of each dataset, by iteratively removing the
users and items that have less than 5 interaction records. Ta-
ble 1 summarizes the statistics of experimental datasets.

Setup and Metrics. For each user, the last interaction item
in her interaction sequence is used as testing data, and the
second last item is used as validation data. The remaining
items are used as training data. The performance of dif-
ferent methods is assessed by two widely used evaluation
metrics: Hit Ratio@K and Normalized Discounted Cumula-
tive Gain@K (respectively denoted by HR@K and N@K),
where K is empirically set to 10 and 20. For each metric, we
first compute the accuracy for each user on the testing data,
and then report the averaged accuracy for all testing users. In
the experiments, all the evaluation metrics are computed on
the whole candidate item set without negative sampling.

Baseline Methods. We compare GCL4SR with the follow-
ing baseline methods.

• LightGCN [He et al., 2020]: This is a graph-based col-
laborative filtering light convolution network.

• FPMC [Rendle et al., 2010]: This method combines
matrix factorization and Markov chain model for se-
quential recommendation.

• GRU4Rec [Hidasi et al., 2016]: This method employs
Gated Recurrent Unit (GRU) to capture the sequential
dependencies and make recommendation.

• Caser [Tang and Wang, 2018]: This method uses both
vertical and horizontal convolution to capture users’ se-
quential behavior patterns for recommendation.

• SASRec [Kang and McAuley, 2018]: This method uses
self-attention mechanism to capture users’ sequential
patterns for recommendation.

• HGN [Ma et al., 2019]: This method uses a hierarchical
gating network with an item-item product module for the
sequential recommendation.

• SR-GNN [Wu et al., 2019]: This method converts se-
quences into graphs and leverages gated GNN layer to
capture the item dependencies.

• GC-SAN [Xu et al., 2019]: This method utilizes graph
neural network and self-attention mechanism to dynam-
ically capture rich local dependencies.

• GCE-GNN [Wang et al., 2020]: This method proposes
to build global graph and local graph to model global
transition patterns and local transition patterns, respec-
tively.

• S3-Rec [Zhou et al., 2020]: This method employs differ-
ent self-supervised optimization objectives to maximize
the mutual information among attributes, items, and se-
quences.

• CL4SRec [Xie et al., 2021]: This method uses
sequence-level augmentation to learn better sequence
representations.

Implementation Details. All the evaluation methods are
implemented by PyTorch [Paszke et al., 2019]. Follow-
ing [Zhou et al., 2020], we set the maximum sequence length
to 50. The hyper-parameters of baseline methods are selected
following the original papers, and the optimal settings are
chosen based on the model performance on validation data.
In the evaluated methods, only S3-Rec considers the item at-
tribute information, and the other methods do not use item
attribute information. For fair comparison, we only keep the
masked item prediction and segment prediction tasks of S3-
Rec to learn the model. For CGL4SR, we empirically set
the number of self-attention blocks and attention heads to 2.
The dimensionality of embeddings is set to 64. The weights
for the two self-supervised losses λ1 and λ2 are chosen from
{0.01, 0.05, 0.1, 0.3, 0.5, 0.7, 1.0}. We use Adam [Kingma
and Ba, 2014] as the optimizer and set the learning rate, β1,
and β2 to 0.001, 0.9, and 0.999 respectively. Step decay of the
learning rate is also adopted. The batch size is chosen from
{256, 512, 1024}. The L2 regularization coefficient is set to
5 × 10−5. We train the model with early stopping strategy
based on the performance on validation data.
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Datasets Metrics LightGCN FPMC GRU4Rec Caser SASRec HGN SR-GNN GC-SAN GCE-GNN CL4SRec S3-Rec GCL4SR

Home

HR@10 0.0160 0.0162 0.0210 0.0101 0.0228 0.0152 0.0201 0.0281 0.0259 0.0266 0.0280 0.0313
HR@20 0.0250 0.0218 0.0330 0.0173 0.0316 0.0231 0.0292 0.0394 0.0359 0.0387 0.0406 0.0422
N@10 0.0085 0.0097 0.0110 0.0051 0.0141 0.0083 0.0123 0.0174 0.0161 0.0160 0.0169 0.0190
N@20 0.0108 0.0111 0.0140 0.0068 0.0163 0.0103 0.0146 0.0197 0.0186 0.0186 0.0196 0.0218

Phones

HR@10 0.0687 0.0634 0.0835 0.0435 0.0883 0.0680 0.0778 0.0881 0.0946 0.0929 0.1037 0.1171
HR@20 0.1012 0.0854 0.1213 0.0647 0.1213 0.0990 0.1114 0.1232 0.1304 0.1305 0.1428 0.1666
N@10 0.0370 0.0374 0.0459 0.0233 0.0511 0.0364 0.0427 0.0500 0.0543 0.0533 0.0594 0.0665
N@20 0.0452 0.0430 0.0554 0.0287 0.0594 0.0442 0.0512 0.0588 0.0634 0.0627 0.0693 0.0790

Poetry

HR@10 0.1411 0.1275 0.1414 0.1068 0.1428 0.1034 0.1193 0.1309 0.1533 0.1496 0.1613 0.1638
HR@20 0.2127 0.1851 0.2104 0.1567 0.2030 0.1545 0.1723 0.1936 0.2229 0.2164 0.2277 0.2428
N@10 0.0771 0.0704 0.0783 0.0607 0.0829 0.0597 0.0686 0.0732 0.0859 0.0838 0.0915 0.0914
N@20 0.0954 0.0849 0.0956 0.0732 0.0980 0.0725 0.0818 0.0891 0.1035 0.1004 0.1108 0.1112

Comics

HR@10 0.1106 0.1382 0.1593 0.1156 0.1709 0.1242 0.1481 0.1638 0.1722 0.1751 0.1781 0.1829
HR@20 0.1672 0.1736 0.2058 0.1499 0.2100 0.1704 0.1857 0.2048 0.2232 0.2172 0.2258 0.2249
N@10 0.0587 0.1019 0.1096 0.0790 0.1276 0.0743 0.1067 0.1189 0.1222 0.1235 0.1234 0.1312
N@20 0.0730 0.1108 0.1213 0.0876 0.1374 0.0859 0.1161 0.1292 0.1325 0.1341 0.1354 0.1417

Table 2: The performance achieved by different methods. The best results are in boldface, and the second best results are underlined.

5.2 Performance Comparison
The performance comparison results are summarized in Ta-
ble 2. Overall, GCL4SR outperforms all baseline methods on
all datasets, in terms of almost all evaluation metrics.

Compared with RNN and CNN based models (e.g.,
GRU4Rec and Caser), the models based on self-attention
mechanism (e.g., SASRec, GC-SAN, and GCL4SR) usu-
ally achieve better performance. This is because that self-
attention mechanism is more effective in capturing long-
range item dependencies. GC-SAN achieves better perfor-
mance than SASRec on Home dataset, by introducing a graph
built based on an individual sequence to improve the se-
quence representation. GCE-GNN outperforms SR-GNN by
additionally exploiting global-level item transition patterns.

Moreover, CL4SRec, S3-Rec, and GCL4SR usually out-
perform their backbone structure SASRec. This demon-
strates that the self-supervised learning objectives can help
improve sequential recommendation performance. In addi-
tion, GCL4SR achieves better results than CL4SRec and S3-
Rec. This is because that CL4SRec and S3-Rec augment
the sequence representation by the auxiliary learning objec-
tives that only exploit the local context in each individual se-
quence. However, GCL4SR augments the sequence repre-
sentation using subgraphs of the transition graph built based
on sequences of all users, which can provide both local and
global context for learning sequence representations.

5.3 Ablation Study
To study the importance of each component of GCL4SR, we
consider the following GCL4SR variants for evaluation: 1)
GCL4SRw/o G: we remove the graph contrastive learning loss
by setting λ1 to 0 in Eq. (12); 2) GCL4SRw/o GM: we remove
both the graph contrastive learning loss and the MMD loss
by setting λ1 and λ2 to 0 in Eq. (12); 3) GCL4SRw/o W: we
remove the edge weights of the augmented graph views when
performing GCN operations at the first layer of the shared
GNNs used in graph contrastive learning.

Table 3 summarizes the performance of GCL4SR variants
and SASRec on Poetry and Phones datasets. We can note

Method Poetry Phones
HR@20 N@20 HR@20 N@20

GCL4SR 0.2428 0.1112 0.1666 0.0790
GCL4SRw/o G 0.2433 0.1095 0.1607 0.0734
GCL4SRw/o GM 0.2138 0.0958 0.1423 0.0713
GCL4SRw/o W 0.2172 0.0979 0.1500 0.0694
SASRec 0.2030 0.0980 0.1213 0.0594

Table 3: The performance achieved by GCL4SR variants and SAS-
Rec on Poetry and Phones datasets.

that GCL4SRw/o GM outperforms the backbone model SAS-
Rec in terms of HR@20, on both datasets. This indicates
the context in the global transition graph can help improve
sequential recommendation performance. By including the
MMD loss, GCL4SRw/o G achieves better performance than
GCL4SRw/o GM. By further combining the graph contrastive
learning loss, GCL4SR outperforms GCL4SRw/o G, in terms
of N@20, on both datasets. These observations demonstrate
that both the MMD loss and graph contrastive learning loss
can help learn better item and sequence representations for se-
quential recommendation. Moreover, GCL4SR outperforms
GCL4SRw/o W in terms of all metrics. This observation in-
dicates that the transition frequency between items across all
sequences can help distinguish the importance of neighboring
items for better sequential recommendation performance.

5.4 Parameter Sensitivity Study

We also perform experiments to study the impacts of three
hyper-parameters: the sampling depth M and sampling size
N used in graph-based augmentation, and the embedding di-
mension d. Figure 3 shows the performance of GCL4SR with
respect to different settings of M , N , and d on Poetry and
Phones datasets. As shown in Figure 3(a), larger sampling
size tends to produce better recommendation performance.
For the sampling depth, we can notice the best settings for
M are 4 and 3 on Poetry and Phones datasets, respectively.
In addition, the best performance is achieved by setting d to
64 and 96 on Poetry and Phones datasets, respectively.
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Figure 3: The performance trends of GCL4SR with respect to different settings of M , N , and d on Poetry and Phones datasets.

Method Poetry Phones
HR@20 N@20 HR@20 N@20

HGN 0.1545 0.0725 0.0990 0.0442
GCL4SR-HGN 0.1712 0.0763 0.1064 0.0475
GRU4Rec 0.2104 0.0956 0.1213 0.0554
GCL4SR-GRU 0.2362 0.1057 0.1622 0.0763
SASRec 0.2030 0.0980 0.1213 0.0594
GCL4SR-SAS 0.2428 0.1112 0.1666 0.0790

Table 4: The performance of HGN, GRU4Rec, SASRec, and
GCL4SR with different basic sequence encoders.

5.5 Impacts of Sequence Encoders
To further investigate the effectiveness of the graph aug-
mented sequence representation learning module, we employ
other structures to build the basic sequence encoder. Specifi-
cally, we consider the following settings of GCL4SR for ex-
periments: 1) GCL4SR-GRU: we use the GRU4Rec as the
backbone structure to build the basic sequence encoder; 2)
GCL4SR-HGN: we use HGN as the backbone structure to
build the basic sequence encoder; 3) GCL4SR-SAS: The de-
fault model that uses SASRec as the backbone structure to
build the sequence encoder.

Table 4 shows the performance of GCL4SR with differ-
ent sequence encoders, as well as the performance of back-
bone models. Observe that GCL4SR-HGN, GCL4SR-GRU,
and GCL4SR-SAS outperform the corresponding backbone
encoder models. This indicates that the graph augmented se-
quence representation learning module is a general module
that can help improve the performance of existing sequential
recommendation methods. Moreover, GRU4Rec and SAS-
Rec achieve better performance than GCL4SR-HGN. This
indicates the basic sequence encoder dominates the perfor-
mance of GCL4SR, and the graph augmented sequence rep-
resentation learning module is a complementary part that can
help further improve the recommendation performance.

6 Conclusion and Future Work
This paper proposes a novel recommendation model, namely
GCL4SR, which employs a global transition graph to de-
scribe item transition patterns across the interaction se-
quences of different users. Moreover, GCL4SR leverages
the subgraphs randomly sampled from the transition graph to

augment an interaction sequence. Two auxiliary learning ob-
jectives have been proposed to learn better item and sequence
representations. Extensive results on real datasets demon-
strate that the proposed GCL4SR model consistently outper-
forms existing sequential recommendation methods. For fu-
ture work, we would like to develop novel auxiliary learning
objectives to improve the performance of GCL4SR. More-
over, we are also interested in applying GCL4SR to improve
the performance of other sequential recommendation models.
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