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Abstract
Sum-Product Networks (SPNs) are expressive
probabilistic models that provide exact, tractable
inference. They achieve this efficiency by making
use of local independence.
On the other hand, mixtures of exchangeable vari-
able models (MEVMs) are a class of tractable prob-
abilistic models that make use of exchangeability
of discrete random variables to render inference
tractable. Exchangeability, which arises naturally
in relational domains, has not been considered for
efficient representation and inference in SPNs yet.
The contribution of this paper is a novel probabilis-
tic model which we call Exchangeability-Aware
Sum-Product Networks (XSPNs). It contains both
SPNs and MEVMs as special cases, and combines
the ability of SPNs to efficiently learn deep proba-
bilistic models with the ability of MEVMs to effi-
ciently handle exchangeable random variables. We
introduce a structure learning algorithm for XSPNs
and empirically show that they can be more accu-
rate than conventional SPNs when the data contains
repeated, interchangeable parts.

1 Introduction
The accurate representation of probability distributions and
efficient inference in such distributions is fundamental in ma-
chine learning. Recently, probabilistic models based on deep
neural networks, like Variational Autoencoders [Kingma and
Welling, 2014], neural autoregressive models [Larochelle and
Murray, 2011] and normalizing flows [Rezende and Mo-
hamed, 2015] have received a lot of attention. They have
been very successful for tasks like data generation, anomaly
detection, and prediction. However, these models lack effi-
cient and exact inference capabilities.

Probabilistic circuits (PCs) like Probabilistic Sentential
Decision Diagrams [Liang et al., 2017] or Cutset Networks
[Rahman et al., 2014] are deep probabilistic models that per-
mit efficient, exact marginal inference. Sum-Product Net-
works (SPNs) [Poon and Domingos, 2011], one of the most
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prominent PCs, represent probability distributions as a com-
putation graph that consists of sum nodes (representing mix-
tures) and product nodes (representing independent factors).
Time complexity of marginal inference in SPNs is linear in
the network size.

In this paper, we are specifically interested in efficient in-
ference in (and learning of) discrete distributions involving
repeated, interchangeable components. Such distributions
arise naturally in relational domains, consisting of multiple,
interrelated entities, as illustrated by the following example:
Example 1. Suppose n people are invited to a workshop, and
we want to estimate how many of them will attend. We as-
sume that attendance of each person depends on whether the
topic of the workshop is considered “hot”. Additionally, at-
tendance of each person depends on how many of the other
people will attend.

In this domain, attendance of each person is not indepen-
dent, but depends on the attendance of all other people. In-
stead, however, the probability that exactly k people attend
does not depend on the specific identities of those k peo-
ple. More formally, the random variables representing atten-
dance are exchangeable—their joint distribution is invariant
under permutation of their assignment. Unfortunately, tree-
structured SPNs that are generated by SPN structure learning
algorithms (as well as graphical models based on the notion
of conditional independence) do not efficiently encode distri-
butions over exchangeable RVs.

Still, similar to conditional independence, finite exchange-
ability can substantially reduce the complexity of the model
and allow for tractable inference [Niepert and Van den
Broeck, 2014]. This property is exploited by Mixtures of Ex-
changeable Variable Models (MEVMs) [Niepert and Domin-
gos, 2014]. MEVMs are tractable probabilistic models that
use efficient representations of exchangeable distributions as
building blocks. MEVMs can be seen as shallow SPNs, con-
sisting of a single sum and product layer, and efficient rep-
resentations of finite exchangeable sequences at the leaves.
However, deep SPN architectures can represent some func-
tions more efficiently than shallow architectures [Delalleau
and Bengio, 2011]. Despite their obvious connection, no at-
tempts have been made yet to combine SPNs and MEVMs
into a unified formalism.

The main contribution of this paper is to provide such
a unified model, that contains both MEVMs and (conven-
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Figure 1: Left: SPN generated by LearnSPN from 1000 sam-
ples from a distribution of the form p(X1, X2, X3, X4) =
p(X1, X2, X3) p(X4), where p(X1, X2, X3) is exchangeable. This
factor contains no (local) independence, thus LearnSPN learns a
complicated structure that in essence represents the factor by full
enumeration (framed subtree). Right: XSPN representing the same
distribution. The XSPN is more compact, because it can directly
represent exchangeable distributions efficiently.

tional) SPNs as special cases. The proposed model com-
bines the ability of SPNs to efficiently represent and learn
deep probabilistic models with the ability of MEVMs to effi-
ciently handle exchangeable random variables. We show that
marginal inference in the proposed model—which we call
Exchangeability-Aware SPNs (XSPNs)—is tractable. The
general concept is shown in Figure 1. Furthermore, we in-
troduce a structure learning algorithm for XSPNs, which re-
cursively performs statistical tests of finite exchangeability,
and fits an exchangeable leaf distribution when appropriate.
Finally, we empirically demonstrate that our structure learn-
ing algorithm can achieve significantly higher log-likelihoods
than conventional SPN structure learning. This work is a first
step towards learning probabilistic circuits for relational do-
mains.

2 Sum-Product Networks
Representation. An SPN [Poon and Domingos, 2011] is
a rooted directed acyclic graph that represents a probabil-
ity distribution over a sequence of RVs X = X1, . . . , Xn.
Each node N in the graph represents a probability distri-
bution PN over a subset Xϕ(N) ⊆ X of the RVs, where
ϕ(N) ⊆ {1, . . . , n} is called the scope of the node N . An
SPN consists of three types of nodes: distribution nodes, sum
nodes and product nodes. All leaf nodes of the graph are
distribution nodes, and all internal nodes are either sum or
product nodes. In the following, we denote the set of children
of the node N as ch(N).

A distribution node N encodes a tractable probability
distribution PN (Xϕ(N)) over the RVs in its scope. Early
works on SPNs used univariate distributions, e.g. Bernoulli
distributions or univariate Normals, but multivariate dis-
tributions are possible as well [Vergari et al., 2015]. A
product node N represents the distribution PN (Xϕ(N)) =∏

C∈ch(N) PC(Xϕ(C)). We require product nodes to be de-
composable, meaning that the scopes of all children of a prod-
uct node are pairwise disjoint. A sum node N represents
the distribution PN (Xϕ(N)) =

∑
C∈ch(C) wC PC(Xϕ(C)).

We require sum nodes to be complete, which means that the
scopes of all children of the sum node are identical.

Intuitively, product nodes represent distributions that de-
compose into independent factors (where decomposability
ensures this independence), and sum nodes represent mixture
distributions (where completeness ensures that sum nodes
represent proper mixtures). More specifically, product nodes
represent local independence, i.e., independence that holds
conditional on latent variables. By definition, the distribution
represented by an SPN is the distribution defined by its root
node. Figure 1 (left) shows an example of an SPN. Many ex-
tensions and generalizations of this general model have been
proposed, e.g., models for continuous and hybrid domains
[Molina et al., 2018].

Inference. The appealing property of SPNs is that they per-
mit efficient marginal inference, i.e., computing P (X′=x′)
for a subset X′ ⊂ X of the RVs. This is possible because
summation over the marginalized RVs can be “pushed down”
into the leaf nodes of the SPN [Peharz et al., 2015]. Thus,
marginal inference reduces to marginalization of the leaves
and evaluating the internal nodes of the SPN once. Thus,
when marginal inference of the leaf distributions is possible
in constant time, marginal inference is linear in the number
of nodes of the SPN. This task becomes specifically simple
when the leaf distributions are univariate, because the value
of marginalized leaves can simply be set to 1.

Learning. Efficient inference in SPNs is a result of decom-
posability and completeness of the SPN. Thus, a central chal-
lenge is to learn SPN structures that satisfy these constraints.

We focus on LearnSPN [Gens and Domingos, 2013], a
greedy, top-down structure learning algorithms that creates
a decomposable and complete tree-structured SPN. The al-
gorithm constructs the tree recursively in a top-down way. At
each step, the algorithm performs an independence test on the
dataset, and creates a product node if the data can be split into
sets of independent RVs. If no independence is identified, a
clustering algorithm is used to partition the data into subsets
and a corresponding sum node is created, with weights cor-
responding to the proportion of data in each cluster. In both
cases, the algorithm is recursively called for the correspond-
ing data subsets. When only a single RV is left in a call, a
leaf node is created by estimating a univariate, smoothed dis-
tribution of that RV. To prevent overfitting, a leaf is also cre-
ated when the number of instances falls below a pre-defined
threshold m. In this case, either a full factorization is as-
sumed, or a leaf representing a tractable multivariate distribu-
tion is created, e.g. a Chow-Liu tree [Vergari et al., 2015].

Several other SPN learning algorithms have been proposed,
e.g. a Bayesian structure learning algrithm [Trapp et al.,
2019], and an algorithm that generates a random (decom-
posable and complete) SPN structure and then optimize the
parameters of that SPN by EM [Peharz et al., 2020].

3 Exchangeability-Aware Sum-Product
Networks

We propose Exchangeability-Aware Sum-Product Networks
(XSPNs) as novel tractable probabilistic models. They are
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based on explicitly modeling distributions over partially ex-
changeable RVs as leaf distributions of an SPN.

3.1 Finite Exchangeability
Exchangeability of infinite sequences of RVs is fundamental
in Bayesian statistics. Here, we instead focus on exchange-
ability of finite sequences of RVs, as stated by the following
definition.
Definition 1 (Finite Exchangeability). Let X1, . . . , Xn be a
sequence of RVs with joint distribution P and let S(n) be
the group of permutations acting on {1, . . . , n}. We call
X1, . . . , Xn exchangeable iff P (X1=x1, . . . , Xn=xn) =
P (X1=xπ(1), . . . , Xn=xπ(n)) for all π ∈ S(n).

Exchangeable RVs are not necessarily independent, and
thus a graphical model representation of a distribution over
exchangeable RVs can have high tree-width. Similarly, con-
ventional SPNs do not encode distributions over exchange-
able RVs efficiently (see Figure 1). However, as shown below,
exchangeability still allows for an efficient representation and
inference.

Full exchangeability is a strong assumption that is not nec-
essary for our purposes. Instead, in this paper, we focus on the
weaker property of partial exchangeability (first introduced
by [De Finetti, 1938]), which is based on the notion of suffi-
cient statistics.
Definition 2 (Partial Exchangeability). Let X1, . . . , Xn be
a sequence of RVs with joint distribution P , let dom(X)
be the domain of X and let T be a finite set. The se-
quence X1, . . . , Xn is partially exchangeable w.r.t. the statis-
tic T : dom(X1)× · · · × dom(Xn) → T if

T (x) = T (x′) implies P (x) = P (x′)

for all assignments x and x′.
The statistic T partitions the assignments x into equiva-

lence classes St = {x |T (x) = t} with identical value t
of the statistic T and identical probability. Partial exchange-
ability allows to represent a distribution by |T | parameters,
where parameter wt is the probability of each assignment x
with T (x) = t. Using this parametrization, the probability of
an assignment x is given by P (x) =

∑
t∈T [T (x) = t]wt,

where [·] is the indicator function [Diaconis and Freedman,
1980].

In the same vein, partial exchangeability allows for effi-
cient marginal and MAP inference. Let e be a partial as-
signment, and let x ∼ e denote that x and e agree on
the values of RVs in their intersection. Furthermore, let
Se,t = {x |T (x) = t and x ∼ e} be the set of all assign-
ments that are consistent with evidence e and that correspond
to value t of the statistics.
Theorem 1 ([Niepert and Van den Broeck, 2014]). Let
X1, . . . , Xn be partially exchangeable w.r.t. T . If we can
efficiently,

• for all x, evaluate P (x), and
• for all e and t, decide whether there exists an x ∈ Se,t

and if so, construct it,
then the complexity of MAP inference is polynomial in |T |. If
we can additionally compute |Se,t| efficiently, then the com-
plexity of marginal inference is also polynomial in |T |.

When the conditions of the theorem are satisfied for a
statistic T , we call T a tractable statistic. As a simple ex-
ample, consider binary RVs X1, . . . , Xn and the statistic
T#(x) = T#(x1, . . . , xn) =

∑n
i=1 xi, which counts the

number of ones in an assignment. For this statistic, the con-
ditions of Theorem 1 are satisfied: For a given e and t,
constructing an arbitrary x ∈ Se,t is straightforward and
|Se,t| =

(
n−ne

t−T (e)

)
, where ne is the number of values in e.

Exchangeable Variable Models. (EVMs) [Niepert and
Domingos, 2014] are tractable probabilistic models based
on the notion of partial exchangeability. As basic build-
ing blocks, they use distributions over partially exchangeable
RVs w.r.t. a statistic T , which are represented by parameters
w1, . . . , w|T |.

An Exchangeable Variable Model (EVM) is a product of
such exchangeable blocks. Specifically, let X be a partition-
ing of the RVs X1, . . . , Xn into disjoint subsets. An EVM de-
fines a joint distribution via P (X) =

∏
Xi∈X P (Xi), where

the factors P (Xi) are exchangeable blocks, as defined above.
Finally, an MEVM is a mixture of such EVMs. Parameter es-
timation in MEVMs (i.e. estimation of the mixture weights,
the independence structure inside each EVM and the parame-
ters of the exchangeable blocks) can be done via Expectation
Maximization (EM).

Statistical relational models, like Markov Logic Networks
[Richardson and Domingos, 2006] or relational Sum-Product
Networks [Nath and Domingos, 2015] are another class of
probabilistic models that make use of exchangeability for
efficient representation and inference. In these models, a
high-level, relational structure which implicitly defines which
RVs are exchangeable is defined a priori based on domain
knowledge. In contrast, MEVMs (as well as our own con-
tribution introduced below) identify exchangeability of RVs
purely from the training data. Tractable inference in statisti-
cal relational models can only be guaranteed for certain sub-
classes of models, and can also become intractable when ex-
changeability breaks due to asymmetrical evidence [Jaeger
and Van den Broeck, 2012].

3.2 Exchangeable Leaf Distributions
In this section, we introduce a variant of SPNs which we
call Exchangeability-Aware Sum-Product Network (XSPN).
An XSPN is an SPN with multivariate leaf distributions
p(X1, . . . , Xn), where X1, . . . , Xn are partially exchange-
able w.r.t. a given statistic T . Note that the leaves can have
different cardinality and can be exchangeable w.r.t. differ-
ent statistics T . Specifically, when all leaves are univariate,
XSPNs are equivalent to conventional SPNs. Due to the fact
that marginal inference in distributions of partially exchange-
able RVs is tractable, inference in XSPNs is also tractable.

Corollary 1. Let S be the set of all XSPNs with at most N
nodes, where the leaf nodes represent distributions over RVs
which are partially exchangeable w.r.t. a statistic T , which
has |T | possible values. When the conditions from Theorem 1
are satisfied for T , then time complexity of marginal inference
in the XSPNs contained in S is polynomial in N · |T |.

Proof. Marginal inference in XSPNs requires a constant
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Algorithm 1 LearnXSPN

1: Input: Set of instances D over variables V , minimum
number of instances m

2: Output: SPN representing a distribution over V
3: if |D| < m then
4: return Exchangeable distribution estimated from D
5: else if |V | = 1 then
6: return Univariate distribution estimated from D
7: else if V are exchangeable w.r.t. a given statistic T then
8: return Exchangeable distribution estimated from D
9: else if V can be partitioned into independent sets Vj then

10: return
∏

j LearnXSPN(D,Vj ,m)
11: else
12: Partition D into subsets Di

13: return
∑

i
|Di|
|D| LearnXSPN(Di,V ,m)

14: end if

number of evaluations of each inner node, and answering a
marginal query at each leaf node [Peharz et al., 2015]. There
are at most N leaf nodes, and for each leaf node, inference is
polynomial in |T | (Theorem 1).

For example, time complexity of marginal inference in
XSPNs where the leaf distributions use the statistic T# with
at most n RVs is in O(nN). XSPNs unify conventional SPNs
(with univariate leaf distributions) and MEVMs in a common
framework: Conventional SPNs are a special case of XSPNs
where all leaf distributions are univariate, and MEVMs are
shallow XSPN with a single sum layer and a single product
layer.

3.3 Learning XSPNs
Next, we consider structure learning of XSPNs. The learning
algorithm is based on LearnSPN (see Section 2) and is shown
in Algorithm 1. In addition to the usual LearnSPN scheme,
the algorithm tests for the presence of partial exchangeabil-
ity at each recursive call. When partial exchangeability is not
rejected by the test, a leaf representing a distribution over par-
tially exchangeable random variables is created directly, i.e.
the algorithm does not recurse in that case.

Note that this approach for creating leaves is different
from other approaches that allow for multivariate leaves,
e.g. Chow-Liu trees [Vergari et al., 2015]: These other
approaches introduce a multivariate leaf as a fallback case,
when neither a product node nor a sum node can be created,
whereas our algorithm explicitly tests whether the assump-
tions made in the multivariate leaf distribution are satisfied.
Still, multivariate leaves can also be created as a fallback case
in our algorithm. Here, it is natural to also use distributions
over exchangeable RVs.

We want to emphasize that—in contrast to statistical
relational models like Markov Logic Networks or Rela-
tional Sum-Product Networks [Nath and Domingos, 2015]—
XSPNs do not use any prior knowledge about exchangeability
structure in the distribution, but detect exchangeability solely
based on the data itself.

In the following, we discuss the additional operations that
are required by the algorithm in more detail: First, we show

how the parameters w1, . . . , w|T | of a partially exchangeable
distributions can be estimated, and afterwards discuss statis-
tical tests for partial exchangeability.

Parameter Estimation. Let X1, . . . , Xn be a sequence of
RVs that is partially exchangeable w.r.t. statistic T , and let
{x(i)}Ni=1 be a set of samples. Recall that a distribution over
such RVs can be represented by parameters w1, . . . , w|T |, one
parameter for each t ∈ T . The Maximum Likelihood es-
timate of parameter wt is given by [Niepert and Domingos,
2014]1

wt = 1/N
N∑
i=1

[T (x(i)) = t] |St|−1

Intuitively, the estimate makes use of the fact that each par-
tially exchangeable distribution can be seen as a mixture of
uniform distributions. Each equivalence class St corresponds
to a mixture component with weight 1/N

∑n
i=1[T (x

(i)) =
t]. The factor |St|−1 ensures that wt represents the probabil-
ity of each of the assignments in St. Note that the complexity
of computing |St| is polynomial for tractable statistics T . For
the counting statistic T#, this factor can even be computed in
constant time, as |St| =

(
n
t

)
in that case.

Exchangeability Tests. In the following, we discuss the
problem of identifying whether the discrete RVs X1, . . . , Xn

are partial exchangeable, given a set of samples {x(i)}Ni=1.
A simple option is given by [Niepert and Domingos, 2014],
who provide a number of necessary conditions for finite ex-
changeability. For example, when the RVs X1, . . . , Xn are
exchangeable, then ∀i, j : E[Xi] = E[Xj ].

We propose to use a more general approach: Given a set of
samples {x(i)}Ni=1, we use Pearson’s χ2 test for goodness of
fit to test the null hypothesis that the joint distribution P (X)
is partially exchangeable w.r.t. a given statistic T . Specif-
ically, we perform the following steps: (i) estimate the pa-
rameters w1, . . . , w|T | w.r.t. the statistic T from the samples
{x(i)}Ni=1, using the ML estimate above; (ii) for each assign-
ment x, compute its expected frequency (assuming that it is
distributed according to P (x) =

∑
t[T (x) = t]wt) and its

empirical frequency, (iii) compute the test statistic of Pear-
son’s χ2 test, and either reject or not reject the null hypothe-
sis.

Unfortunately, the time complexity of this test grows ex-
ponentially with the number of RVs n, because the expected
and empirical frequencies need to be computed for all as-
signments x. Therefore, we propose to approximate the test
that works by performing pairwise comparisons. Specifically,
for a sequence X1, . . . , Xn, we test all pairs (Xi, Xj) with
i, j ∈ {1, . . . , n}, i < j for partial exchangeability, using
the test outlined above. When none of these tests rejects the
null hypothesis, we assume that X1, . . . , Xn are partially ex-
changeable.

Pairwise exchangeability is a necessary condition of (full)
exchangeability [Schervish, 1995, Proposition 1.12], thus all
cases of actual full exchangeability are also identified by the

1Note that we directly multiply by |St|−1 when estimating the
parameters, whereas [Niepert and Domingos, 2014] multiply by this
factor when evaluating P (x).
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pairwise approach. We rarely encounter false positives in
practice, as illustrated empirically in the supplementary ma-
terial.

The pairwise test needs to perform O(n2) χ2 tests, and for
each test, compute a Maximum Likelihood parameter esti-
mate. For the statistic T#, parameter estimation can be done
in O(N) time (where N is the number of samples), and thus
the time complexity of all pairwise tests is in O(N n2). In
practice, this test only has a small effect on overall runtime of
LearnXSPN, which is dominated by clustering.

4 Experimental Evaluation
We evaluated XSPNs on three types of datasets: Seven syn-
thetic datasets that were constructed to contain (contextu-
ally) exchangeable RVs, four real-world datasets consisting
of multiple interchangeable parts (where partial exchange-
ability arises naturally), and 20 commonly used benchmark
datasets. We investigated probability estimation as well as
classification performance of XSPNs, compared to conven-
tional SPNs and additional baseline models.

4.1 Probability Estimation
Data. Four of the synthetic datasets were created by follow-
ing [Niepert and Domingos, 2014]: We sampled uniformly
from {0, 1}100, and then only kept samples that satisfy certain
constraints on the number of ones in the sample. Two datasets
(MEVM-s and MEVM-l) were sampled from MEVM mod-
els. The conference dataset was sampled from a Markov
Logic Network that describes decision-making of people at-
tending or not attending a conference, as introduced in Exam-
ple 1.

Additionally, we evaluated our approach on four real-world
density estimation tasks. The exams dataset consists of exam
participation information of 487 business students that started
their studies in fall term 2019 at the University of Mannheim.
58 courses were attended by at least 10 of these students be-
tween fall 2019 and fall 2021. Each binary RV represents
participation in one of these courses, and each example rep-
resents a student. The senate dataset contains all 720 roll call
votes in the Senate of the 116th United States Congress, taken
from [Lewis et al., 2021]. We only kept votes of the 98 sena-
tors that participated in the majority of the votes. Each binary
RV represents the votes of a senator, and each example rep-
resents a ballot. A similar procedure was applied to the votes
from the House of Representatives of the 116th US Congress
(house dataset) and the 17th German federal parliament (bun-
destag dataset, data taken from [Bergmann et al., 2018]).

Finally, for completeness, we also evaluated SPNs and
XSPNs on 20 benchmark datasets that are commonly used
for comparing SPN learning algorithms [Gens and Domin-
gos, 2013]. For a more detailed description of the datasets,
we refer to the supplementary material.

Experiments. We compared the following models: SPNs
with Chow-Liu trees as leaf distributions trained via Learn-
SPN [Vergari et al., 2015] (which are closest to XSPNs as
they also use multivariate leaf distributions); our XSPNs
trained via LearnXSPN; MEVMs (as shallow variants of
XSPNs) trained via EM [Niepert and Domingos, 2014]; and
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Figure 2: XSPN learned for the conference dataset. The XSPN faith-
fully represents the true distribution underlying the MLN specifica-
tion: For fixed HotTopic and Overflow, all of the Attends random
variables are exchangeable—except for the case where HotTopic =
Overflow = 0, in which case all of the Attends variables are indepen-
dent.

Masked Autoencoders for Distribution Estimation (MADEs)
[Germain et al., 2015]. MADEs do not provide tractable
marginal inference and are thus not directly comparable to
(X)SPNs, but are used as strong baseline density estimators
here. We do not consider methods for modeling distributions
over sets [Yang et al., 2020], because they assume full ex-
changeability and are thus not suited for the cases investigated
here. Our implementation2 of XSPNs is based on the SPFlow
library [Molina et al., 2019] for Python.

In all SPN models, we used the g-test as independence test
and clustered instances via EM for Gaussian Mixture Mod-
els. As proposed by [Vergari et al., 2015], we limited the
number of child nodes of each sum and product node to 2.
For XSPN leaves, we used the statistic T# introduced in Sec-
tion 3.1. We performed an exhaustive grid search of the SPN
hyperparameters. Specifically, we varied the g-test thresh-
old values ρ ∈ {5, 15}, the minimum number of instances
m ∈ {20, 200}, and the significance level of the χ2-test for
exchangeability p ∈ {0.05, 0.1, 0.2, 0.4}. For all models, we
used Laplace smoothing with α = 0.1. Chow-Liu tree leaf
learning failed in some cases using SPFlow, in which case we
used fully factorized leaf distributions. Parameter settings for
the MEVM and MADE models can be found in the supple-
mentary material.

Results. Table 1 shows the experimental results. For the
7 synthetic datasets, the XSPNs outperform all other base-
line models (except for being on-par with MADE for some
datasets). For these datasets, XSPNs can often learn the true
distribution. As an example, consider Figure 2, which shows
the XSPN learned for the conference dataset. This XSPN rep-
resents the true dependency structure in the dataset. Note that
LearnXSPN was able to discover this structure completely
bottom-up from the data without any prior knowledge about
the domain, as usually required for top-down relational learn-
ing approaches. For these datasets, XSPNs also need sub-
stantially fewer parameters: For example, the XSPN shown
in Figure 2 has 52 parameters, while the corresponding SPN
(with identical hyperparameters) has 363 parameters.

For the real-world datasets (exam, senate, house, bun-
destag), XSPNs also generally outperform the baseline mod-
els. Notably, the difference between performance of XSPN
and the other models is specifically pronounced for bundestag

2Available at https://github.com/stefanluedtke/XSPNFlow
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dataset SPN XSPN MEVM MADE
sy

nt
he

tic
threshold -68.035 -67.318 -67.408 -67.628
exact -69.327 -67.706 -67.906 -69.474
parity -69.327 -68.623 -69.368 -69.505
counting -69.323 -69.319 -67.936 -69.468
MEVM-s -12.091 -11.889 -12.524 -11.885
MEVM-l 87.795 -84.858 -94.309 -81.835
conference -5.936 -5.907 -5.91 -5.541

re
al

senate -20.778 -19.663 -21.107 -20.972
house -86.517 -80.032 -83.472 -83.277
bundestag -228.459 -103.763 -106.42 -161.727
exam -6.952 -6.72 -7.066 -12.308

be
nc

hm
ar

k

nltcs -6.059 -6.06 -6.04∗ -6.04
plants -13.035 -13.009 -14.86∗ -12.32
webkb -156.444 -156.65 -157.21∗ -149.59
msnbc -6.043 -6.043 -6.23∗ -6.06
kdd -2.151 -2.15 -2.13∗ -2.07
audio -40.823 -40.82 -40.63∗ -38.95
jester -53.811 -53.806 -53.22∗ -52.23
netflix -58.213 -58.208 -57.84∗ -55.16
msweb -9.882 -9.884 -9.96∗ -9.59
book -35.079 -34.937 -34.63∗ -33.95
accidents -28.957 -28.937 -38.258 -26.42
dna -81.53 -81.567 -98.34 -82.77
kosarek -10.77 -10.741 -10.997 -
pumsb -23.457 -23.375 -36.396 -22.3
retail -11.019 -10.967 -10.897 -10.81
movie -52.373 -51.702 -52.015 -48.7
bbc -252.994 -251.949 -252.023 -242.4
ad -18.996 -15.747 -32.359 -13.65
20ng -153.503 -153.545 -152.69∗ -153.18
reut.-52 -84.777 -84.651 -86.98∗ -82.8

Table 1: Test log likelihoods for all models and datasets. For the
SPN and XSPN, results that are significantly better than the other
(X)SPN model are printed in bold (paired t-test, p < 0.05). ∗ Re-
sults taken from [Niepert and Domingos, 2014].

data. We suspect that the inductive bias of XSPNs towards
exchangeability is able to prevent overfitting for this dataset,
which contains only few samples in relation to the number of
variables. Overall, XSPNs achieve state-of-the-art results for
datasets consisting of multiple, interchangeable parts.

The 20 benchmark datasets do not explicitly encode ex-
changeability, thus we did not expect a large benefit of
XSPNs compared to conventional SPNs with Chow-Liu tree
leaves. Interestingly, XSPNs achieve significantly (although
only slightly) higher test log likelihoods than SPNs for 8 of
the 20 datasets. Thus, XSPNs can also be used in such general
domains without loss of performance, compared to SPNs.

4.2 Classification
Additionally, we evaluated the classification performance of
XSPNs by training a separate SPN or XSPN for each class y
to represent P (x | y), and computing the class posterior via
P (y |x) ∝ P (x | y)P (y). As baselines, we used Support
Vector Machines (SVMs) and gradient boosted trees (XG-
Boost). The classification tasks are based on the datasets de-
scribed in Section 4.1, where one of the RVs is selected as
classification target. For example, for the voting data, the task

dataset SPN XSPN MEVM SVM XGBoost

counting 0.758 1.000 0.793 0.796 0.793
exact 0.975 1.000 0.977 0.979 0.978
parity 0.493 1.000 0.507 0.605 0.502
threshold 0.983 1.000 0.987 0.982 0.983
conference 0.854 0.854 0.851 0.850 0.852

exam 0.986 0.986 0.971 0.997 0.971
senate 0.983 0.992 0.958 0.974 0.967
house 0.928 0.967 0.908 0.986 0.954
bundestag 0.951 0.951 0.610 0.941 0.951

Table 2: Test accuracies for the classification experiments.

is to predict the votes of one of the representatives, given the
votes of all other representatives. More details on the classi-
fication tasks can be found in the supplementary material.

The test accuracies are shown in Table 2. For the first four
synthetic datasets, the XSPN can learn the true distribution of
the data (conditional on the class, all RVs are fully exchange-
able), and thus classifies all test samples correctly. The con-
ventional SPN and the baseline classifiers, on the other hand,
cannot learn the underlying structure of the data appropri-
ately; their accuracies lie in the range of the prior probability
of the majority class. For the conference and exam data, SPN
and XSPN achieve the same performance, being competitive
with the baseline classifiers.

In the vote prediction tasks, the XSPN achieves higher ac-
curacies than the SPN for two datasets (senate, house) and the
same accuracy for the bundestag dataset. Furthermore, even
though (X)SPNs are not primarily designed for classification
tasks, the accuracy of the XSPN model is competitive with
the baseline classifiers.

5 Discussion and Conclusion
We proposed an extension of SPNs which allows to efficiently
handle distributions over partially exchangeable RVs, as well
as a structure learning algorithm for these models. The learn-
ing algorithm constructs a deep model with efficient repre-
sentations of exchangeable sequences, without needing any
prior knowledge about exchangeability relations among the
RVs. XSPNs achieve state-of-the-art density estimation per-
formance for datasets containing repeated, interchangeable
parts, and are competitive with SPNs in general domains.

Our learning algorithm is based on the structure learning
algorithm of [Vergari et al., 2015]. Future research will focus
on integrating means to detect and represent exchangeabil-
ity in other SPN learning algorithms, e.g. Bayesian learning
[Trapp et al., 2019]. A further interesting direction for future
work is to generalize our approach to other statistics (e.g. re-
lated to exchangeable decompositions [Niepert and Van den
Broeck, 2014]) and continuous and hybrid domains.
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