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Abstract

Consider the practical goal of making a desired
action profile played, when the planner can only
change the payoffs, bound by stringent constraints.
Applications include motivating people to choose
the closest school, the closest subway station, or to
coordinate on a communication protocol or an in-
vestment strategy. Employing subsidies and tolls,
we adjust the game so that choosing this predefined
action profile becomes strictly dominant. Inspired
mainly by the work of Monderer and Tennenholtz,
where the promised subsidies do not materialise in
the not played profiles, we provide a fair and in-
dividually rational game adjustment, such that the
total outside investments sum up to zero at any pro-
file, thereby facilitating easy and frequent usage of
our adjustment without bearing costs, even if some
players behave unexpectedly. The resultant action
profile itself needs no adjustment. Importantly, we
also prove that our adjustment minimises the gen-
eral transfer among all such adjustments, counting
the total subsidising and taxation.

1 Introduction

It is often important to motivate the players play a desired
action profile. For example, in prisoner’s dilemma or the
tragedy of commons [Hardin, 1968], the strictly dominant
behaviour is the opposite to the social good, thus pursuing
own interests can bring upon a general failure. These games
model crucial issues, important for environmental protection,
encouraging benevolence, and opposing political oppression,
so adjusting the interaction to make the socially beneficial
behaviour strictly dominant would be immensely useful. In
general, we consider rendering the preferred (for whatever
reason) profile strictly dominant, for any private values of the
players. Strict dominance means the profile is always strictly
preferable to each agent, regardless of what the others do.
Thus, in the rare case when such a profile exists, it is unique
and any rational agent who wants to maximise her own utility
should act according to that profile, regardless of the others’
preferences and actions.

One natural approach employs subsidies and tolls to make
the desired profile strictly dominant. This can motivate peo-
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ple to choose the closest school to their home, to optimally
use the public transportation, to coordinate on a certain side
to drive, on a communication language or a protocol, etc. For
example, constructing a socially best network can be mo-
tivated by subsidising some links, as described in [Augus-
tine et al., 2015]. [Varakantham et al., 2013] approximate
the desired outcomes described in an aggregate level (say,
at most so many agents use a certain resource), where the
edge subsidies are bounded by a budget. [Buchbinder et al.,
2008] consider taxing the users to subsidise certain services,
so as to eventually optimise the social welfare. In the works
by [Buchbinder er al., 2008], [Varakantham e al., 2013] and
[Augustine er al., 2015], any subsidy is allowed, up to a bud-
get; but the applicability of these approaches would increase
from restricting themselves to fair and individually rational
schemes. The latter means that each player can only bene-
fit from participating in the suggested changes. [Monderer
and Tennenholtz, 2004] subsidise certain outcomes to make
a certain profile hold in non-dominated strategies, such that
that profile itself requires little, perhaps even zero, subsidis-
ing. Inspired by that approach, we additionally require fair-
ness, individual rationality, and that the social planner never
pays anything. We also strengthen the predictive power of
the claim that the desired strategy profile will be played by
making it strictly dominant; thus, any rational player should
always play that, regardless of the others. All the presented
approaches are useful, but the need for a budget for the sub-
sidies hinders frequent applications. We solve this issue by
constraining the subsidies to sum up to zero, not only at the
non-dominated profiles, but everywhere. The game model
is pre-Bayesian, each players being aware solely of her own
values and forming no beliefs about others’ values, while the
planner may know either everyone’s values or only their dis-
tributions. Consider the following application examples.

Example 1 (School enrollment). Consider people register-
ing their children to schools. Assuming the preferences of
the people are determined by the location of the school, its
teaching level and overall prestige, the preferences can be
well estimated by the planner (the municipality). The mu-
nicipality prefers to have people register their children to the
closest school to their dwelling place, so that the burden on
the transportation system and the environment is minimised.
The law forbids coercing a school choice, but the munic-
ipality may motivate the registration of each student to the
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closest school by tolls and subsidies or promises of free tutor-
ing. Legal and social considerations require the bonuses to be
fair, and no person should be expected to lose from the whole
scheme. Budget considerations require that even if some peo-
ple do not respond to the motivating actions as expected, the
municipality should never have to invest extra costs, so the
provided bonuses and subsidies should equal the levied tolls.
It would be especially nice, if in case all the players do behave
as expected, then no tolls or subsidies will need to be admin-
istered. Actually, this stems from fairness and the constraint
that in any case, the total subsidies equal the total tolls.

Example 2 (Preventing import). Climate considerations sug-
gest motivating restaurants and canteens consume local food
can help in protecting the environment [Ivanova et al., 2020].
The preferences of each restaurant depend on the economi-
cal situation, such as food prices and transportation costs,
and on the local preferences, which can be estimated. While
adjusting the situation, legal and ethical consideration re-
quire fairness, it is useful to guarantee no restaurant will lose,
and the budget constraints require the planner will never pay,
while if the restaurants behave as expected, then neither taxes
nor subsidies will apply.

In the above examples, the planner has complete informa-
tion about the players’ utilities. The planner can be assumed
to avail of complete information also when others’ objectives
are possible to estimate values, such as wholesale purchases
of raw material, anonymous hiring (excluding personal senti-
ments) and selecting saving or investment schemes by organ-
isations with known policies.

However, in some cases the planner lacks some informa-
tion, such as in the next example and in situations like choos-
ing collaborators, roommates, non-anonymous hiring, sav-
ing investments schemes by people or organisations with un-
known policies, choosing holiday destinations, journal and
gym subscriptions.

Example 3 (Subway stations). Consider commuters to a reg-
ular location. People often use the subway in combination
with other means of transportation, such as trams of private
cars. The best route for a given person depends on factors
like weather, petrol prices, personal circumstances on a given
day and personal taste. Some of these, such as personal cir-
cumstances and taste, can vary with time, unbeknownst to the
planner (the municipality). For the sake of the transporta-
tion system and the environment, the municipality would like
each person to board the subway at the station closest to her
home and leave the subway at the station closest to her job.
Unlike the other preferences, the locations of the residents’
home and their jobs are typically known to the municipality
and remain constant for long periods of time. Each resident
is aware solely of her own circumstances.

Obviously, coercion is neither possible nor allowed, but the
municipality may try to motivate the inhabitants to behave
as described by monetary tolls and subsidies, even though
it is oblivious to their exact preferences. Law and common
sense demand that such a scheme be fair, and since no person
may be coerced to participate in it, this scheme should be
individually rational as well. We also want to keep the total
tolls equal to the total subsidies in any case, so that no costs
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are ever born by the city. Finally, we prefer to have no tolls or
subsidies in the case where all the people behave as expected.

In cases where we may not change the strategies, we make
the desired profile strictly dominant by subsidies and tolls,
while being fair, namely exercising equal treatment, making
participation individually rational, and never requiring any
costs from the planner, thereby facilitating frequent use of
such adjustments. Individual rationality renders the (anyway
costly and perhaps even immoral or illegal) coercion to par-
ticipate irrelevant.

Similarly to [Monderer and Tennenholtz, 2004] and unlike
mechanism design, our planner adjusts only the payoffs, leav-
ing the strategy sets and the outcome as they are, assuming the
players value money quasi-linearly. The planner never asks
for private values and knows in advance which action profile
she wants to be played, regardless of her knowledge about
the players’ preferences. Furthermore, unlike using a media-
tor in [Monderer and Tennenholtz, 2009], where the strategies
of messaging the mediator are introduced, and the mediator
acts based on the whole set of messages it receives, we only
adjust the utilities. We thus assume the knowledge of the pay-
offs, but we also achieve an adjustment that is implementable,
fair and individually rational, which is provably impossible to
achieve when having to elicit the private information before-
hand. This constellation of properties is useful theoretically
and practically, in the above scenarios. Our adjustment also
minimises the general transfer among such adjustments.

For pre-Bayesian games, we still make the desired fixed
strategy strictly dominant (with a certain probability), un-
like [Monderer and Tennenholtz, 2004], who do not con-
straint themselves to fixed strategies, and then they prove that
in general, no implementation is possible.

We present the relevant literature in the next paragraph.
Then, we provide the definitions in Section 2, following by a
suggestion of an adjustment in Section 3, assuming the plan-
ner knows the players’ utilities. For ease of presentation, we
model complete information in that section. This adjustment
is fair, individually rational and always costs nothing to the
planner. Interestingly, the payoffs in the resulting strictly
dominant profile are not adjusted. In Section 4, we present
what the planner that lacks knowledge about the players’ util-
ities can do. In Section 5, we describe the impossibility of
eliciting the original payoffs from the players by a mechanism
design-like approach, before adjusting the game; we finish by
considering the usage of our results. Due to space constraints,
we omit several proofs, the construction of an adjustment for
infinite games, and the generalisations for n players.

1.1 Related Work

In many practical scenarios, we need to motivate the play-
ers to play a certain action profile. This may be useful in
interactions with positive externalities, such as adopting new
standards [Chalker et al., 2009] or organisational and legal
practices (see [Dybvig and Spatt, 1983]), such as interna-
tional taxation [Radaelli, 1998]. [McAdams, 2009] presents
many applications of the classical stag-hunt and the battle of
sexes games, including investment banking and bargaining
with prisoners. He also considers the hawk-dove game, which
can model conflicts in prosecutorial bargaining. [Clemons
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and Row, 1993] mention situations with negative externalities
that could use adjustment, such as pollution and noncoopera-
tive behavior.

Unlike the famous mechanism design [Nisan et al., 2007,
Chapter 9] and implementation theory [Jackson, 20011,
where the unknown preferences determine the desired out-
come, our planner knows the desired outcome in advance, and
the problem is steering the players there, like in [Monderer
and Tennenholtz, 2004; Eidenbenz et al., 2007]. [Deng et al.,
2016] study the hardness of the k-implementation in the sense
of [Monderer and Tennenholtz, 2004] and provide an ap-
proximation algorithm. Similarly to 0-implementation [Mon-
derer and Tennenholtz, 2004], the government can insure
the adopters against a lower adoption level, insurance that is
never expected to be claimed, as suggested by [Dybvig and
Spatt, 1983]. Dybvig and Spatt need to know the distribution
of the costs, rather than the exact costs, for their approach.

Many works, such as [Buchbinder er al., 2008], study
improving performance, that is the price of anarchy, rather
than attaining a predefined profile like we do. [Caragian-
nis et al., 2010] improves the performance of linear conges-
tion games. Unlike our work, they also constrain themselves
to tolls only and achieve partial results. Similarly, improv-
ing efficiency through tolls appears in [Fleischer et al., 2004;
Cole et al., 2003]. [Cole et al., 2006] also study improving
equilibrium efficiency using taxes and also compare the ef-
fect of taxes with that of edge removal. [Swamy, 2007] con-
siders both tolls and controlling a part of the flow as means
to increase efficiency. Controlling some flow is called Stack-
elberg strategies, and analysed for example in [Korilis et al.,
1997] for routing and in [Roughgarden, 2001] for schedul-
ing. Another way to improve the price of anarchy is co-
ordination mechanisms, which are scheduling policies that
give rise to games with efficient equilibria. For example,
[Caragiannis, 2012] studies coordination of scheduling, and
[Christodoulou et al., 2012] consider coordination of routing.
When no planner exists, but costless enforcement does, [Jack-
son and Wilkie, 2005] study when some side contracting can
increase the efficiency of equilibria, assuming players know
each other’s payoffs and commit themselves to the payments
before the game commences.

[Levit ez al., 2019] employ tolls or subsidies to create Nash
equilibria in Boolean games, but they convert some (efficient)
profile to an equilibrium, rather than making a predefined pro-
file become an equilibrium.

2 Model

Given players N = {1,...,n}, consider a pre-Bayesian
game (N, (A;)ien, (P)ien, (ui)icn), where for each player
i € N, A, is her action set and P, = R4 is her type set, con-
taining ¢’s payoff matrices. Let A 2 [I;cn Ai be the set
of action profiles and P 2 [1;cn P be the set of type pro-
files or the states of the world. Player #’s utility is a function
u;: A X P; — R, defined as w;(a, p;) = p;i(a). Player i’s
strategy s; € S; is a function s;: P; — A;, and the set of

strategy profiles is S 2 [I;cn Si- In other words, a player
decides on her action based only on her own type matrix,
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her utility being the corresponding entry in her type matrix.
Given a strategy profile, s € S, and a state of the world,
p € P, player ¢’s utility is u;(s(p),p;) = pi(s(p)), where
s(p) = (51(p1);- -+, 8n(pn)). We call such a game finite if
|A] < oo. The infinity of P is immaterial for this definition.
The paper concentrates on finite games, to conserve space.
We now define the main solution concept of this paper.

Definition 1. For any player ¢, strategy s; € S; is
strictly dominant if playing that is strictly preferable to
¢ for all payoffs p; € P;, regardless of how the others
act, namely Vi € N,Vp, € P, Va_; € A_;Va; €
A \ {si(pi)} s ui(si(pi), a—i,pi) > wi(as,a—s,p;). Since
p; is the payoff matrix, this condition simply means
pi(si(pi), a—i) > pi(ai,a—;).

A player may have 1 or no strictly dominant strategies in a
game. Since it is always strictly better for ¢ to follow s;, we
assume that every player plays a strictly dominant strategy if
she has one. Moreover, preferring s; requires no knowledge
about the utilities of the others on 7’s behalf. When we discuss
incomplete information, planner’s lack of knowledge will be
crucial, but the players are never assumed to know the others’
utilities, befitting the pre-Bayesian approach.

We will be interested in strategies that always yield the
same action, modelling a practically preferable behaviour,
such as enrolling to the closest school or entering the subway
station that is the most proximate to work. Formally,

Definition 2. Strategy s, € S; of player ¢ is called fixed if
Ja; € A such that s;(p;) = a;,Vp; € P;.

Naturally abusing notation, we call profile s € S is strictly
dominant if for any player 7 € N, strategy s; is strictly dom-
inant. We call profile s € S fixed if for any player i € N,
strategy s; is fixed.

The holy grail of this paper is the following. Given a game
and any action profile a € A, adjust the game to (u; +v;)ie N,
so that the fixed strategy s;(p;) = a;,Vp; € P; becomes
strictly dominant for any player ¢ € N. The adjustment itself
may depend on the type profile p € P or on its distribution,
when the planner knows it. Abusing notation, we sometimes
call the fixed strategy s;(p;) = a;, Vp; € P; just a; and write
s() = a. In other words, we want to motivate every player
to take her part in this profile, regardless of how the other
players behave. The basic concept is the adjustment, being
simply the side payments of any sign, added to the players.

Definition 3 (Adjustment). An n-player adjustment is a
(positive or not) subsidy function vector (v;)ien,vi: A —
R,Vie {1,...,n}.

Now, given any pre-Bayesian game =
(N, (Ai)ien, (Pi)ien, (ui)ien) on n players
N {1,...,n}, the adjusted game (by (v;)icn) is

A
I'+ (vi)ien = (N, (Ai)ien, (Py)ien, (ui + vi)ien), where
(u; +vi)(a, i) 2 u;i(a,p;) + vi(a),Vi € N,Va € A.

We can consider an adjustment as a real matrix in R4,
added to P in calculating the utility. Positive payments rep-
resent subsidies, while negative ones stand for tolls.

In Example 1, an adjustment represents the tolls and subsi-

dies, aiming to motivate registering to the closest school. We
now define the properties such an adjustment should fulfill.

Tr
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Implementability. Given any £ > 0, we could require
that the sum of the utilities of all the players is at most
k, thereby ensuring the planner spends at most k. This k-
implementability can be demanded for each action profile,
or for the strictly dominant profile (resembling the notion of
k-implementability that [Monderer and Tennenholtz, 2004]
used for non-dominated profiles), or in total over all the pro-
files. We aim at guaranteeing no costs for the planner, regard-
less of whether the players behave as we expect, so that the
adjustment will be widely applicable. Therefore, we require
the strongest bound and additionally set the bound k£ = 0,
strengthening the k-implementability of [Monderer and Ten-
nenholtz, 2004]. We call this implementability. Formally,

Definition 4 (Implementable). We call an adjustment
(vi)ien implementable if Va € A, ),y vi(a) = 0.

In other words, we require the multidimensional payoff ad-
justment matrix to be zero-sum. (Matrix M = My X...xXM,,
M; € R4, isazero-sumif ;| M;(a) =0, forany a € A.)
Namely, the total subsidies equal the total tolls, in any a € A.

Fairness. Fairness can be defined as the equality of the total
payment added to each player. Another option is to concen-
trate on the additions in the fixed dominant strategy profile of
the resulting game. The strictest approach of requiring equal-
ity of additions in every profile would force any zero-sum ad-
justment to be trivial, so it is not interesting here. Combining
these considerations, after strengthening the second demand
above to hold for any agent who plays a fixed strictly domi-
nant strategy, regardless of the actions of the others, gives rise
to the following notion.
Definition 5 (Fairness). Adjustment (v;);cny of a pre-
Bayesian game I' = (N, (A4;)ien, (Pi)ien, (u;i)ien), result-
ing in G + (v)ien, is fair if

L If [A] < +oo, then Vi,j € N,> ., vi(a) =

> aca vj(a), and no requirement exists for infinite A,

2. and having a strictly dominant fixed profile s() = a €
A of (F + (v,-)ieN),v,»(ai,b_i) > vj(ai,b_i),Vi S
N,Vj #i,Vb_; € A_;.

This means that the overall adjustment is equal between
the players, and when a player acts out her strategy in the
fixed strictly dominant profile, she receives at least as much
additional payoff as any other player does, regardless of how
the others act.

The first part of the definition of fairness is only a sim-
ple version of arithmetic average, used to simplify the pre-
sentation. This approach assumes that the number of actions
of each player is normalised while transferring reality to the
model. If this assumption does not hold, we simply replace
sum by arithmetic average in the first requirement of fairness.
The rest can be adapted in a straight-forward manner.

Individual Rationality. Individual rationality means any
player is at least as well off after the adjustment as she was
before it. We could require this either in total or in the strictly
dominant profiles, but not in every single profile, since that
would imply no adjustment. This motivates the following.
Definition 6 (General individual rationality). Adjustment of
a pre-Bayesian game I' = (N, (A:)ien, (Pi)ien, (Ui)ien)
by (v;)ien is called individually rational if
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. if |[A] < +oo, then Vi € N, 4 vi(a) > 0, with no
requirement for an infinite A,

and given a strictly dominant fixed profile s() = a € A
of (F + (vi)iGN)v ’Ui((li, b,Z) >0,Vie N,Vb_; € A_;.

This means that the overall adjustment scheme is profitable
to any player, and when a player acts according to the fixed
strictly dominant profile, she is guaranteed a nonnegative ad-
ditional payoff, independently of how the others act.

Though requirements 1 (about sums) in the definitions of
fairness and individual rationality might seem excessive when
the players play as expected and insufficient if the actually
played profile after the adjustment was not the strictly domi-
nant one (say, the players behave irrationally), they are useful.
Suppose we adjust the given game multiple times, while the
agents play uniformly in random. Then, the 1st requirements
imply the average will be fair and individually rational. This
is a safety net against irrational or mistaken actions.

The main point is the insistence on implementability,
which protects the organisers regardless of the actual behav-
ior at each play. For 2 players, assuming implementability,
fairness becomes equivalent to individual rationality.

Proposition 1. For any implementable adjustment (v;);c N,
fairness implies individual rationality. For 2 players, the two
notions are equivalent.

The omitted proof manipulates the definitions.

3 Adjustments

We now design fair, individually rational and implementable
adjustments to pre-Bayesian games. In this section, the
planner possesses complete knowledge of the realised types.
Assuming complete information in this section simplifies
the definitions as follows. Consider a normal-form game
(N, (Ai)ien, (ui)ien), where any player i € N

1,...,n} has the action set A; and her utility is u;: A — R,

where A 2 [T, A;. Here, action and strategy coincide.

An action a; of i is strictly dominant if that action is strictly
preferable to i, regardless of the others’ actions. Formally,
ui(ai,b_i) > ui(ag,b_i),Vag € A \ {CLi} ,Vb_i S A_i.
Slightly abusing notation, we call a € A strictly dominant if
a; is strictly dominant, for each ¢ € N.

The notions of adjustment, implementability, fairness and
individual rationality remain unchanged.

We obtain the following constructive result. We consider 2
players in the body of the paper; the general case is omitted
for lack of space. The adjustment is illustrated in Figure 1.

Theorem 1. For any finite normal-form game G
(N, (Ai)ien, (ui)ien) and any profile a € A, there ex-
ists a fair, individually rational and implementable adjust-
ment G (vi)ien, such that in game G + Gy
(N, (4)ien, (u; + vi)ien), a is strictly dominant.

Proof. We arbitrarily order the actions of each player, such

that the first actions comprise the desired profile a, and denote
A .

A; ={a;a1,...,aim,;}, where m; = |A;|. By construction,

a = (ai,1)ien. We will construct a fair zero-sum adjustment

matrix GO (7’5 j) = (vk (7’7 ]))kEN
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I:\II: 1: 2 k:
1 (%) (5) | (CLs) | Cs)
2: (™" ) () (%) (%)
: (™ ) (%) (%) (%)
m—1 (G (o) ) )
m "™ o) o) o)

Figure 1: The adjustment for 2 players: we subsidise the player who
plays the desired profile and fine the unique deviator.

In the special case of m x k = 1 x 1, define G = ((0,0)).
This is fair, individually rational and zero-sum.

For any m + k > 2, we set all G to zeros, besides the first
row and column. There, we define vy (1,1) = 0,v1(1,7) =

5; Vi =2, k—1kandv,(i,k) £ —,Vi=2,...m—
1,m. To keep Gy zero-sum, define vs —v1. Set each
d; > 0,Vj > 2, as areal satisfying both following conditions:
)]
@)

Set each y; € R, Vi > 2 satisfying both conditions below:

3
“

(w1 4 v1)(a1,1,a2,5) > (u1 +vi)(ar, az4), Vi > 1,
(ug +v2)(a1,1,a2,1) > (uz2 +va2)(ar,1,az ;).

(u2 +v2)(a1,i,a2,;) < (ug +v2)(ais,a21),Yj > 1,

(w1 +v1)(ar1,a2,1) > (ur +v1)(a1,:,a2,1)-

Finally, we require Y ", y; = Z?:z 9, for fairness.

Now, in G + Gy, a is strictly dominant, because con-
ditions Eq. (1) and Eq. (4) imply (uq + v1)(a1,1,a2;) >
(u1+v1)(a1,:, az,4), Vi > 1,4, while Eq. (3) and Eq. (2) im-
ply (uz + v2)(a1,i, az2,5) < (ug +v2)(a1,i,az,1),Vj > 1,Vi.

Since v1(1,5) > wa(l,4),v2(i,1) > w1(i,1) and
S Z?:Q d;, this adjustment is fair. Indeed, the total

subsidies to player 1 is Z?:z §; — > it i, whereas the total

subsidies to player 2 sum up to — Zf:2 8+ > ik, is so the
above requirement implies both sums are zero.
This adjustment is implementable by construction.
Finally, since vy (1,7) > 0,v2(i,1) > Oand > i~y =
k

2

._o 05, this adjustment is also individually rational. Alter-
natively, this follows from Proposition 1. O

3.1 Transfer Minimisation

Always taxing what we pay out never requires the planner to
spend money, but we still prefer to tax as little as possible,
to avoid interfering with the players. Thus, we now consider
minimising the sum of the payments of both signs. Formally,
given adjustment (v;);en, v A — R, we define its general

transfer as GT = > aca 2ien lvi(a)]. This is what we
strive to minimise, subject to the other requirements.

We now exemplify adjustments with small and with large
general transfers. First, given the game

I:\IT:| 1: 2:
1: (0,0) | (0,0)
2: (0,0) | (0,0)
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we can make (1, 1) strictly dominant using the adjustment

I:\II: 1: 2:
T 0,00 [ (3,-9)
2 (=4,6) | (0,0)

Vo > 0. This, GT = 44,Vd > 0. Also intuitively, just a small
adjustment is needed, because a small change of utilities suf-
fices to make the desired profile strictly dominant. On the
other hand, given the Prisoner’s dilemma, making the strictly
dominated (Coop, Coop) become strictly dominant intuitively
requires a larger intervention. Indeed, given

1:\2: Coop : | Defect :
Coop : (3,3) (0,5)
Defect: | (5,0) (1,1)

we can make (Coop, Coop) strictly dominant by the following
adjustment, V9 > 2.

IT:\II: 1: 2:
T (0,0 | (5, -9)
2: (—0,0) | (0,0)

This adjustment has GT of 44, where the § has to exceed 2.

Intuitively, if the adjustment minimises G7T', then the
higher GT it accrues, the further the original game is from
preferring the desired profile by all the players. For n = 2,
the adjustment suggested in the proof of Theorem 1 is the
minimum general transfer adjustment that fulfills the condi-
tions of the theorem. As the set of possible general transfers
is not closed, we speak of its infimum.

Theorem 2. Forn = 2, the adjustment suggested in the proof
of Theorem 1 has the minimum infimum of their G'I' among
all the adjustments fulfilling the conditions of that theorem.

4 Incomplete Information

The previous section assumed every player knew only her
own utility, while the planner was fully aware of all the play-
ers’ utilities. Since the planner knew everything, we assumed
w.l.o.g. this was a complete information game, though this
works for the pre-Bayesian games defined in Section 2 (not
even Bayesian, to avoid assuming a commonly known prior).
In this section, however, the players keep knowing only their
own utilities, but the planner’s knowledge ceases being com-
plete. Thus, his adjustment options shrink. This models situa-
tions of incomplete information, such as the one in Example 3
or in [Dybvig and Spatt, 1983]. We consider various degrees
of the social planner’s knowledge. We still assume finiteness.

We aim to implement profiles where each player takes a
given action, regardless of the state of the world. For ex-
ample, in Example 3, we always want to make people enter
the subway at the closest station to their home and to leave
at the nearest station to their destination. Their own prefer-
ences may change, but we adjust the game to always make
the above mentioned behavior strictly dominant, because that
is what we consider to be the best for the society.

First, assume that even though the planner is unaware of the
exact preferences of the players, she does know some bounds
on the distributions of each player’s payoffs, as follows.
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1. The planner knows the size of the support of the payoffs
of each player in the game. In the subway example, that
fits the situation when the planner knows the possible
extent to which the payoffs of a player can vary based on
factors, such as her mood and personal circumstances.

The planner knows the possible changes to a player’s
utility that the player’s unilateral deviation can cause.
In the subway example, this can model the planner’s
knowledge to which extent a person can prefer one sub-
way station to another one in given circumstances.

These cases are dealt with by the respective parts of the fol-
lowing theorem. Its proof follows the approach of Theorem 1.

Theorem 3.  Given a pre-Bayesian game
(N, (A)ien, (P)ien, (ui)ien) and any fixed profile s()
a, there exists a fair, individually rational and implementable
adjustment Go = (v;);en independent of P, such that in
game G + Go = (N, (Ai)ien, (Pi)ien, (ui +vi)ien), s is
strictly dominant if one of the following holds:

1. The utilities p of each player i are distributed accord-
ing to some distribution with a finite support [m;, M;],
which size M; — m; is known to the planner.

. For every player i € N and every p; € P, the
unilateral utility changes are bounded by B;, namely
Ipi(ai,a—i) —pi(di,a—;)| < B;,Vi € N,Va;,d; €
A; Ya_; € A_;, such a bound B; being known to the
planner, for every i € N.

Next, we loosen the knowledge assumptions even further;
namely, we assume that the planner is merely aware of the
distribution of some relevant parameters of the players. Every
player keeps being aware only of her own utilities, as usual.
The following result models one of the following cases, each
part of the theorem modelling the respective case.

1. The planner knows the distribution of the players’ util-
ities in the original game. In the subway example, the
planner sees the mutual distributions of the random vari-
ables modelling the original preferences of the players.

Instead of knowing the size of the support of each
player’s values, the player only knows the distribution
of the random variables delimiting this support. In the
subway example, this means that the preference ampli-
tude of each person regarding using each given subway
station is known as a random variable.

The planner knows the expectation of the maximal
changes a player can achieve to herself by a unilat-
eral deviation. In the subway example, the municipality
knows the expectation of the extent to which choosing a
station matters to the choosing player.

Theorem 4. Consider
(N, (Ad)ien (P)ien, (wi)ien)
s() = a. Then, for any ¢ > 0, there exists a fair,
individually  rational and implementable adjustment
Gy (vi)ien independent of P, such that in game
G+Go= (N, (A)ien, (Py)ien, (ui +vi)ien), s is strictly
dominant with probability greater than 1 — € if one of the
following holds:

pre-Bayesian ~ game
and a fixed profile

a
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1. Utilities p; of every player i € N are randomly dis-
tributed according to some distribution F;, not neces-
sarily I.1.D., and the planner knows the mutual distribu-
tions of pi(a;,a_;) and p;(a;, a_;) for each i € N and
forany a;,a; € A;anda_; € A_;.

. Utilities p; of every player i € N all lie in the seg-

ment [m;, M;)], where the segment lengths M; — m; are
randomly distributed, and the expected value of these
lengths, namely E(M; — m;), are known to the planner.

. For every player i € N and every p; € P, the
unilateral utility changes are bounded by B;, namely
Ipi(ai,a—;) — pi(di,a—;)| < Bi(pi),Vi € N,Va;,d; €
A NYa_; € A_,;, the bounds B;(p;) are randomly
distributed, and their expected values E,, (B;(p;)) are
known to the planner.

If the planner possesses exact knowledge about some players,
less knowledge about some others, and the least knowledge
about the rest, then she can still employ Theorem 4, simply
the probabilities will sometimes become degenerate.

The adjustment from Theorem 4 might fail with probability
smaller than e. If it fails, but the planner has time to re-adjust
the game again, one could merely decrease the allowed error
probability e and re-adjust the game accordingly. However,
the planner can learn from observing the failure. A failure
means that at least one player, say i, has played a} # a;. As-
suming every player plays a strictly dominant strategy, when
it exists, we conclude that s;() = a was not strictly dom-
inant after the adjustment, meaning that 3s_;, € S_;, such
that w; (s}, s—;) > u;(s;,s—;). We can now apply the tech-
niques of choosing the adjustment from Theorem 4, after con-
ditioning all the probabilistic assumptions on this event.

5 Discussion and Conclusions

We assume the planner knows the payoffs, exactly or prob-
abilistically, because she can estimate those in some cases,
such as in Examples 1, 2, and 3. This is thus not a mech-
anism design problem; nonetheless, let us consider whether
we could design an implementable, fair and individually ra-
tional transfer minimising game form that asks for the pri-
vate values and subsequently only adjusts the players’ pay-
offs, thereby rendering the desired profile the strictly domi-
nant equilibrium. This is impossible even for 2 players, but
we omit the proof for lack of space.

The general transfer of our adjustment is linear in the plan-
ner’s estimate of the players’ payoffs differences, be the es-
timate deterministic or probabilistic. Our adjustments also
demonstrate which information a player should conceal to
avoid being lured into a certain behavior.

When profile-based taxes/subsidies are impossible, one
may provide larger taxes/subsidies befitting multiple pro-
files, such that each individual action will fully determine the
tax/subsidy. Using the maximum absolute value works also
when missing other pieces of information.
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