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Abstract

There is a well-known approach to cope with NP-
hard problems in practice: reduce the given prob-
lem to SAT or MAX-SAT and run a SAT or a
MAX-SAT solver. This method is very efficient
since SAT/MAX-SAT solvers are extremely well-
studied, as well as the complexity of these prob-
lems. At AAAI 2011, Li et al. proposed an alterna-
tive to this approach and suggested the Partial Mini-
mum Satisfiability problem as a reduction target for
NP-hard problems. They developed the MinSatz
solver and showed that reducing to PARTIAL MIN-
SAT and using MinSatz is in some cases more effi-
cient than reductions to SAT or MAX-SAT. Since
then many results connected to the PARTIAL MIN-
SAT problem were published. However, to the
best of our knowledge, the worst-case complexity
of PARTIAL MIN-SAT has not been studied up un-
til now. Our goal is to fix the issue and show a
O∗((2 − ε)m) lower bound under the SETH as-
sumption (herem is the total number of clauses), as
well as several other lower bounds and parameter-
ized exact algorithms with better-than-trivial run-
ning time.

1 Introduction

For many computationally hard problems, the best way to
cope with their intractability in practice is to reduce them to
SAT or MAX-SAT and then run a SAT/MAX-SAT solver.
The main reason for this is the existence of the whole in-
dustry studying exactly these problems. There are annual
conferences and competitions solely dedicated to these prob-
lems, like SAT1, MSE (MaxSAT Evaluation2), and others. At
AAAI-2011, Li et al. [2011] proposed an alternative to this
approach and suggested reducing NP-hard problems to the
following PARTIAL MIN-SAT problem.

1http://satisfiability.org/SAT22/
2https://maxsat-evaluations.github.io/2021/

Running time References
O∗(1.260m) [Monien and Speckenmeyer, 1985]
O∗(1.239m) [Hirsch, 1998]
O∗(1.234m) [Yamamoto, 2005]
O∗(1.2226m) [Chu et al., 2021]

Table 1: Progress for SAT in terms of m (total number of clauses).
O∗ omits factors polynomial in n and m.

PARTIAL MIN-SAT
Input: A formula φ in CNF, where each clause is

either hard or soft; an integer k.
Question: Does there exist an assignment of variables

of φ satisfying all hard clauses, and at most k
soft clauses?

In the same paper, Li et al. [2011] developed the MinSatz
solver and showed that reducing to PARTIAL MIN-SAT and
solving with MinSatz is in some cases more efficient than
a reduction to SAT or MAX-SAT. We also observe that the
language of the PARTIAL MIN-SAT problem allows to suc-
cinctly encode a number of classical problems such as VER-
TEX COVER, SET COVER, INDEPENDENT SET, HITTING
SET, and many others.

Since the introduction of the problem, many results relating
to PARTIAL MIN-SAT were published [Ignatiev et al., 2016;
Zhu et al., 2012; Li and Manya, 2015; Li et al., 2012; Abramé
and Habet, 2015; Hers et al., 2012; Ignatiev et al., 2014;
Avidor and Zwick, 2005; Escoffier and Paschos, 2007]. Note
that some approximation results were known for PARTIAL
MIN-SAT even before [Li et al., 2011], for example [Marathe
and Ravi, 1996; Kohli et al., 1994]. However, to the best of
our knowledge, the general case of PARTIAL MIN-SAT was
not studied up to these days from the worst-case complexity
point of view. This is drastically different from the case of
SAT and MAX-SAT: for those problems there is a chain of
non-trivial algorithms with improving bounds on the worst-
case complexity. In Tables 1 and 2 we list the algorithms
whose running time depends on the overall number of clauses
in the input formula. Note that the last results were presented
quite recently at AAAI-2021 and IJCAI-2019 after 15 years
of no progress.

While the search for the best worst-case guarantee of an
algorithm for SAT and its variants poses an intriguing the-
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Running time References
O∗(1.3803m) [Niedermeier and Rossmanith, 1999]
O∗(1.3412m) [Bansal and Raman, 1999]
O∗(1.3248m) [Chen and Kanj, 2004]
O∗(1.2989m) [Xu et al., 2019]

Table 2: Progress for MAX-SAT in terms of m.

oretical question, it is also well-motivated from the practi-
cal perspective. Tools and reduction/branching rules used in
algorithms for the worst case have been consistently reused
in the implementations of practical solvers. In the case of
SAT, the most well-known such rules are pure literal elimi-
nation, resolution, and unit propagation. The main motivation
of our study is to extend this perspective to the more expres-
sive PARTIAL MIN-SAT problem.

In particular, we are interested in running time bounds in
terms of m, where m is the overall number of clauses. One
may expect that the behavior of PARTIAL MIN-SAT is sim-
ilar to that of SAT and MAX-SAT since the problems are
tightly related, and from [Kügel, 2012] we know a natural
transformation from PARTIAL MIN-SAT to PARTIAL MAX-
SAT and vice versa. Quite surprisingly the situation turns out
to be significantly different. It is easy to see that pure literal
elimination does not work for PARTIAL MIN-SAT, as assign-
ing a pure literal to true can undesirably satisfy soft clauses.
Also, SET COVER can be reduced to PARTIAL MIN-SAT and
all literals will be positive. Hence, PARTIAL MIN-SAT is
NP-hard even if all literals are positive. Unfortunately, the
usage of the resolution rule is also restricted even if the vari-
able appears only once positively and once negatively, since
INDEPENDENT SET can be reduced to this special case of
PARTIAL MIN-SAT. Hence, PARTIAL MIN-SAT is NP-hard
even if each variable appears once as a positive literal and
once as a negative literal.

While these observations leave a possibility that a better-
than-trivial algorithm for PARTIAL MIN-SAT might be ob-
tained by using a more sophisticated approach, in Theo-
rem 1 we show that this is most likely not the case. We
prove that there is no algorithm for PARTIAL MIN-SAT
with running time O∗((2 − ε)m) for any ε > 0, unless the
Strong Exponential Time Hypothesis (SETH) fails. Recall
that SETH is a complexity hypothesis that implies that there is
noO∗((2− ε)n) algorithm for SAT for any ε > 0, where n is
the number of variables. Thus, PARTIAL MIN-SAT does not
have algorithms with non-trivial running time both in terms
of n and m if SETH is true. (O∗(2n) and O∗(2m) running
time algorithms for PARTIAL MIN-SAT are straightforward.)

On the positive side, we present several non-trivial algo-
rithms that are characterized by a broader range of natu-
ral parameters such as n (number of variables), s (number
of soft clauses), h (number of hard clauses), q (size of the
largest hard clause), ts (number of variables that have pos-
itive and negative literals inside soft clauses). On instances
where each clause has length at most two, PARTIAL MIN-
SAT can be solved in O∗(2ωn/3) time (here ω is the ma-
trix multiplication exponent). If q ≤ 2 then PARTIAL MIN-
SAT can be solved in time O∗(csvc) where cvc is the low-

est constant such that VERTEX COVER admit O∗(cn′

vc) run-
ning time algorithm on graphs with n′ vertices. (The cur-
rently best bound of cvc = 1.1996 is given by [Xiao and
Nagamochi, 2017]). Moreover, PARTIAL MIN-SAT can be
solved in O∗(2min{n,k,ts} · (2− 1

q )n−min{n,k,ts}) time and if
q ≥ 3 then there is aO∗(1.6181h·(2− 1

q )s) running time algo-
rithm for PARTIAL MIN-SAT. Finally for the general case we
present an algorithm with the running time O∗(1.755

m+n
2 ).

The rest of the paper is organized as follows. In Section 2
we establish a connection between PARTIAL MIN-SAT and
a certain set union problem that is crucial in the proof of
Theorem 1. In Section 3 we show Theorem 1 and other pa-
rameterized complexity lower bounds. Finally, in Section 4
we present our algorithmic results. Proofs of the statements
marked by ? are omitted due to space constraints.

Throughout the paper we use standard notions and def-
initions from graph theory [Diestel, 2010], parameterized
complexity [Cygan et al., 2015], exact exponential algo-
rithms [Fomin and Kratsch, 2010], and satisfiability the-
ory [Marek, 2009]. Due to space constraints, we are not able
to formally present all the definitions in the main body; we
refer the reader the standard textbooks cited above.

2 Minimum Union
In this section, we show that PARTIAL MIN-SAT is closely
related to a natural set problem, MINIMUM UNION, which
asks to find a collection of k sets with minimum union size.
This problem was recently studied in [Agrawal and Maity,
2021] from the parameterized point of view. We shall also
use this connection to show parameterized lower bounds for
PARTIAL MIN-SAT. Throughout the paper, we stick to the
following multicolored version of MINIMUM UNION.

MULTICOLORED MINIMUM UNION
Input: An integer n, k collections of subsets of [n]

F1,F2, . . . ,Fk ⊆ 2[n], and an integer `.
Question: Does there exist a choice of S1, S2, . . . , Sk

such that Si ∈ Fi and |
⋃
Si| ≤ `?

Lemma 1. MULTICOLORED MINIMUM UNION is equiva-
lent to the special case of PARTIAL MIN-SAT when all vari-
ables appear positively in the input formula. Moreover, in
the corresponding PARTIAL MIN-SAT instance the number
of hard clauses equals k, the number of soft clauses equals n,
the number ` is the number of satisfied soft clauses and the
variables correspond to the sets in the instance of MULTI-
COLORED MINIMUM UNION.

Proof. To construct an instance of PARTIAL MIN-SAT from
an instance of MULTICOLORED MINIMUM UNION, it is
enough to associate a soft clause with each element of the
universe [n]. Each of the k color groups is associated with a
hard clause. With each unique universe subset in the instance,
a unique variable is associated. Hence, the number of vari-
ables of the constructed instance equals the number of unique
subsets, the number of soft clauses equals n and the number
of hard clauses equals k. Then ith hard clause is a disjunction
of the variables corresponding to the subsets in Fi. While jth
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soft clause is a disjunction of all variables corresponding to
the subsets containing element j of the universe.

It is then asked to satisfy all hard clauses but at most `
soft clauses simultaneously. The value of a variable in an
assignment corresponds to whether we should take the corre-
sponding subset in the solution or not. Hard clauses ensure
that at least one set is picked from each Fi, while each soft
clause evaluates whether the corresponding element is cov-
ered by the chosen subsets. Thus, the constructed instance
of PARTIAL MIN-SAT is equivalent to the initial instance of
MULTICOLORED MINIMUM UNION.

To construct an instance of MULTICOLORED MINIMUM
UNION from an instance of PARTIAL MIN-SAT with all-
positive literals, one need to proceed in a similar fashion as
above, but in the opposite direction: associate a universe el-
ement with each soft clause; associate a subset with each
variable that consists exactly elements corresponding to soft
clauses containing this variable; finally associate with each
hard clause a subset family containing subsets corresponding
to the variables comprising this hard clause.

Below, we provide an example of reduction from PARTIAL
MIN-SAT with all-positive literals to MULTICOLORED MIN-
IMUM UNION. Assume, we have the following instance of
PARTIAL MIN-SAT:

hard clauses: x ∨ y, y ∨ z
soft clauses: x ∨ y ∨ t, t ∨ z, y ∨ z ∨ t.
An equivalent instance of MULTICOLORED MINIMUM
UNION has n = 3 as the number of soft clauses is three, k =
2 as the number of hard clauses is two. F1 = {{1}, {1, 3}}
as a literal x from a hard clause x∨ y appears only in the first
soft clause and a literal y appears in the first and the third soft
clauses. Similarly, F2 = {{1, 3}, {2, 3}} as a literal z from
a hard clause y ∨ z appears in the second and the third soft
clauses.

While MULTICOLORED MINIMUM UNION is thus a spe-
cial case of PARTIAL MIN-SAT, PARTIAL MIN-SAT still
can be reduced to MULTICOLORED MINIMUM UNION in
FPT time.

Lemma 2 (?). PARTIAL MIN-SAT parameterized by k + h
admits a parameterized reduction to MULTICOLORED MIN-
IMUM UNION parameterized by `+ k.

3 Lower Bounds
We start with the lower bounds for PARTIAL MIN-SAT, dis-
proving faster-than-brute-force algorithms in terms of num-
ber of variables or number of clauses under SETH. The start-
ing point of the reduction is the following result of [Cygan et
al., 2016] on the complexity of a variant of the HITTING SET
problem.

c-SPARSE-HITTING-SET
Input: A family F = {S1, S2, . . . , Sm} of sets over

[n] such that m ≤ cn, an integer `.
Question: Does there exist a set S ⊆ [n] of size at most

` that intersects every set in F?

Proposition 1. Let δ ∈ (0, 1) be an arbitrary real number.
Unless SETH fails, there exists c > 0 such that c-SPARSE-
HITTING-SET cannot be solved in O(2δn) running time.

Theorem 1. Unless SETH fails, PARTIAL MIN-SAT cannot
be solved in O∗((2− ε)n) or O∗((2− ε)m) running time for
any ε > 0.

Proof. Since PARTIAL MIN-SAT with zero soft clauses is
equivalent to SAT, the first part of this theorem is trivial.

To show the second part, we require sophisticated reduc-
tions. We provide a polynomial reduction from c-SPARSE-
HITTING SET over n elements to PARTIAL MIN-SAT where
the number of clauses is bounded by c′n for some constant
c′ > 1 that can be as close as needed to 1 in trade for run-
ning time. We then will show how from this reduction and
a O((2 − ε)m) algorithm for PARTIAL MIN-SAT it follows
that SETH fails through Proposition 1. Observe also that any
O∗((2 − ε)m)-time algorithm has a O((2 − ε′)m) runtime
bound for any ε′ > ε.

Let (n, S1, S2, . . . , Sm, `) be the given instance of c-
SPARSE-HITTING SET. We construct an equivalent instance
of MULTICOLORED MINIMUM UNION using a fixed integer
p that is to be chosen later. The universe for instance of MUL-
TICOLORED MINIMUM UNION is equivalent to the universe
of the given instance. To construct the subset groups, split the
m sets of the input instance into dm/pe groups, each contain-
ing p sets, except possibly for the last one that can contain
less than p sets.

Each group forms an instance of HITTING SET. To con-
struct the family Fi, take the ith group and enumerate all
inclusion-wise minimal hitting sets of the group. Clearly, the
size of Fi is bounded by np, while the time required to con-
struct it is bounded by nO(p). Thus, the instance of MULTI-
COLORED MINIMUM UNION consists of dm/pe collections
of sets. We finally ask to find dm/pe sets from these collec-
tions such that their union is of size at most `.

We claim that the constructed instance
(n, dm/pe,F1, . . . ,Fdm/pe, `) is a yes-instance if and
only if (n, S1, S2, . . . , Sm, `) is a yes-instance. This equiv-
alence is clear from the fact that any optimal hitting set of
S1, S2, . . . , Sm is a union of inclusion-wise minimal hitting
sets for each of the dm/pe groups.

Using Lemma 1, we finally construct an instance of PAR-
TIAL MIN-SAT from the instance of MULTICOLORED MIN-
IMUM UNION. The number of variables is bounded by np,
while the total number of clauses equals n + dm/pe ≤
n+cn/p+1 ≤ n+cn/p+n/p, as we reduce from c-SPARSE-
HITTING SET. Hence, the number of clauses in the instance
of PARTIAL MIN-SAT is bounded by (1 + (c+ 1)/p)n.

Assume that the SETH holds and there exists a O(2δ
′m′

)-
time algorithm for PARTIAL MIN-SAT for some δ′ < 1,
where m′ is the number of clauses in the input formula. Take
δ := δ′+(1−δ′)/2 < 1. By Proposition 1 there exists a con-
stant c such that no O(2δn) algorithm exists for c-SPARSE-
HITTING SET.

Then take p := d2δ′(c + 1)/(1 − δ′)e and construct an
algorithm for c-SPARSE-HITTING SET using the reduction
from HITTING SET to PARTIAL MIN-SAT and theO(2δ

′m′
)-
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algorithm for PARTIAL MIN-SAT. The number of clausesm′
is bounded by (1 + (c + 1)/p)n ≤ (1 + (1 − δ′)/2δ′)n.
The running time of the constructed algorithm is bounded
by O(2(δ

′+(1−δ′)/2)n), which is O(2δn), and this contradicts
Proposition 1. The proof is complete.

Observe that for both SAT and MIN-SAT there exists an
algorithm that is single-exponential in the number of sat-
isfied clauses i.e. in h + k: for SAT it is the straight-
forward O∗(2m) = O∗(2h) algorithm, and for MIN-SAT
such an algorithm follows from the reduction to VERTEX
COVER [Marathe and Ravi, 1996]. It is thus natural to ask
whether a similar algorithm exists for PARTIAL MIN-SAT,
or at least one with running time f(h + k) · nO(1) for some
function f of h + k, the total number of satisfied clauses.
The following theorem resolves the last question negatively,
up to the standard parameterized complexity assumption that
W[1] 6= FPT.
Theorem 2 (?). PARTIAL MIN-SAT is W[1]-hard with re-
spect to parameter h+k, i.e. the number of clauses to satisfy.
Unless ETH fails, PARTIAL MIN-SAT does not admit an al-
gorithm with running time f(h+k) · (n+m)o(

√
h+k) for any

computable function f .

4 Algorithms
Having established the main intractability result for PARTIAL
MIN-SAT (Theorem 1), we turn our attention to special cases
where algorithms with non-trivial running times exist. One
notable “easy” case of SAT that is still fairly expressive is
2-SAT, which is well-known to be solvable in polynomial
time. For PARTIAL MIN-SAT however, there is little hope
for a polynomial algorithm in this case, as even 2-MIN-SAT
is known to be NP-complete [Kohli et al., 1994]. On the pos-
itive side, MIN-SAT with arbitrary clause length allows an
efficient reduction to VERTEX COVER [Marathe and Ravi,
1996], where the number of clauses in the formula is exactly
transferred to the number of vertices in the graph. In par-
ticular, any algorithm that solves VERTEX COVER in time
O∗(cn′

), where n′ is the number of vertices in the graph,
immediately gives an algorithm for MIN-SAT with running
timeO∗(cm). A similar situation occurs with another closely
related problem. In 2-MIN-ONES-SAT, the input is a 2-
CNF formula φ and an integer k, and the task is to determine
whether φ can be satisfied by an assignment that sets at most
k variables to true. [Misra et al., 2013] showed a reduction
from 2-MIN-ONES-SAT to VERTEX COVER that transfers
the number of variables in φ exactly to the number of vertices
in the graph. Observe that MIN-ONES-SAT is a special case
of PARTIAL MIN-SAT where soft clauses are simply vari-
ables of the formula. Since PARTIAL MIN-SAT with hard
clauses of length at most 2 generalizes both MIN-SAT and
2-MIN-ONES-SAT, a natural question is whether a similar
reduction to VERTEX COVER can be derived. In the next the-
orem, we show that this is indeed the case.
Theorem 3 (?). PARTIAL MIN-SAT with hard clause length
bounded by 2 can be reduced to an instance (G, k) of VER-
TEX COVER with |V (G)| = s in polynomial time, if all hard
clauses can be satisfied simultaneously. Moreover, there is

a one-to-one correspondence between vertices of G and soft
clauses. Any set of vertices in G is independent if and only if
the corresponding set of clauses can be unsatisfied simultane-
ously in the initial instance. The target graph G may contain
loops.

To give an intuition, the reduction populates the target
graph G with two kinds of edges: some pairs of soft clauses
cannot be unsatisfied simultaneously because of a hard clause
that prevents this (in fact, any clause in the transitive closure
of the set of hard clauses, similar to [Misra et al., 2013]), and
some because there is a variable that appears positively in one
clause and negatively in the other. It is then left to show that
forbidding these pairs is both necessary and sufficient for a
PARTIAL MIN-SAT solution.

Composing our reduction with the best-known exact algo-
rithm for VERTEX COVER [Xiao and Nagamochi, 2017], we
obtain the following.
Corollary 1. PARTIAL MIN-SAT with hard clause length
bounded by 2 is solvable in time O∗(1.1996s).

Restricting clauses to length 2 allows us to break the barrier
of Theorem 1 in terms of the number of variables as well. The
following algorithm stems from the matrix-multiplication-
based MAXIMUM CUT algorithm with the same running time
due to [Williams, 2007].
Theorem 4 (?). There is a O∗(2ωn/3) running-time algo-
rithm for PARTIAL MIN-SAT restricted to formulas in 2-
CNF.

We now move to a more general case where the hard clause
length is bounded by a parameter q.
Lemma 3. When soft clauses contain only positive literals,
PARTIAL MIN-SAT can be solved in O∗((2− 1

q )n) time.

Proof. To approach this case of PARTIAL MIN-SAT, we first
refer to the Φ-SUBSET problem, which is the central prob-
lem of the work of Fomin et al [2019]. Their results hold in
the general model where a predefined mapping Φ constructs
the instance from an encoding in the form of a binary string.
However, in our case the encoding is straightforward, so we
restate Φ-SUBSET in the following way. Here, an implicit set
family F should be understood as defined by the algorithm
that checks whether an arbitrary set belongs to F , instead of
listing the sets in the family explicitly in the input.

Φ-SUBSET parameterized by n
Input: An implicit subset family F over an n-

element universe U , such that S
?
∈ F can

be checked in polynomial time for a given
S ⊆ U .

Question: Find any element of F .

Another crucial problem in the work is the Φ-EXTENSION
problem.

Φ-EXTENSION parameterized by k′
Input: F and U as in Φ-SUBSET; also a subset S ⊆

U and an integer k′.
Question: Find any X ⊆ U of size at most k′ such that

S ∪X ∈ F .
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The central result of [Fomin et al., 2019] is that a qk
′ ·nO(1)

algorithm for Φ-EXTENSION for some family F yields a
(2− 1

q )n ·nO(1) algorithm for Φ-SUBSET for the same family.
Thus, our approach to PARTIAL MIN-SAT with all-positive
soft clauses is to reduce it to Φ-SUBSET, where universe is
a set of variables, and show a Φ-EXTENSION algorithm run-
ning in qk

′ · nO(1) time.
Let (φ, k) be the given instance of PARTIAL MIN-SAT. We

start the reduction to Φ-SUBSET by identifying the universe
of Φ-SUBSET with the set of variables of φ. The set family
F is then defined as follows. A set S of variables of φ is in F
if and only if assigning all variables of S to one (and all other
variables to zero) satisfies all hard clauses and at most k soft

clauses. Clearly, S
?
∈ F can be checked in polynomial time.

Moreover, solving Φ-SUBSET for F is equivalent to solving
(φ, k).

To finish the proof, we describe the algorithm for Φ-
EXTENSION. Given a set S of variables that are assigned
to one, we need to assign at most k′ more variables to one
so at most k soft clauses are satisfied while all hard clauses
are satisfied. If the assignment of the variables of S already
satisfies at least k + 1 soft clauses, then no X exists for Φ-
EXTENSION, since we cannot “unsatisfy” any soft clause by
assigning more variables to one. The same holds if there is a
hard clause with all negative literals that all evaluate to false
because of S. In these two cases, the algorithm reports that
no X exists and stops.

Otherwise, at most k soft clauses are satisfied. If all hard
clauses are satisfied as well, the algorithm reports empty X
and stops, as S ∈ F already. We consider that at least one
hard clause is not satisfied by the assignment. In this case, a
branching can always be performed. There are at most q liter-
als in this clause with variables outside S. Since the clause is
not satisfied, all these literals are positive (while literals with
variables in S are negative). As negative literals can no more
be satisfied, the only option to satisfy the clause is to satisfy
at least one its positive literal. This clearly yields at most q
branches, where in each branch we add a variable to S and
decrease k′ by one.

Clearly, the obtained algorithm for Φ-EXTENSION runs in
qk

′ · (n+m)O(1) time. Finally, the central result of Fomin et
al. gives the running time (2 − 1

q )n · (n + m)O(1) for Φ-
EXTENSION, hence the algorithm for PARTIAL MIN-SAT
with soft clauses containing only positive literals.

We say that a variable is non-trivial (with respect to the
set of clauses) if it appears both negatively and positively
(in the clauses of this set). The following algorithm gen-
eralizes Lemma 3, as well as the best-known algorithm for
MIN-ONES q-SAT.

Theorem 5. There is an algorithm for PARTIAL MIN-SAT
with running timeO∗(2min{k,ts} ·(2− 1

q )n−min{k,ts}), where
ts is the number of non-trivial variables with respect to soft
clauses.

Proof. The approach is to reduce to the case of all-positive
soft clauses using the two following rules. When neither is
applicable, Lemma 3 is applied.

Reduction rule 1. If there is a variable that appears in soft
clauses only as negative literals, revert all literals containing
this variable in all clauses of φ.

Branching rule 1. If there is a variable that appears in soft
clauses as both positive and negative literals, branch on this
variable set to true or false.

It is trivial to see that the rules are safe. Note that Branch-
ing rule 1 increases the number of satisfied soft clauses by at
least one in each branch, so the depth of the corresponding
recursion tree is at most k. Since it also reduces the number
of non-trivial variables with respect to soft clauses by at least
one, the depth of this tree is also at most ts. Observe that
each application of Branching rule 1 also reduces the number
of variables by at least one.

In each leaf of the recursion tree produced by the rules, we
have an instance of PARTIAL MIN-SAT suitable for applica-
tion of Lemma 3. For an instance that corresponds to a leaf
of depth d, the running time of the algorithm of Lemma 3
is at most O∗((2 − 1

q )n−d). The recursion tree is a com-
plete binary tree, so the worst case is when all leaves have
maximum depth min{k, ts} and there are 2min{k,ts} leaves
in total. Thus, the running time bound of our algorithm is
O∗(2min{k,ts} · (2− 1

q )n−min{k,ts}).

The absense of non-trivial variables helps also in hard
clauses.

Lemma 4 (?). When there are no non-trivial variables with
respect to hard clauses, the PARTIAL MIN-SAT is solvable
in O∗((2− 1

q )s) time.

With addition of simple branching on non-trivial variables
w.r.t. hard clauses gives us the following.

Corollary 2. There is an algorithm for PARTIAL MIN-SAT
running inO∗(2th · (2− 1

q )s) time, where th is the number of
non-trivial variables with respect to hard clauses.

Our final goal is to obtain a faster-than-2m algorithm for
PARTIAL MIN-SAT when length of hard clauses is bounded.
We obtain this by combining simple branching rules with the
algorithm above, while also using another novel technique to
get rid of non-trivial variables when a suitable branching is
not possible.

Theorem 6. There is an algorithm for PARTIAL MIN-SAT
running in time O∗(1.6181h · (2− 1

q )s) for q ≥ 3.

Proof. The algorithm starts with the following simple
branching rule and simple reduction rule.

Branching rule 2. If there is a non-trivial (w.r.t. hard clauses)
variable that appears at least three times (in total in φ), branch
on the value of this variable.

Reduction rule 2. If Branching rule 2 cannot be applied and
there are two non-trivial variables that appear in the same pair
of hard clauses, assign these variables a value so both these
clauses are satisfied.
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Branching rule 2 leaves us with the case when each non-
trivial variable appears exactly two times in hard clauses,
while it does not appear in soft clauses at all. We still want
to reduce this case to when no variable is non-trivial w.r.t.
hard clauses. While there are 2th possible assignments of
non-trivial variables, none of them satisfies any soft clause.
Thus, we are not interested in each assignment itself, but we
are rather interested in the set of hard clauses it satisfies. This
idea leaves us with the following branching rule.

Branching rule 3. If there is a hard clause containing p ≥ 1
non-trivial variables, consider p+ 1 branches:

• either this clause is not satisfied by any non-trivial vari-
able; in this case assign all their literals in the clause to
false;

• or this clause is satisfied by some of these variables; for
each of p variables, consider a branchg where its literal
is assigned to true while other p− 1 literals are assigned
to false.

Claim 1. Branching rule 3 is safe. It produces p+1 branches.
If Branching rule 2 and Reduction rule 2 cannot be applied,
it reduces the number of hard clauses with a non-trivial vari-
able by at least p in each branch, and in one branch the de-
crease is at least p+ 1.

Proof. To see that Branching rule 3 is safe, note that the first
item in its definition corresponds to the case when the se-
lected hard clause is not satisfied by non-trivial variables. In
this case, all non-trivial variables should be assigned a deter-
mined value.

The second item corresponds to when at least one of the
non-trivial variables satisfy the clause. In this case, we can al-
ways assume that exactly one such variable satisfy the clause.
If at least two non-trivial variables satisfy the clause, we can
change the value of any of them and only increase the number
of satisfied hard clauses, as each non-trivial variable appears
exactly two times among hard clauses. Note that soft clauses
are not influenced by this change at all. Thus, a greedy strat-
egy of picking exactly one non-trivial variable for satisfying
the clause is valid.

To show the number of clauses reduced in each branch,
consider the number of hard clauses sharing a non-trivial vari-
able with the selected clause. Since Reduction rule 2 cannot
be applied, each of them shares exactly one non-trivial vari-
able with the clause. Hence, there are exactly p such clauses.
When we choose to not satisfy the selected clause with non-
trivial variables, we satisfy exactly all p of them. In other p
branches, where we flip the value of one non-trivial variable,
we satisfy all but one of them and the selected clause, so the
number of newly-satisfied clauses in these branches equals p
as well.

While we do not satisfy the selected clause in the first
branch, in this branch all non-trivial variables of this clause
are assigned a value, so the selected clause no longer contain
non-trivial variables. This gives the additional +1 to reduced
clauses in exactly one of the branches as required.

The algorithm applies Branching rule 2, Reduction rule 2
and Branching rule 3 exhaustively. When none of them can be

applied, then, clearly, there are no non-trivial variables with
respect to hard clauses. In this case, the algorithm uses the
algorithm of Lemma 4 as a subroutine and solves the instance
of the current branch.

Running time analysis. Branching rule 2 reduces the to-
tal number of clauses in the formula by at least one in each
branch, while in one branch the number of reduced clauses is
at least two. The worst branching vector for this rule is (1, 2),
and the derived branching factor is less than 1.6181.

Branching rule 3 gives a family of branching
vectors, one for each p ∈ [q], namely vectors
(1, 2),(2, 2, 3),(3, 3, 3, 4),. . . ,(q, q, . . . , q, q + 1). Note that
the vector (1, 2) can trivially be expanded (by applying itself
into its branches) into a vector (2, 3, . . . , t− 2, t− 1, t− 1, t)
for arbitrary t. Hence, its branching factor is not better than
the factors of other q − 1 vectors. Then (1, 2) again gives the
worst branching factor that is bounded by 1.6181. However,
only hard clauses are in concern of this branching rule. Note
also that Branching rule 2 is never applied after Branching
rule 3 was applied. So once a clause containing a non-trivial
variable was reduced, it will be never considered again by
these two rules.

Finally, the algorithm of Lemma 4 gives us a subroutine
that depends exponentially on the number of soft clauses,
and the exponent is (2 − 1

q ). Hence, when q ≥ 3 the
worst exponent under the number of hard clauses is 1.6181,
while for soft clauses it equals 2 − 1

q . The upper bound of
1.6181h · (2− 1

q )s · |φ|O(1) follows.

In Theorem 1 we have shown that PARTIAL MIN-SAT is
not solvable significantly faster than O∗(2n) or O∗(2m) as-
suming the SETH. One might start to suspect that even for all
α ∈ [0, 1] there is no ε > 0 such that PARTIAL MIN-SAT ad-
mits O∗((2 − ε)αn+(1−α)m). The following theorem shows
that this not the case. Moreover, when n is approximately
equal to m the PARTIAL MIN-SAT problem can be solved
faster than both O∗(2n) and O∗(2m).

Theorem 7 (?). There is an algorithm for PARTIAL MIN-
SAT with running time O∗(1.755

n+m
2 ).
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