
Landmark Heuristics for Lifted Classical Planning

Julia Wichlacz , Daniel Höller and Jörg Hoffmann
Saarland University, Saarland Informatics Campus, Saarbrücken, Germany

{wichlacz, hoeller, hoffmann}@cs.uni-saarland.de

Abstract

While state-of-the-art planning systems need a
grounded (propositional) task representation, the
input model is provided “lifted”, specifying pred-
icates and action schemas with variables over a
finite object universe. The size of the grounded
model is exponential in predicate/action-schema ar-
ity, limiting applicability to cases where it is small
enough. Recent work has taken up this challenge,
devising an effective lifted forward search planner
as basis for lifted heuristic search, as well as a vari-
ety of lifted heuristic functions based on the delete
relaxation. Here we add a novel family of lifted
heuristic functions, based on landmarks. We de-
sign two methods for landmark extraction in the
lifted setting. The resulting heuristics exhibit per-
formance advantages over previous heuristics in
several benchmark domains. Especially the com-
bination with lifted delete relaxation heuristics to
a LAMA-style planner yields good results, beating
the previous state of the art in lifted planning.

1 Introduction
Heuristic search is a dominant paradigm in planning (e. g.
[Hoffmann and Nebel, 2001; Helmert and Domshlak, 2009;
Richter and Westphal, 2010; Seipp, 2019]). Yet, this success
is based on grounded task representations, in contrast to the
actual PDDL input which is lifted, specifying predicates and
action schemas parameterized with variables ranging over a
finite universe of objects. The grounded representation has
size exponential in the arity (number of arguments) of the
PDDL predicates and action schemas. This effectively lim-
its current heuristic search planning to planning tasks whose
grounded representation is small enough to be feasible. It has
been frequently observed that, for various applications, this is
not naturally the case (e. g. [Hoffmann et al., 2006; Koller and
Hoffmann, 2010; Koller and Petrick, 2011; Haslum, 2011;
Matloob and Soutchanski, 2016]).

Lifted planning methods do not require to ground the entire
task representation as a pre-process. This has received atten-
tion throughout the history of AI planning (e. g. [Penberthy
and Weld, 1992; Russell and Norvig, 1995; Younes and Sim-

mons, 2003]. Heuristic search planning, however, has begun
to address lifted planning only recently.

Corrêa et al. [2020] have devised an effective lifted for-
ward search mechanism, grounding actions on demand in
state expansion, in the Power Lifted Planner (PWL) through
a connection to database queries. But how to transfer
the wealth of known planning heuristics, which are based
on reachability analyses over the grounded task represen-
tation? A simple option is goal counting, hGC(s) :=
|{g | g goal fact and not true in s}| which does not require
such an analysis. All other approaches explored thus far
are delete relaxation heuristics [Bonet and Geffner, 2001;
Hoffmann and Nebel, 2001], which ignore negative action ef-
fects (the “delete lists”) and have been addressed in the lifted
setting through object symmetries [Ridder and Fox, 2014], a
link to database technology [Corrêa et al., 2021] and through
a further relaxation which splits the predicates into unary
predicates [Lauer et al., 2021].

Here we contribute a third family of lifted heuristics, which
has been very successful in grounded planning, but is – so far
– not available in the lifted setting: heuristics based on land-
marks [Hoffmann et al., 2004]. Landmarks (LMs) are facts
that have to be true at some point along every plan, or actions
that need to be contained in every plan. Given a set L of LMs,
goal distance is estimated by the number of unseen LMs.
Landmark heuristics have been widely explored in planning
[Karpas and Domshlak, 2009; Helmert and Domshlak, 2009;
Richter and Westphal, 2010], in various forms and exten-
sions, including ones incorporating disjunction and leverag-
ing cost partitioning for admissibility. They are suited also
for lifted planning, as the set L can be computed once be-
fore search, limiting the computational overhead incurred by
the required reachability analysis. Especially a search guided
by a combination of delete relaxation heuristics and LMs as
used by the (grounded) LAMA system [Richter et al., 2008]
has proven to be very effective in practice.

We introduce two methods to extract lifted LMs by adapt-
ing methods known from grounded planning [Hoffmann et
al., 2004; Richter et al., 2008]. We combine a heuristic based
on these LMs with the lifted delete relaxation heuristic by
Corrêa et al. [2021] to a system similar to LAMA. Our exper-
iments show that (while only using LMs is less effective) this
combination outperforms the state of the art in lifted plan-
ning, making landmark heuristics a valuable tool in this area.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4665

2 Preliminaries
We first give some background on lifted planning, and intro-
duce lifted landmarks afterwards.

2.1 Lifted Planning
A lifted planning task is a tuple Π = (P,O,A, I,G) whereP
is a set of (first-order) predicates,A is a set of action schemas,
O is a set of objects, I is the initial state, and G is the goal.
Predicates P ∈ P have an arity k and every occurrence in
Π has k parameters, written P (x1, . . . , xk) where the xi are
variables; we writeX for the set of all variables used in Π. Pa-
rameters can be grounded (instantiated) with objects O. We
write P (u1, . . . , uk) to denote a partially grounded predicate
along with its arguments ui ∈ X ∪ O. If ui ∈ O for all i
then P (u1, . . . , uk) is a ground predicate or atom, which we
write as p. By PO we denote the set of all ground atoms in Π.
States (in particular the initial state) are sets of ground atoms.
The goal also is a set of ground atoms.

An action schema A is a tuple (XA, pre(A), add(A),
del(A)) with a set of parameter variables XA as well as pre-
condition, add list, and delete list, all of which are sets of
predicates parameterized with variables from XA. The arity
of A is |XA|. We can instantiate action schemas by replacing
each x ∈ XA by some o ∈ O to obtain ground actions a. The
set of ground actions, or actions for short, is AO.

Action a is applicable in state s if pre(a) ⊆ s. Applying a
to s results in the state (s \ del(a))∪ add(a). A plan for Π is
a sequence π of ground actions that is iteratively applicable
in I and results in a state s′ such that G ⊆ s′.

2.2 Landmarks
We next give limited background on landmarks as needed in
this paper. We then introduce a simple generalization to the
lifted (partially grounded) setting.

The Grounded Case. We first consider “fact landmarks”
and “action landmarks”. A ground atom p is a landmark of
Π if, for every plan π for Π, there exists a state s traversed
by π where p ∈ s. A ground action a is a landmark of Π if,
for every plan π = (a1, . . . , an) for Π, there exists an index i
with ai = a.

We also require notions of orderings between landmarks.
For the following ordering definition, consider the execution
of a plan as a sequence (s0, a1, s2, a3, . . . an−1, sn) of actions
ai and states si resulting from executing the plan with s0 = I
and si+1 the state resulting from the application of ai in si−1.
Let a be an action LM, f be a fact landmark, and p and q be
state or action landmarks of Π. Then:

• p is ordered before q (written p→ q), when in every plan
for Π, p is fulfilled (contained in the state, or executed,
respectively) strictly before q is fulfilled;

• f is ordered directly before q (written f →D q) if in
every plan, when q is fulfilled (added to the state, or ex-
ecuted, respectively) f holds.

• a is ordered directly before q (written a →D q) if in
every plan, when q is fulfilled (added or executed) a has
been executed at the preceding action step.

2.3 Lifted Landmarks
As we ground only partially in our landmark extraction meth-
ods, we naturally end up with partially grounded landmarks:
Definition 1 A partially grounded predicate P (u1, . . . , uk)
is a lifted landmark of Π if there exists a ground instance p of
P (u1, . . . , uk) that is a landmark of Π.

We remark that, apart from being natural algorithmically
in lifted landmark extraction, Definition 1 also carries some
novelty for grounded planning. It captures a simple spe-
cial case of disjunctive landmarks [Hoffmann et al., 2004;
Helmert and Domshlak, 2009], which is extremely compact
and easy to extract. Consider e. g. an object o that needs to be
transported with one of a fleet of trucks: the lifted landmark
in(o, x) compactly represents the fact that o will have to be
inside one of the trucks at some point.

3 Landmark Extraction
Deciding whether a ground atom is a landmark is PSPACE-
complete in grounded planning, because the decision is
closely linked to solvability: intuitively, something is a land-
mark iff the task cannot be solved without it. There is how-
ever a wealth of landmark extraction methods based on suffi-
cient criteria, finding some but not necessarily all LMs. A key
trick is to consider delete relaxation, where solvability – and
therewith the landmark-decision question – can be decided
in time polynomial in the size of the grounded encoding. We
adapted two such methods to the lifted setting: necessary sub-
goals and landmarks based on Domain Transition Graphs.

3.1 Necessary Subgoals
Our first method was introduced by Hoffmann et al. [2004]
for the grounded case. It is based on a simple form of
backchaining: starting at the goal atoms g, consider all ac-
tions a adding g, and intersect their preconditions

⋂
a pre(a);

clearly, any p ∈ ⋂a pre(a) is a landmark ordered directly be-
fore g, p →D g; iterate the process on p until no more new
landmarks can be derived.

For example, in Blocksworld, holding(A) and clear(B) are
necessary subgoals for on(A,B), and in turn clear(A) and arm-
free() are necessary subgoals for holding(A).

In the lifted setting, we also start at the ground goal atoms
g, but in general the subgoals considered take the form of
partially grounded predicates P (u1, . . . , uk). Given such a
P (u1, . . . , uk), we consider all action schemas A = (XA,
pre(A), add(A), del(A)) where P occurs in add(A). We
partially ground each A as needed to match the objects ui ∈
O instantiating the subgoal, obtaining a partially grounded
action of the form A(v1, . . . , vm) with vi ∈ XA ∪ O. We
then intersect the preconditions of these A(v1, . . . , vm), but
only on the predicates: we produce a new subgoal from every
predicate Q that occurs in all preconditions. Let these pre-
conditions be Q(v11, . . . , vm1), . . . , Q(v1n, . . . , vmn). Then,
the new subgoal is Q(w1, . . . , wn) where

wi :=

{
o wij = o for all j
xi otherwise

where the xi are arbitrary variables. We then iterate the pro-
cess as before.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4666

Q(w1, . . . , wn) represents a least commitment where we
instantiate only those parameters agreed upon by all precon-
ditions.1 Hence, the extraction process is sound:

Proposition 1 The subgoals Q(w1, . . . , wn) computed as
above are lifted landmarks of Π.

Proof: The goal atoms trivially are lifted landmarks. In each
subsequent step of the algorithm, assume as induction hy-
pothesis that the subgoal P (u1, . . . , uk) addressed is a lifted
landmark. Then every plan must make a ground instance p of
P (u1, . . . , uk) true. The ground action a doing so must be a
ground instance of a partially grounded actionA(v1, . . . , vm)
considered by the algorithm. But then, by construction, a
has a precondition instantiating Q(w1, . . . , wn), showing the
claim.

3.2 FAM-Cut Landmarks
Our second method is inspired by a method from grounded
planning based on Domain Transition Graphs (DTGs), e.g.
used by the LAMA system [Richter et al., 2008, p. 3].

In grounded planning, the basic propositional representa-
tion is (usually) compiled to a finite domain representation
before planning, i.e., one where variables have a finite range
of values (see, e.g. the Fast Downward system [Helmert,
2006]). Consider e.g. a simple transport domain. Here, a
package might either be at a location (e.g. a city), or in a
transporter and in a single state it will be at exactly one such
place: the values are mutually exclusive, they form a mutex
group. Such structures are detected in a preprocessing step.

DTGs. A DTG is a directed graph capturing all transitions
between values of such a variable x. Values of x form its
nodes, while edges between the nodes capture transitions be-
tween the values, i.e., actions. [Richter et al., 2008, Def. 2].

DTG-based LMs. Given a landmark fg consisting of a sin-
gle fact (initially a fact from the goal definition) not contained
in the initial state, one can obtain landmarks by determining
which parts (nodes or edges) of the DTG need to be passed
on every way from the initial value f0 of this variable to the
goal value (or, the other way around, which elements need
to be cut to make the goal unreachable). Richter et al. iter-
atively remove nodes v from the DTG and test reachability
of fg starting from f0: when f0 and fg have been connected
before removing v but are not without v, all paths from f0 to
fg pass v, and it forms a LM [Richter et al., 2008, p. 3].

FAM-Cut-LMs. We introduce a similar method for lifted
planning. It is based on Lifted Fact-Alternating Mutex
(FAM groups) as introduced by Fišer [2020]: a lifted
FAM group is a tuple ν = (Vfix [ν],Vcnt [ν], atoms(ν))
with Vfix [ν] ∩ Vcnt [ν] = ∅. For the set of atoms
atoms(ν) = {P1(v11 , . . . , v

1
k1

), . . . , Pl(v
l
1, . . . , v

l
kl

)}, all
variables are from Vfix [ν] ∪ Vcnt [ν].

1Note that, if Q appears n > 1 times within a single precon-
dition, then we could actually construct n lifted landmarks, and
indeed combinations across similar choices in other preconditions.
This possibility did not seem relevant in the benchmarks we consider
here, but it may be an interesting avenue for future work.

The semantics are the following: For a given assignment
of fixed variables, the full grounding of the counted variables
forms a mutex group [Fišer, 2020].

Analogously to DTG landmarks, we generate FAM-cut
LMs in the following way: Given a known fact LM g (ini-
tially a fact from the goal definition), we identify the re-
spective FAM group and its value in the initial state fI =
PI(vI1 , . . . , v

I
kI

). Now we build a graph that – similar to the
ground DTG – captures all transitions from fI to g. The tran-
sitions are induced by the actions of the task. There are three
ways atoms of a FAM group can be contained in an action
definition:

1. It contains the atom in its preconditions (but not in the
effects)

2. It contains the atom in its delete effects (and maybe but
not necessarily in its preconditions)

3. It contains the atom in its preconditions, delete, and add
effects

Case 1 does not change the value, we can ignore it. Case 2
results in a dead end in our transition graph: it deletes the
value, but from the properties of FAM groups, we know that
there cannot be an action adding it without having it also in
its preconditions (otherwise we could use it to add a second
value). Thus, case 2 will not contribute to the transitions from
the initial state to the landmark either. What we are interested
in is case 3: actions where atoms from the FAM group are
contained in the precondition, the delete effects, and in the
add effects, since they form value transitions in our graph.
It should be noted that there might be more that one combi-
nation of precondition, add, and delete effects from a single
action contributing transitions in the graph.

Now we build our graph capturing all value transitions in
the FAM group. We start in fI = PI(vI1 , . . . , v

I
kI

) and build
it in a forward manner until it converges. We identify all ac-
tions from case 3 and for each add a transition to the graph.
For each action, we only bind the parameter variables con-
tained in PI(vI1 , . . . , v

I
kI

). So the graph can contain partially
grounded nodes.

Figure 1 shows the graph for a transport domain, where
package 0 that is currently at a city loc 1 must be delivered
to a target position. Each unassigned variable (starting with
“?”) might be any object of the particular type, i.e., we are (as
before) generating a special type of disjunctive landmarks.

We now start LM generation by first building the set of
nodes unifiable with our known landmark g, which we callG.
If G includes fI , we return the empty set of landmarks. Else,
we generate the set C of incoming edges of G, which forms
our candidate for a disjunctive action landmark. However, it
might contain edges not connecting I with G. Therefore we
test which edges from C have to be cut to make G unreach-
able from I. The resulting set forms our first disjunctive ac-
tion landmark Li. We add the starting nodes from edges in
Li to G and continue the process until we have reached fI .

Theorem 1 The generated cuts {L1, . . . , Ln} form disjunc-
tive action landmarks for Π.

Proof: We first need to show that our graph represents all
transitions of that particular FAM group. Consider it does
not, then there must be an action adding one of its values

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4667

(2: +at package_0 ?v2)

(1: +in package_0 ?v1)

(pick_up ?v1 ?v2 package_0 capacity_0 ?v3) (drop ?v1 ?v2 package_0 capacity_0 ?v4)

(0: +at package_0 city_loc_1)

(pick_up ?v1 city_loc_1 package_0 capacity_0 ?v5)

Figure 1: Lifted DTG generated based on a FAM group. When building the graph, we check whether static preconditions of actions fully
determine the value of a variable and set such values (here: the capacity in the actions).

not represented in the graph. However, due to the properties
of FAM groups, every such action must also delete a value,
as given above in case 3. Since we constructed the graph
using these actions up to convergence, we know that every
transition is represented and our graph contains all transitions
in that FAM group. Thus, every cut between I and G must
be passed to reach a goal value when starting from the initial
state, including our cuts. As a result, one of the actions in our
cut must be in every plan, and the cuts form landmarks.

We intersect the preconditions of the resulting disjunctive
action LMs as done for necessarily subgoal extraction. This
results in new fact LMs, these are used for FAM-based extrac-
tion. This process is continued until no new LMs are found.

3.3 Ordering Relations
The above extraction methods deliver ordering relations as
a side effect: → relations for FAM-Cut landmarks, →D re-
lations for necessary subgoals. For FAM-Cut landmarks,
the extracted ordering conditions are weaker → conditions
since actions belonging to different FAM groups may be in-
terleaved. For necessary sub-goals, if Q(w1, . . . , wn) was
extracted as a joint precondition for P (u1, . . . , uk), then we
know that some ground instance q of Q(w1, . . . , wn) must be
true directly before the ground instance p of P (u1, . . . , uk)
that will be used in the plan. Therefore, if no such q was
made true yet, then we know that p has not been made true
yet either and so must still be made true (even if some other
ground instance of P (u1, . . . , uk) was already true). In this
sense, the →D relations carry over to the lifted setting, and
(as discussed in Section 4) we use them as before.

4 Landmark-based Heuristics
The basic idea behind landmark heuristics is simple as
outlined in the introduction: hLM(s) := |{p ∈ L |
p must still be fulfilled}|.

The notion of “must still be fulfilled” however is a bit sub-
tle to spell out: 1. this is path-dependent as we need to know
which landmarks have already been fulfilled in the past; 2.
we must take into account that something may already have
been fulfilled but must be made true again. These issues have
been amply addressed in the literature on grounded planning.
Here we adapt the LM COUNT heuristic [Richter and West-
phal, 2010], which is simple, and canonical in terms of being
part of a state-of-the-art system. The heuristic is defined as

hLM(πs) := |(L \Acc(πs)) ∪Req(πs)|
where πs = 〈s0, . . . , sn〉 is the search path (the sequence of
states) up to s = sn, and the ingredients are:

• Accepted landmarks: Acc(πs) is the set of all p ∈ L
such that either p ∈ Acc(〈s0, . . . , sn−1〉), or p ∈ s and
for all q that are transitively ordered before p we have
q ∈ Acc(〈s0, . . . , sn−1〉).

• Required-again landmarks: Req(πs) is the set of all p ∈
L \ s where either p ∈ G ∪ (L \Acc(πs)) or p is ordered
p→D q directly before q ∈ Req(πs).

We adapt this definition to lifted landmarks P (u1, . . . , uk)
simply by replacing state-membership tests “p ∈ s?” with
tests checking whether there exists a ground atom p of
P (u1, . . . , uk) so that p ∈ s.

Analogously we extend the definitions to lifted disjunctive
action landmarks Li by replacing the state-membership test
with a check whether the grounded operator used to reach s
is an instantiation of one of the actions in Li.

Observe that, thanks to the definition of Req(πs), the re-
sulting heuristic function dominates goal counting.

We extend the search of PWL to a LAMA-like ap-
proach [Richter and Westphal, 2010], i.e., to a multi-queue
heuristic search. It uses two heuristics to guide the search, in
our case hLM and the lifted hLadd [Corrêa et al., 2021]. To
exploit the strength of both heuristics, separate open lists are
maintained. Whenever a new state is expanded, it is evaluated
with both heuristics and added to both queues. Further, each
heuristic has a preferred-operator queue into which states are
added if they are reached applying a preferred operator.

Preferred operators are a concept used by certain heuristic
functions (e.g. the FF system [Hoffmann and Nebel, 2001]):
they return actions that are promising to lead towards a goal
state, e.g. because they have been included in the relaxed plan
(in case of FF). This concept is also used by the currently
best-performing lifted heuristic [Corrêa et al., 2021] and it
is a main reason for its performance. For LM COUNT, we
consider an operator to be preferred if a new landmark is ful-
filled in the resulting state. When choosing the next state to
be expanded, the search decides between the queues based on
a numeric priority. All queues initially have a priority of 0,
after a state is removed from a queue, its priority is decreased
by 1. Whenever a state drawn from a preferred operator queue
has a better heuristic estimate than all previous states, the pri-
ority of all preferred operator queues is increased by 1000,
increasing the use of preferred operators.

5 Experiments
We implemented our heuristics in the Power Lifted (PWL)
planner [Corrêa et al., 2020]2. All configurations use greedy

2The code can be found at: https://github.com/minecraft-saar/
powerlifted

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4668

https://github.com/minecraft-saar/powerlifted
https://github.com/minecraft-saar/powerlifted

max.
ar-
ity

Grounded (FD) Lifted

P A #g
ro

un
d

|A
O
|

|P
O
|

h
G
C

h
F
F

h
L
a
d
d

h
L
a
d
d
p
o

h
U
R

h
U
R
-d

h
G
C

h
L

N
S

h
L

N
S →

h
L

N
S

L
A

M
A

h
L

N
S→

L
A

M
A

h
L

F A
M

h
L

FA
M
→

h
L

F A
M

L
A

M
A

h
L

FA
M
→

L
A

M
A

(a) Large action schema arity

ged (156) 2 3 156 32585 1206 156 62 92 137 156 156 156 156 146 150 125 155 155 142 141
ged-split (156) 2 2 156 4602 734 156 35 24 102 156 156 156 154 110 141 82 155 149 133 116

organic-synthesis-alk (18) 2 16 15 24475 74 15 15 18 18 18 18 18 18 18 18 18 12 12 13 13
organic-synthesis-mit (18) 2 31 2 2946 36 2 2 18 18 18 18 18 18 18 18 18 13 13 12 12
organic-synthesis-org (20) 2 31 1 137784 806 1 1 8 11 9 9 10 10 10 10 10 6 6 7 7

pipesworld (50) 3 12 16 119907 232 16 13 20 24 12 11 22 20 20 32 30 19 17 29 26

Sum (418) 346 346 128 180 310 369 368 380 376 375 369 283 360 352 336 315

(b) Large predicate arity: Visitall and Childsnack

3-dim-close-g1 (10) 3 4 7 140832 48386 7 7 10 10 10 10 8 8 8 10 10 8 8 10 10
3-dim-close-g2 (10) 3 4 7 140832 48388 7 7 8 9 9 9 6 5 5 9 9 5 5 9 9
3-dim-close-g3 (10) 3 4 7 140832 48390 7 7 8 10 9 9 7 7 7 9 9 5 5 9 9

3-dim-far-g1 (10) 3 4 7 140832 48386 7 7 9 10 1 10 0 0 0 10 10 0 0 10 10
3-dim-far-g2 (10) 3 4 7 140832 48388 7 7 7 10 2 7 0 0 0 8 9 0 0 8 9
3-dim-far-g3 (10) 3 4 7 140832 48390 7 7 6 8 2 6 0 0 0 8 8 0 0 8 8

4-dim-close-g1 (10) 4 5 3 122005 33143 3 3 10 10 10 10 6 6 6 10 10 6 6 10 10
4-dim-close-g2 (10) 4 5 3 122005 33145 3 3 9 10 10 10 8 8 8 10 10 8 8 10 10
4-dim-close-g3 (10) 4 5 3 122005 33147 3 3 7 9 7 6 5 5 5 9 9 5 5 9 9

4-dim-far-g1 (10) 4 5 3 122005 33143 3 3 4 5 1 10 0 0 0 6 6 0 0 6 6
4-dim-far-g2 (10) 4 5 3 122005 33145 3 3 3 5 2 7 0 0 0 3 3 0 0 3 3
4-dim-far-g3 (10) 4 5 3 122005 33147 3 3 3 4 2 4 0 0 0 3 3 0 0 4 3

5-dim-close-g1 (10) 5 6 2 175760 40546 2 2 10 10 10 10 9 9 9 10 10 9 9 10 10
5-dim-close-g2 (10) 5 6 2 175760 40548 2 2 7 10 9 8 7 6 6 10 10 5 5 10 10
5-dim-close-g3 (10) 5 6 2 175760 40550 2 2 9 10 10 9 8 8 8 10 10 8 8 10 10

5-dim-far-g1 (10) 5 6 2 175760 40546 2 2 3 4 2 10 0 0 0 4 4 0 0 4 4
5-dim-far-g2 (10) 5 6 2 175760 40548 2 2 2 4 2 6 0 0 0 3 3 0 0 3 3
5-dim-far-g3 (10) 5 6 2 175760 40550 2 2 2 4 2 6 0 0 0 3 3 0 0 3 3

Visitall Sum (180) 5 6 72 141947 44039 72 72 117 142 100 147 64 62 62 135 136 59 59 136 136

n1-g3 (12) 2 5 12 513 138 12 12 12 12 12 12 12 11 11 12 12 11 11 12 12
n1-g5 (12) 2 5 12 1930 218 5 12 4 12 12 12 3 2 2 12 12 2 2 12 12
n1-g7 (12) 2 5 12 5011 298 2 4 2 6 6 8 2 2 2 12 12 1 1 10 10

n2-g3 (12) 3 6 12 9758 159 5 7 4 12 11 12 3 3 3 12 12 2 2 12 12
n2-g5 (12) 3 6 12 74405 253 2 2 2 3 3 12 1 1 1 6 6 0 0 5 5
n2-g7 (12) 3 6 11 232344 332 0 2 1 2 1 1 0 0 0 2 2 0 0 2 2
n3-g3 (12) 4 8 12 65520 273 3 5 3 9 6 11 2 1 1 12 12 1 1 11 11
n3-g5 (12) 4 8 7 221398 364 0 1 1 2 1 6 0 0 0 3 3 0 0 2 2
n3-g7 (12) 4 8 3 259615 363 0 0 1 1 0 0 0 0 0 0 0 0 0 0 0

n4-g3 (12) 5 10 10 176161 819 0 4 2 6 6 11 0 0 0 10 10 0 0 9 8
n4-g5 (12) 5 10 1 376905 348 0 0 0 1 0 2 0 0 0 0 0 0 0 0 0
n4-g7 (12) 5 10 0 - - 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Childsnack Sum (144) 5 10 104 85659 307 29 49 32 66 63 87 23 20 20 81 81 17 17 75 74

(c) Large object universe

blocksworld-g2 (10) 2 2 2 100000 50602 1 2 1 2 6 6 1 6 0 2 0 6 8 2 2
blocksworld-g3 (10) 2 2 2 100000 50602 0 0 0 1 0 0 0 0 0 1 0 0 0 2 2
blocksworld-g4 (10) 2 2 2 100000 50602 0 1 0 1 0 0 0 0 0 1 0 0 0 0 1
blocksworld-g5 (10) 2 2 2 100000 50602 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1

logistics-g1 (10) 2 4 2 1282377 2252 2 2 1 10 0 0 5 5 5 10 10 5 5 10 10
logistics-g2 (10) 2 4 2 1284629 3379 2 2 1 10 0 0 5 5 5 10 10 5 5 10 10
logistics-g3 (10) 2 4 2 1286881 4506 2 2 0 10 0 0 4 4 4 10 10 5 5 10 10
logistics-g4 (10) 2 4 2 1289133 5633 2 2 0 10 0 0 4 4 4 10 10 5 5 10 10

rovers-g2 (10) 3 6 2 5316 2531 2 2 10 10 5 10 1 5 5 10 10 5 5 10 10
rovers-g4 (10) 3 6 1 4041 2006 1 1 1 10 2 3 0 2 2 10 10 2 2 10 10
rovers-g6 (10) 3 6 1 4983 2026 1 1 0 5 2 2 0 1 0 10 7 1 1 9 9
rovers-g8 (10) 3 6 1 3753 2965 1 1 0 4 1 0 0 1 0 6 4 1 1 6 6

Sum (120) 21 14 16 14 73 16 21 20 32 24 81 71 35 37 79 81

Total Sum (826) 461 265 343 591 548 624 487 490 481 666 571 471 465 626 606

Table 1: Coverage results (best results highlighted in boldface). hLNS and hLNS→ are the LM heuristics based on necessary subgoals,
without vs. with ordering relations; hLFAM and hLFAM→ are based on FAM-Cuts, without vs. with ordering relations; Heuristics annotated
with LAMA use a LAMA style search. |AO|and |PO|show average grounding size for those instances that can be grounded (#ground).

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4669

10−1 100 101 102 103
10−1

100

101

102

103

hLaddpo

h
L
FA

M
L
A
M

A

10−1 100 101 102 103
10−1

100

101

102

103

hLaddpo

h
L
N
S

L
A
M

A

100 101 102 103 104 105
100

101

102

103

104

105

hLaddpo

h
L
N
S

L
A
M

A

Figure 2: Scatter plots comparing two algorithms. The respective algorithms are given on the axis. The left and middle figures show the
runtime and the right figure shows expansions.

best first search (GBFS). We compare against goal counting
(hGC), the lifted add heuristic with (hLaddpo) and without
(hLadd) preferred operators [Corrêa et al., 2021] and the best-
performing configurations of Lauer et al. [2021], goal count
using unary relaxation heuristic as tiebreaker, with (hGC,ur-d)
and without (hGC,ur) disambiguation of static predicates.
hLadd computes the add heuristic based on the lifted model
and might need runtime exponential in the size of the lifted
input model. hGC,ur splits the original predicates from the
domain in 1-ary predicates before heuristic calculation, re-
sulting in a computation in polynomial time. Like ours, these
heuristics are implemented in PWL.

For our system we included 8 configurations: We combine
necessary subgoal landmarks with GBFS to the configura-
tions hLNS→ and hLNS; where the former uses landmark or-
dering information and the latter does not. The same is done
for the FAM landmarks, denoted hLFAM→ and hLFAM. Then, we
also use the LAMA-style search instead of GBFS, resulting
in the configurations hLNS

LAMA, hLNS→
LAMA , hLFAM

LAMA, and hLFAM→
LAMA .

We further report results for the grounded Fast Downward
(FD) system [Helmert, 2006] with the goal counting and hFF
[Hoffmann and Nebel, 2001] heuristics. The experiments
were run on a cluster of machines with Intel Xeon E5-2650
CPUs with a clock speed of 2.30GHz.Timeout and memory
limits were set to 30 min and 4GB respectively for all runs.

We use the benchmark set used by Lauer et al. [2021] that
was introduced to evaluate lifted planners. It explores dif-
ferent reasons for being hard to ground: large action-schema
arity, large predicate arity, and large object universe.

Table 1 gives the coverage results. Of our new lifted land-
mark heuristics, configurations using the FAM landmarks
perform slightly worse than necessary subgoals. The LAMA-
like search (hLNS

LAMA and hLNS→
LAMA) drastically improves perfor-

mance compared to simple goal counting, especially for the
necessary subgoal landmarks. The resulting systems reach
the highest overall coverage in our experiments.

The ordering constraints of landmarks do not improve cov-
erage, we attribute this to the overhead generated by their
tracking and the fact that the orderings that are produced as a
byproduct of the landmark extraction methods are only very

basic. When comparing against hLaddpo, we can see that
the landmarks heuristics on their own fall behind. But the
LAMA-style search outperforms both the hLaddpo and the
other landmark heuristics. The performance gain can espe-
cially be seen in the domains Childsnack and Rovers.

The unary relaxation heuristics hUR and hUR-d perform
best on problems with high predicate arity, but worse on the
others, especially those with large object universe.

The scatter plots presented in Figure 2 (left and middle)
compare the runtime of the LAMA search to hLaddpo. It can
be seen that the usage of both kinds of landmarks systemati-
cally decreases the runtime. The same holds when comparing
expanded search nodes (Fig. 2 (right) compares hLNS

LAMA and
hLaddpo).

Compared to the runtime of the planner, the time spend for
landmark generation is small. For the necessary subgoal land-
marks, the mean generation time per domain is below 100ms
(with a variance of less than 200ms) for all domains except
for those with large object universes. Among these, gener-
ation in the Rovers domain takes the longest with a mean
generation time of 550ms and a variance of 40ms. Among
the FAM-Cut Landmarks the mean generation time is gener-
ally about 200ms with a variance of up to 40ms, with Rovers
again being the exception. Here the mean generation time is
2.7 seconds with a variance of 3.5 seconds, with the longest
generation taking 7.5 seconds.

6 Conclusion
Lifted heuristic search planning has been neglected but is cur-
rently taking up speed. Landmarks are a natural candidate for
the design of heuristics in this setting, and our results clearly
show their promise. We presented two methods to extract
landmarks from the lifted planning model. While their us-
age in simple landmark count heuristics performs worse than
the currently best-performing lifted heuristics, our evaluation
shows that they are especially valuable when combined with
the lifted add heuristics to a system similar to the grounded
LAMA planning system. The resulting system outperforms
all other configurations in our evaluation.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4670

Acknowledgements
Gefördert durch die Deutsche Forschungsgemeinschaft
(DFG) – Projektnummer 232722074 – SFB 1102 / Funded
by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) – Project-ID 232722074 – SFB 1102

References
[Bonet and Geffner, 2001] Blai Bonet and Héctor Geffner.

Planning as heuristic search. Artificial Intelligence, 129(1–
2):5–33, 2001.

[Corrêa et al., 2020] Augusto B. Corrêa, Florian Pommeren-
ing, Malte Helmert, and Guillem Francès. Lifted succes-
sor generation using query optimization techniques. In
Proceedings of the 30th International Conference on Auto-
mated Planning and Scheduling (ICAPS’20), pages 80–89.
AAAI Press, 2020.

[Corrêa et al., 2021] Augusto B. Corrêa, Florian Pommeren-
ing, Malte Helmert, and Guillem Francès. Delete-
relaxation heuristics for lifted classical planning. In Pro-
ceedings of the 31st International Conference on Auto-
mated Planning and Scheduling (ICAPS’21), pages 94–
102. AAAI Press, 2021.

[Fišer, 2020] Daniel Fišer. Lifted fact-alternating mutex
groups and pruned grounding of classical planning prob-
lems. In Proceedings of the 34th AAAI Conference on Ar-
tificial Intelligence (AAAI’20), pages 9835–9842. AAAI
Press, 2020.

[Haslum, 2011] Patrik Haslum. Computing genome edit dis-
tances using domain-independent planning. In Proceed-
ings of the SPARK Workshop, 2011.

[Helmert and Domshlak, 2009] Malte Helmert and Carmel
Domshlak. Landmarks, critical paths and abstractions:
What’s the difference anyway? In Proceedings of the
19th International Conference on Automated Planning
and Scheduling (ICAPS’09), pages 162–169. AAAI Press,
2009.

[Helmert, 2006] Malte Helmert. The Fast Downward plan-
ning system. Journal of Artificial Intelligence Research,
26:191–246, 2006.

[Hoffmann and Nebel, 2001] Jörg Hoffmann and Bernhard
Nebel. The FF planning system: Fast plan generation
through heuristic search. Journal of Artificial Intelligence
Research, 14:253–302, 2001.

[Hoffmann et al., 2004] Jörg Hoffmann, Julie Porteous, and
Laura Sebastia. Ordered landmarks in planning. Journal
of Artificial Intelligence Research, 22:215–278, 2004.

[Hoffmann et al., 2006] Jörg Hoffmann, Stefan Edelkamp,
Sylvie Thı́ebaux, Roman Englert, Frederico Liporace, and
Sebastian Trüg. Engineering benchmarks for planning: the
domains used in the deterministic part of IPC-4. Journal
of Artificial Intelligence Research, 26:453–541, 2006.

[Karpas and Domshlak, 2009] Erez Karpas and Carmel
Domshlak. Cost-optimal planning with landmarks. In
Proceedings of the 21st International Joint Conference

on Artificial Intelligence (IJCAI’09), pages 1728–1733,
2009.

[Koller and Hoffmann, 2010] Alexander Koller and Jörg
Hoffmann. Waking up a sleeping rabbit: On natural-
language sentence generation with FF. In Proceedings of
the 20th International Conference on Automated Planning
and Scheduling (ICAPS’10), pages 238–241. AAAI Press,
2010.

[Koller and Petrick, 2011] Alexander Koller and Ronald Pet-
rick. Experiences with planning for natural language gen-
eration. Computational Intelligence, 27(1):23–40, 2011.

[Lauer et al., 2021] Pascal Lauer, Álvaro Torralba, Daniel
Fiser, Daniel Höller, Julia Wichlacz, and Jörg Hoffmann.
Polynomial-time in PDDL input size: Making the delete
relaxation feasible for lifted planning. In Proceedings of
the 30th International Joint Conference on Artificial Intel-
ligence (IJCAI’21), pages 4119–4126. IJCAI org., 2021.

[Matloob and Soutchanski, 2016] Rami Matloob and
Mikhail Soutchanski. Exploring organic synthesis with
state-of-the-art planning techniques. In Proceedings of the
SPARK Workshop, pages 52–61, 2016.

[Penberthy and Weld, 1992] J. Scott Penberthy and Daniel S.
Weld. UCPOP: A sound, complete, partial order planner
for ADL. In Principles of Knowledge Representation and
Reasoning: Proceedings of the 3rd International Confer-
ence (KR’92), pages 103–114. Morgan Kaufmann, 1992.

[Richter and Westphal, 2010] Silvia Richter and Matthias
Westphal. The LAMA planner: Guiding cost-based any-
time planning with landmarks. Journal of Artificial Intel-
ligence Research, 39:127–177, 2010.

[Richter et al., 2008] Silvia Richter, Malte Helmert, and
Matthias Westphal. Landmarks revisited. In Proceedings
of the 23rd National Conference of the American Associa-
tion for Artificial Intelligence (AAAI’08), pages 975–982.
AAAI Press, 2008.

[Ridder and Fox, 2014] Bram Ridder and Maria Fox.
Heuristic evaluation based on lifted relaxed planning
graphs. In Proceedings of the 24th International Confer-
ence on Automated Planning and Scheduling (ICAPS’14),
pages 244–252. AAAI Press, 2014.

[Russell and Norvig, 1995] Stuart Russell and Peter Norvig.
Artificial Intelligence: A Modern Approach. Prentice-Hall,
Englewood Cliffs, NJ, 1995.

[Seipp, 2019] Jendrik Seipp. Pattern selection for optimal
classical planning with saturated cost partitioning. In Pro-
ceedings of the 28th International Joint Conference on Ar-
tificial Intelligence (IJCAI’19, pages 5621–5627, 2019.

[Younes and Simmons, 2003] Håkan L. S. Younes and
Reid G. Simmons. VHPOP: versatile heuristic partial or-
der planner. Journal of Artificial Intelligence Research,
20:405–430, 2003.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4671

	Introduction
	Preliminaries
	Lifted Planning
	Landmarks
	Lifted Landmarks

	Landmark Extraction
	Necessary Subgoals
	FAM-Cut Landmarks
	Ordering Relations

	Landmark-based Heuristics
	Experiments
	Conclusion

