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Abstract
The recent offline reinforcement learning (RL) stud-
ies have achieved much progress to make RL usable
in real-world systems by learning policies from pre-
collected datasets without environment interaction.
Unfortunately, existing offline RL methods still face
many practical challenges in real-world system con-
trol tasks, such as computational restriction during
agent training and the requirement of extra control
flexibility. The model-based planning framework
provides an attractive alternative. However, most
model-based planning algorithms are not designed
for offline settings. Simply combining the ingre-
dients of offline RL with existing methods either
provides over-restrictive planning or leads to infe-
rior performance. We propose a new light-weighted
model-based offline planning framework, namely
MOPP, which tackles the dilemma between the re-
strictions of offline learning and high-performance
planning. MOPP encourages more aggressive trajec-
tory rollout guided by the behavior policy learned
from data, and prunes out problematic trajectories
to avoid potential out-of-distribution samples. Ex-
perimental results show that MOPP provides com-
petitive performance compared with existing model-
based offline planning and RL approaches.

1 Introduction
Recent advances in offline reinforcement learning (RL) have
taken an important step toward applying RL to real-world tasks.
Although online RL algorithms have achieved great success
in solving complex tasks such as games [Silver et al., 2017]
and robotic control [Levine et al., 2016], they often require
extensive interaction with the environment. This becomes a
major obstacle for real-world applications, as collecting data
with an unmatured policy via environment interaction can be
expensive (e.g., robotics and healthcare) or dangerous (e.g.,
industrial control, autonomous driving). Fortunately, many
real-world systems are designed to log or have sufficient pre-
collected historical states and control sequences data. Offline
RL tackles this challenge by training the agents offline using
the logged dataset without interacting with the environment.
The key insight of recent offline RL algorithms [Fujimoto et

al., 2019; Kumar et al., 2019; Wu et al., 2019; Yu et al., 2020]
is to restrict policy learning stay “close” to the data distribution,
which avoids the potential extrapolation error when evaluating
on unknown out-of-distribution (OOD) samples.

However, implementing offline RL algorithms on real-world
robotics and industrial control problems still faces some practi-
cal challenges. For example, many control agents have limited
computational resources for policy learning, which require
a light-weighted policy improvement procedure. Moreover,
industrial control tasks often require extra control flexibility,
such as occasionally changing reward signals due to altering
system settings or certain devices, and involvement of state-
based constraints due to safety considerations (e.g., restrict
policy to avoid some unsafe states). Most existing offline
RL algorithms need computationally extensive offline policy
learning on a fixed task and do not offer any control flexibility.

Model-based planning framework provides an attractive so-
lution to address the above challenges. The system dynamics
can be learned offline based on the prior knowledge in the
offline dataset. The policy optimization can be realized by
leveraging model-predictive control (MPC) combined with
a computationally efficient gradient-free trajectory optimizer
such as the cross-entropy method (CEM) [Botev et al., 2013]
or model-predictive path integral (MPPI) control [Williams et
al., 2017]. The planning process also allows easy integration
with the change of reward signals or external state-based con-
straints during operation, without requiring re-training agents
as needed in typical RL algorithms.

Most model-based planning methods are designed for on-
line settings. Recent studies [Wang and Ba, 2020; Argenson
and Dulac-Arnold, 2021] have borrowed several ingredients
of offline RL by learning a behavior cloning (BC) policy from
the data to restrain trajectory rollouts during planning. This
relieves OOD error during offline learning but unavoidably
leads to over-restrictive planning. Limited by insufficient ex-
pressive power, behavior policies learned using BC often fit
poorly on datasets generated by relatively random or multiple
mixed policies. Moreover, restricting trajectory rollouts by
sampling near behavior policies also impacts the performance
of trajectory optimizers (e.g., CEM, MPPI require reasonable
state-action space coverage or diversity in order to find good
actions), and hinders the full utilization of the generalizability
of the dynamics model. Dynamic models may learn and gen-
eralize reasonably well in some low-density regions if the data
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pattern is simple and easy to learn. Strictly avoiding OOD
samples may lead to over conservative planning.

We propose the Model-Based Offline Planning with Trajec-
tory Prunning (MOPP) framework, which allows sufficient yet
safe trajectory rollouts and have superior performance com-
pared with existing approaches. MOPP uses ensembles of
expressive autoregressive dynamics models (ADM) [Germain
et al., 2015] to learn the behavior and dynamics from data to
capture better prior knowledge about the system. To enforce
better planning performance, MOPP encourages stronger ex-
ploration by allowing sampling from behavior policy with
large deviation, as well as performing the greedy max-Q op-
eration to select potentially high reward actions according to
the Q-value function evaluated from the offline dataset. At
the same time, to avoid undesirable OOD samples in trajec-
tory rollouts, MOPP prunes out problematic trajectories with
unknown state-action pairs detected by evaluating the uncer-
tainty of the dynamics model. These strategies jointly result
in an light-weighted and flexible algorithm that consistently
outperforms the state-of-the-art model-based offline planning
algorithm MBOP [Argenson and Dulac-Arnold, 2021]. It also
provides competitive performance and much better control
flexibility compared with existing offline RL approaches.

2 Related Work

2.1 Offline Reinforcement Learning

Offline RL focuses on the setting that no interactive data col-
lection is allowed during policy learning. The main difficulty
of offline RL is the distributional shift [Kumar et al., 2019],
which occurs when the distribution induced by the learned
policy deviates largely from the data distribution. Policies
could make counterfactual queries on unknown OOD actions,
causing overestimation of values that leads to non-rectifiable
exploitation error during training.

Existing offline RL methods address this issue by following
three main directions. Most model-free offline RL algorithms
constrain the learned policy to stay close to a behavior policy
through deviation clipping [Fujimoto et al., 2019] or intro-
ducing additional divergence penalties (e.g., KL divergence,
MMD or BC regularizer) [Wu et al., 2019; Kumar et al., 2019;
Fujimoto and Gu, 2021; Xu et al., 2021]. Other model-free
offline RL algorithms instead learn a conservative, underesti-
mated value function by modifying standard Bellman operator
to avoid overly optimistic value estimates on OOD samples
[Kumar et al., 2020; Liu et al., 2020; Kostrikov et al., 2021;
Buckman et al., 2020; Xu et al., 2022]. Model-based of-
fline RL methods [Yu et al., 2020; Kidambi et al., 2020;
Zhan et al., 2022], on the other hand, incorporate reward
penalty based on the uncertainty of the dynamics model to
handle the distributional shift issue. The underlying assump-
tion is that the model will become increasingly inaccurate
further from the behavior distribution, thus exhibits larger un-
certainty. All these algorithms require a relatively intensive
policy learning process as well as re-training for novel tasks,
which make them less flexible for real-world control systems.

2.2 Model-Based Planning
The model-based planning framework provides a more flexi-
ble alternative for many real-world control scenarios. It does
not need to learn an explicit policy, but instead, learns an
approximated dynamics model of the environment and use a
planning algorithm to find high return trajectories through this
model. Online planning methods such as PETS [Chua et al.,
2018], POLO [Lowrey et al., 2019], POPLIN [Wang and Ba,
2020], and PDDM [Nagabandi et al., 2020] have shown good
results using full state information in simulation and on real
robotic tasks. These algorithms are generally built upon an
MPC framework and use sample efficient random shooting
algorithms such as CEM or MPPI for trajectory optimization.
The recent MBOP [Argenson and Dulac-Arnold, 2021] further
extends model-based planning to offline setting. MBOP is an
extension of PDDM but learns a behavior policy as a prior for
action sampling, and uses a value function to the extend plan-
ning horizon. The problem of MBOP is that its performance
is strongly dependent on the learned behavior policy, which
leads to over-restrictive planning and obstructs the full poten-
tial of the trajectory optimizer and the generalizability of the
dynamics model. In this work, we propose MOPP to address
the limitations of MBOP, which provides superior planning
while avoids undesirable OOD samples in trajectory rollouts.

3 Preliminaries
We consider the Markov decision process (MDP) represented
by a tuple as (S,A, P, r, γ), where S , A denote the state and
action space, P (st+1|st, at) the transition dynamics, r(st, at)
the reward function and γ ∈ [0, 1] the discounting factor. A
policy π(s) is a mapping from states to actions. We repre-
sent R =

∑∞
t=1 γ

tr(st, at) as the cumulative reward over
an episode, which can be truncated to a specific horizon H
as RH . Under offline setting, the algorithm only has access
to a static dataset B generated by arbitrary unknown behav-
ior policies πb, and cannot interact further with the environ-
ment. One can use parameterized function approximators
(e.g., neural networks) to learn the approximated environ-
ment dynamics fm(st, at) and behavior policy fb(st) from
the data. Our objective is to find an optimal policy π∗(st) =
argmaxa∈A

∑H
t=1 γ

tr(st, at) given only dataset B that max-
imizes the finite-horizon cumulative reward with γ = 1.

4 The MOPP Framework
MOPP tackles the fundamental dilemma between the restric-
tions of offline learning and high-performance planning. Plan-
ning by sampling strictly from behavior policy avoids poten-
tial OOD samples. However, this also leads to over-restrictive
planning, which forbids sufficient exploitation of the gener-
alizability of the learned dynamics model. MOPP provides a
novel solution to address this problem. It allows more aggres-
sive sampling from behavior policy fb with boosted variance,
and performs max-Q operation on sampled actions based on a
Q-value function Qb evaluated based on behavioral data. This
treatment can lead to potential OOD samples, so we simulta-
neously evaluate the uncertainty of the dynamics models to
prune out problematic trajectory rollouts. To further enhance
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the performance, MOPP also uses highly expressive autore-
gressive dynamics model to learn the dynamics model fm and
behavior policy fb, as well as uses the value function to extend
planning horizon and accelerate trajectory optimization.

4.1 Dynamics and Behavior Policy Learning
We use autoregressive dynamics model (ADM) [Germain
et al., 2015] to learn the probabilistic dynamics model
(rt, st+1) = fm(st, at) and behavior policy at = fb(st).
ADM is shown to have good performance in several offline RL
problems due to its expressiveness and ability to capture non-
unimodal dependencies in data [Ghasemipour et al., 2021].

The ADM architecture used in our work is composed of
several fully connected layers. Given the input x (e.g., a state
for fb or a state-action pair for fm), an MLP first produces
an embedding for the input, separate MLPs are then used to
predict the mean and standard deviation of every dimension of
the output. Let oi denote the i-th index of the predicted output
o and o[<i] represent a slice first up to and not including the
i-th index following a given ordering. ADM decomposes the
probability distribution of o into a product of nested condi-
tionals: p(o) =

∏I
i p(oi|x,o[<i]). The parameters θ of the

model p(o) can be learned by maximizing the log-likelihood
on dataset B: L(θ|B) =

∑
x∈B

[∑|o|
i=1 log p(oi|x,o[<i])

]
.

ADM assumes underlying conditional orderings of the data.
Different orderings can potentially lead to different model
behaviors. MOPP uses ensembles of K ADMs with randomly
permuted orderings for dynamics and behavior policy, which
further enhances the overall model expressiveness.

4.2 Value Function Evaluation
Introducing a value function to extend the planning horizon in
model-based planning algorithms have been shown to greatly
accelerate and stabilize trajectory optimization in both online
[Lowrey et al., 2019] and offline [Argenson and Dulac-Arnold,
2021] settings. We follow this idea by learning a Q-value
function Qb(st, at) using fitted Q evaluation (FQE) [Le et al.,
2019] with respect to actual behavior policy πb and γ′ < 1:

Qkb (si, ai) = argmin
f∈F

1

N

N∑
i=1

[
f(si, ai)− yi

]2
yi = ri + γ′Qk−1b (si+1, ai+1), (si, ai, si+1, ai+1) ∼ B

(1)

The state value function Vb(st) = Ea∼πb
Q(st, a) is further

evaluated. This provides a conservative estimate of values
bond to behavioral policy. MOPP adds Vb to the cumulative
returns of the trajectory rollouts to extend the planning horizon.
This helps shorten horizonH needed during planning. Besides,
MOPP uses Qb to perform the max-Q operation and guide
trajectory rollouts toward potentially high reward actions.

4.3 Offline Planning
MOPP is built upon the finite-horizon model predictive con-
trol (MPC) framework. It finds a locally optimal policy and a
sequence of actions up to horizon H based on the local knowl-
edge of the dynamics model. At each step, the first action
from the optimized sequence is executed. In MOPP, we solve

a modified MPC problem which uses value estimate Vb to
extend the planning horizon:

π∗(s0) = arg max
a0:H−1

E
[H−1∑
t=0

γtr(st, at) + γHVb(sH)
]

(2)

Obtaining the exact solution for the above problem can be
rather costly, instead, we introduce a new guided trajec-
tory rollout and pruning scheme, combined with an efficient
gradient-free trajectory optimizer based on an extended ver-
sion of MPPI [Williams et al., 2017; Nagabandi et al., 2020].
Guided Trajectory Rollout. The key step in MOPP is to
generate a set of proper action sequences to roll out trajectories
that are used by the trajectory optimizer. Under offline settings,
such trajectory rollouts can only be performed with the learned
dynamics model fm. Using randomly generated actions can
lead to large exploitation errors during offline learning. MBOP
uses a learned behavior policy as a prior to sample and roll
out trajectories. This alleviates the OOD error but has several
limitations. First, the learned behavior policy could have
insufficient coverage on good actions in low-density regions
or outside of the dataset distribution. This is common when
the data are generated by low-performance behavior policies.
Moreover, the dynamics model may generalize reasonably
well in some low-density regions if the dynamics pattern is
easy to learn. Strictly sampling from the behavior policy limits
sufficient exploitation of the generalizability of the learned
dynamics model. Finally, the lack of diversity in trajectories
also hurts the performance of the trajectory optimizer.

MOPP also uses the behavior policy to guide trajectory
rollouts, but with a higher degree of freedom. Let µa(st) =
[µa1(st), · · · , µa|A|(st)]

T , σa(st) = [σa1 (st), · · · , σa|A|(st)]
T

denote the mean and standard deviation (std) of each dimen-
sion of the actions produced by the ADM behavior policy
fb(st). MOPP samples and selects an action at time step t as:

ait ∼ N
(
µa(st), diag

( σM
maxσa(st)

· σa(st)
)2)

At = {ait}mi=1, ∀i ∈ {1, . . . ,m}, t ∈ {0, . . . ,H − 1}
ât = arg max

a∈At

Qb(st, a), ∀t ∈ {0, . . . ,H − 1}

(3)

where σM > 0 is the std scaling parameter. We allow it to
take larger values than maxσa to enable more aggressive
sampling. In MBOP, the actions are sampled by adding a very
small random noise on the outputs of a deterministic behavior
policy, which assumes uniform variance across different action
dimensions. By contrast, MOPP uses the means µa and std
σa boosted by σM to sample actions (µa, σa from the ADM
behavior policy fb). This allows heterogeneous uncertainty
levels across different action dimensions while preserves their
relative relationship presented in data.

We further perform the max-Q operation on the sampled
actions based on Qb to encourage potentially high reward ac-
tions. Note that Qb is evaluated entirely offline with respect
to the behavior policy, which provides a conservative but rela-
tively reliable long-term prior information. MOPP follows the
treatment in PDDM and MBOP that mixes the obtained action
ât with the previous trajectory using a mixture coefficient β
to roll out trajectories with the dynamics model fm.
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Trajectory Pruning. The guided trajectory rollout produces
a set of trajectory sequences T = {T1, . . . , TN}, with Tn =

{(ant , snt )}H−1t=0 , n ∈ {1, . . . , N}, which may contain undesir-
able state-action pairs that are out-of-distribution or have large
prediction errors using the dynamics model. Such samples
need to be removed, but we also want to keep OOD samples at
which the dynamics model can generalize well to extend the
knowledge beyond the dataset B. The uncertainty quantifica-
tion method used in MOReL [Kidambi et al., 2020] provides
a nice fit for our purpose, which is evaluated as the predic-
tion discrepancy of dynamics models f lm, l ∈ 1, . . . ,K in the
ensemble: disc(s, a) = maxi,j

∥∥f im(s, a)− f jm(s, a)
∥∥2
2
.

Let U be the uncertainty matrix that holds the uncer-
tainty measures Un,t = disc(snt , a

n
t ) for each step t of tra-

jectory n in T . MOPP filters the set of trajectories using
the trajectory pruning procedure TrajPrune(T ,U). Denote
T p := {Tn|Un,t < L, ∀t, n}, trajectory pruning returns a
refined trajectory set for offline trajectory optimization as:

TrajPrune(T ,U) :={
T p, if |T p| ≥ Nm
T p ∪ sort(T − T p,U)[0 : Nm − |T p|], if |T p| < Nm

(4)

where L is the uncertainty threshold, Nm is the minimum
number of trajectories used to run the trajectory optimizer (set
as Nm = 0.2bNc in our implementation). The intuition of
trajectory pruning is to remove undesirable state-action sam-
ples and produce a set of low uncertainty trajectories. MOPP
first constructs a filtered trajectory set T p that only contains
trajectories with every state-action pair satisfying the uncer-
tainty threshold. If T p has less than Nm trajectories, we sort
the remaining trajectories in T − T p by the cumulative uncer-
tainty (i.e.

∑
t Un,t with Tn ∈ T − T p). The top Nm − |T p|

trajectories in the sorted set with the lowest overall uncertainty
are added into Tp as the final refined trajectory set.

Trajectory Optimization. MOPP uses an extended version
of the model predictive path integral (MPPI) [Williams et al.,
2017] trajectory optimizer that is used similarly in PDDM
[Nagabandi et al., 2020] and MBOP [Argenson and Dulac-
Arnold, 2021]. MOPP shoots out a set of trajectories T f using
the previous guided trajectory rollout and pruning procedure.
Let Rf = {R1, . . . , R|T f |} be the associated cumulative re-
turns for trajectories in T f , the optimized action is obtained
by re-weighting the actions of each trajectory according to
their exponentiated returns:

A∗t =

∑|T f |
n=1 exp(κRn)a

n
t∑|T f |

n=1 exp(κRn)
, ∀t = {0, . . . ,H − 1} (5)

where ant is the action at step t of trajectory Tn ∈ T f and κ is
a re-weighting factor. The full algorithm is in Algorithm 1.

5 Experimental Results
We evaluate and compare the performance of MOPP with
several state-of-the-art (SOTA) baselines on standard offline
RL benchmark D4RL [Fu et al., 2020]. We conduct experi-
ments on the widely-used MuJoCo tasks and the more complex
Adroit hand manipulation tasks. All results are averaged based

Algorithm 1 Complete algorithm of MOPP
Require: Offline dataset B
1: Train Qb, K1 dynamics models f lm and K2 behavior policies f lb

on B. Initialize A∗t = 0, ∀t ∈ {0, . . . , H − 1}.
2: for τ = 0...∞ do
3: Observe sτ , initialize T ,R = ∅
4: for n = 1, . . . , N do
5: s0 = sτ , Rn = 0, Tn = null
6: for t = 0 . . . H − 1 do
7: Sample action ât using f lb(st) (l randomly picked from

1 . . .K2) according to Eq.(3)
8: ãt = (1− β)ât + βA∗t+1, (A∗H = A∗H−1)
9: Append (st, ãt) into trajectory Tn

10: st+1 = f l
′
m(st, ãt)

s, l′ randomly picked from 1 . . .K1

11: Rn ← Rn + 1
K1

∑K1
k=1 f

k
m(st, ãt)

r

12: Un,t = maxi,j
∥∥f im(st, ãt)− f jm(st, ãt)

∥∥2
2

13: end for
14: Compute Vb(sH) =

∑KQ

i=1Qb(sH , ai)/KQ, {ai}
KQ

i=1 are
randomly sampled from f lb(sH)

15: Rn ← Rn + Vb(sH), T ← T ∪ {Tn}, R← R ∪ {Rn}
16: end for
17: Compute T f = TrajPrune(T ,U) according to Eq.(4)
18: Update A∗t , ∀t = {0, . . . , H − 1} using T f and Eq.(5)
19: Return optimized aτ = A∗0
20: end for

on 5 random seeds, with 20 episode runs per seed. The re-
ported scores are normalized between 0 to 100, with 0 and 100
correspond to a random policy and an expert SAC [Haarnoja et
al., 2018] policy respectively. We also included a comprehen-
sive ablation study on each component in MOPP and evaluate
its adaptability under varying objectives and constraints.

5.1 Comparative Evaluations
Performance on MoJoCo Tasks. We evaluate the perfor-
mance of MOPP on three tasks (halfcheetah, hopper and
walker2d) and four dataset types (random, medium, mixed
and med-expert) in the D4RL benchmark. We compare in
Table 1 the performance of MOPP with several SOTA base-
lines, including model-based offline RL algorithms MBPO
[Janner et al., 2019] and MOPO [Yu et al., 2020], as well as
the SOTA model-based offline planning algorithm MBOP.

MOPP outperforms MBOP in most tasks, sometimes by a
large margin. It is observed that MBOP is more dependent on
its special behavior policy at = f ′b(st, at−1), which include
previous step’s action as input. This will improve imitation per-
formance under datasets generated by one or limited policies,
as the next action may be correlated with the previous action,
but could have negative impact on high-diversity or complex
datasets (e.g., random and mixed). On the other hand, MOPP
substantially outperforms its ADM behavior policy fb espe-
cially on the med-expert tasks, which shows great planning
improvement upon a learned semi-performance policy.

Comparing with model-based offline RL methods MBPO
and MOPO, we observe that MOPP performs better in medium
and med-expert datasets, but less performant on higher-
variance datasets such as random and mixed. Model-based
offline RL methods can benefit from high-diversity datasets,
in which they can learn better dynamics models and apply RL
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Model-based offline planning methods Model-based offline RL methods
Dataset type Environment MBOP (MBOP f ′b) MOPP (ADM fb) MBPO MOPO

random halfcheetah 6.3±4.0 (0.0±0.0) 9.4±2.6 (2.2±2.2) 30.7±3.9 35.4±2.5
random hopper 10.8±0.3 (9.0±0.2) 13.7±2.5 (9.8±0.7) 4.5±6.0 11.7±0.4
random walker2d 8.1±5.5 (0.1±0.0) 6.3±0.1 (2.6±0.1) 8.6±8.1 13.6±2.6

medium halfcheetah 44.6±0.8 (35.0±2.5) 44.7±2.6 (36.6±4.7) 28.3±22.7 42.3±1.6 4
medium hopper 48.8±26.8 (48.1±26.2) 31.8±1.3 (30.0±0.8) 4.9±3.3 28.0±12.4
medium walker2d 41.0±29.4 (15.4±24.7) 80.7±1.0 (15.6±22.5) 12.7±7.6 17.8±19.3

mixed halfcheetah 42.3±0.9 (0.0±0.0) 43.1±4.3 (32.7±7.7) 47.3±12.6 53.1±2.0
mixed hopper 12.4±5.8 (9.5±6.9) 32.3±5.9 (28.2±4.3) 49.8±30.4 67.5±24.7
mixed walker2d 9.7±5.3 (11.5±7.3) 18.5±8.4 (12.9±5.7) 22.2±12.7 39.0±9.6

med-expert halfcheetah 105.9±17.8 (90.8±26.9) 106.2±5.1 (37.6±6.5) 9.7±9.5 63.3±38.0
med-expert hopper 55.1±44.3 (15±8.7) 95.4±28.0 (44.3±28.4) 56.0±34.5 23.7±6.0
med-expert walker2d 70.2±36.2 (65.5±40.2) 92.9±14.1 (13.5±24.2) 7.6±3.7 44.6±12.9

Table 1: Results for D4RL MuJoCo tasks. We report the mean scores and standard deviation (term after ±) of each method. For MBOP and
MOPP, we present the scores of the used behavior policies (MBOP f ′b and ADM fb) in the parentheses.

Dataset BC BCQ CQL MOPO MBOP MOPP

pen-human 34.4 68.9 37.5 -0.6 53.4 73.5
hammer-human 1.5 0.5 4.4 0.3 14.8 2.8
door-human 0.5 0.0 9.9 -0.1 2.7 11.9
relocate-human 0.0 -0.1 0.2 -0.1 0.1 0.5

pen-cloned 56.9 44.0 39.2 4.6 63.2 73.2
hammer-cloned 0.8 0.4 2.1 0.4 4.2 4.9
door-cloned -0.1 0.0 0.4 0.0 0.0 5.6
relocate-cloned -0.1 -0.3 -0.1 -0.1 0.1 -0.1

pen-expert 85.1 114.9 107.0 3.7 105.5 149.5
hammer-expert 125.6 107.2 86.7 1.3 107.6 128.7
door-expert 34.9 99.0 101.5 0.0 101.2 105.3
relocate-expert 101.3 41.6 95.0 0.0 41.7 98.0

Table 2: Results for Adroit tasks. The scores are normalized.

to find better policies. It should also be noted that training RL
policies until convergence is costly and not adjustable after
deployment. This will not be an issue for a light-weighted plan-
ning method like MOPP, as the planning process is executed in
operation and suited well for controllers that require extra con-
trol flexibility. MOPP performs strongly in the med-expert
dataset, which beats all other baselines and achieves close to
or even higher scores compared with the expert SAC policy.
This indicates that MOPP can effectively recover the perfor-
mant data generating policies in the behavioral data and use
planning to further enhance their performance.

Performance on Adroit Tasks. We also evaluate the per-
formance of MOPP in Table 2 on more complex Adroit high-
dimensional robotic manipulation tasks with sparse reward,
involving twirling a pen, hammering a nail, opening a door
and picking/ moving a ball. The Adroit datasets are partic-
ularly hard, as the data are collected from a narrow expert
data distributions (expert), human demonstrations (human),
or a mixture of human demonstrations and imitation policies
(cloned). Model-based offline RL methods are known to per-
form badly on such low-diversity datasets, as the dynamics
models cannot be learned well (e.g., see results of MOPO).
We compare MOPP with two more performant model-free
offline RL algorithms, BCQ [Fujimoto et al., 2019] and CQL
[Kumar et al., 2020]. It is found that although MOPP is a
model-based planning method, it performs surprisingly well in
most of the cases. MOPP consistently outperforms the SOTA

offline planning method MBOP, and in many tasks, it even
outperforms the performant model-free offline RL baselines
BCQ and CQL. The better performance of MOPP is a joint re-
sult of the inheritance of both an imitative behavior policy and
more aggressive planning with the learned dynamics model.

5.2 Ablation Study
We conduct ablation experiments on walker2d-med-expert
task to understand the impact of key elements in MOPP. We
first investigate in Figure 1(a) the impact of sampling aggres-
siveness (controlled by std scaling parameter σM ), as well as
its relationship with the max-Q operation and trajectory prun-
ing. It is observed that reasonably boosts the action sampling
variance (e.g., increase σM from 0.01 to 0.5) is beneficial. But
overly aggressive exploration (σM = 1.0) is detrimental, as it
will introduce lots of undesired OOD samples during trajec-
tory rollouts. When most trajectory rollouts are problematic,
the trajectory pruning procedure is no longer effective, as there
have to be at leastNm trajectories in order to run the trajectory
optimizer. When σM is not too large, trajectory pruning is
effective to control the planning variance and produces better
performance, as is shown in the difference between MOPP-
noP and MOPP under σM = 0.5. Moreover, the max-Q
operation in the guided trajectory rollout increases the sam-
pling aggressiveness. When σM is moderate, MOPP achieves
a higher score than MOPP-noMQ. But when σM = 1.0, the
less aggressive MOPP-noMQ is the only variant of MOPP that
is still possible to produce high episode returns. These suggest
that carefully choosing the degree of sampling aggressiveness
is important for MOPP to achieve the best performance.

We further examine the impacts of value function Vb and
max-Q operation on different planning horizons in Figure 1(b).
It is observed that even with a very short horizon (H = 2 and
4), MOPP can attain good performance that is comparable
to results using longer planning horizons. Moreover, MOPP
achieves significantly higher scores compared with MOPP-
noMQ-noV. We found that using max-Q operation on sampled
actions provides stronger improvements, as MOPP-noMQ con-
sistently perform worse than MOPP-noV. This might because
that max-Q operation is performed at every step, while the
value function is only added to the end of the cumulative return
of a trajectory, thus providing stronger guidance on trajectory
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Figure 1: Ablation study on walker2d-med-expert. noMQ, noP, noV indicate removal of max-Q operation, trajectory pruning and Vb.
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Figure 2: Performance on halfcheetah-jump (a, b) and halfcheetah-constrained (c) tasks.

rollouts towards potentially high reward actions.
Finally, Figure 1(c) presents the impact of uncertainty

threshold L in trajectory pruning. We observe that both strictly
avoid (L = 0.1) or overly tolerant (L = 10.0) unknown state-
action pairs impact planning performance. Reasonably in-
crease the tolerance of sample uncertainty (L = 2.0) to allow
sufficient exploration leads to the best result with low variance.

5.3 Evaluation on Control Flexibility
A major advantage of planning methods lies in their flexibility
to incorporate varying objectives and extra constraints. These
modifications can be easily incorporated in MOPP by revising
the reward function or pruning out unqualified trajectory roll-
outs during operation. We construct two tasks for evaluation:
• halfcheetah-jump: This task adds incentives on the z-

position in the original reward function of halfcheetah, en-
couraging agent to run while jumping as high as possible.

• halfcheetah-constrained task adds a new constraint
(x-velocity≤10) to restrain agent from having very high x-
velocity. Two ways are used to incorporate the constraint:
1) add reward penalty for x-velocity>10; 2) add penalties
on the uncertainty measures U to allow trajectory pruning
to filter out constraint violating trajectory rollouts.
Figure 2 (a), (b) shows the performance of MOPP on the
halfcheetah-jump task. By simply changing to the new
reward function (MOPP-newR), MOPP is able to adapt and
improve upon the average performance level in data and the
original model (MOPP-oldR). The performance will be fur-
ther improved by re-evaluating the Q-function (MOPP-newR-
newQ). The offline evaluated value functionQb and the max-Q
operation could have negative impact when the reward func-

tion is drastically different. In such cases, one only needs to
re-evaluate a sub-component (Qb under the new reward) of
MOPP to guarantee the best performance rather than re-train
the whole model as in typical RL settings. Evaluating Qb via
FQE is achieved by supervised learning, which is computa-
tionally very cheap compared with a costly RL procedure.

Figure 2(c) presents the performance on the halfcheetah
-constrained task. The original MOPP without constraint
(MOPP-oldR) has lots of constraint violations (x-velocity>10).
Incorporating a constraint penalty in reward (MOPP-newR)
and pruning out constraint violating trajectories (MOPP-RC)
achieve very similar performance. Both models effectively
reduce constraint violations and have limited performance
deterioration due to the extra constraint. Adding constraint
penalty in the reward function while re-evaluating the Qb via
FQE (MOPP-newR-newQ) leads to the safest policy.

6 Conclusion
We propose MOPP, a light-weighted model-based offline plan-
ning algorithm for real-world control tasks when online train-
ing is forbidden. MOPP is built upon an MPC framework that
leverages behavior policies and dynamics models learned from
an offline dataset to perform planning. MOPP avoids over-
restrictive planning while enabling offline learning by encour-
aging more aggressive trajectory rollout guided by the learned
behavior policy, and prunes out problematic trajectories by
evaluating the uncertainty of dynamics models. Although
MOPP is a planning method, benchmark experiments show
that it provides competitive performance compared with the
state-of-the-art offline RL and model-based planning methods.
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