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Abstract

Formal verification has emerged as a powerful ap-
proach to ensure the safety and reliability of deep
neural networks. However, current verification tools
are limited to only a handful of properties that can
be expressed as first-order constraints over the in-
puts and output of a network. While adversarial ro-
bustness and fairness fall under this category, many
real-world properties (e.g., “an autonomous vehicle
has to stop in front of a stop sign”) remain outside
the scope of existing verification technology. To mit-
igate this severe practical restriction, we introduce
a novel framework for verifying neural networks,
named neuro-symbolic verification. The key idea is
to use neural networks as part of the otherwise logi-
cal specification, enabling the verification of a wide
variety of complex, real-world properties, including
the one above. A defining feature of our framework
is that it can be implemented on top of existing veri-
fication infrastructure for neural networks, making
it easily accessible to researchers and practitioners.

1 Introduction

The exceptional performance of deep neural networks in areas
such as perception and natural language processing has made
them an integral part of many real-world Al systems, including
safety-critical ones such as medical diagnosis and autonomous
driving. However, neural networks are inherently opaque, and
various defects have been observed and studied for state-of-
the-art network architectures. The perhaps best known one
among those is the lack of adversarial robustness [Szegedy et
al., 2014], which describes the phenomenon that even slight
perturbations of an input to a neural network can cause entirely
different outputs. In fact, defects in learning-based systems are
so prevalent in practice that a dedicated database to monitor
Al incidents and avoid repeated undesired outcomes has been
introduced recently [McGregor, 2021].

Motivated by decade-long advances in software reliability,
formal verification has emerged as a powerful approach to
ensure the correctness and safety of neural networks (we refer
the reader to Section 3 for further details). In contrast to (em-
pirical) statistical evaluation methods from machine learning,
such as cross-validation, formal verification techniques have
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the great advantage that they are not limited to checking a
given property on just a finite number of inputs. Instead, they
allow one to check whether a property holds for all (or at least
infinitely many) inputs to a deep neural network, including
unseen data and corner cases. However, formal verification
has a fundamental limitation that often constitutes a significant
obstacle in practice: it requires that the property to verify can
be expressed as “simple” (typically quantifier-free, first-order)
constraints over the inputs and output of a neural network.

While adversarial robustness and fairness fall under the
above category, many real-world properties remain outside
the scope of existing verification technology. Consider, for
instance, a deep neural network controlling an autonomous
vehicle and the property that the vehicle needs to decelerate
as soon as a stop sign appears in the front view. It is not hard
to see that formalizing this property in terms of constraints on
inputs and outputs is extremely difficult, if not impossible, as
it would require capturing all essential features of all possible
stop signs on the level of image pixels (e.g., their position,
shape, etc.). If this was possible, machine learning would not
be necessary in the first place: one could simply implement a
detection algorithm based on such a formal specification.

To overcome this severe limitation and make formal verifi-
cation applicable to real-world scenarios, we propose a neuro-
symbolic framework for verifying neural networks. Following
the general idea of neuro-symbolic reasoning [d’ Avila Garcez
et al., 2019; De Raedt et al., 2020], our key contribution is a
novel specification language, named Neuro-Symbolic Asser-
tion Language (NESAL), allowing one to combine logical
specifications and arbitrary neural networks. The neural net-
works, which we call specification networks, serve as proxies
for complex, semantic properties and enable the integration
of advances in fields such as perception and natural language
recognition into formal verification. In the context of our ex-
ample above, one could train a highly-specialized specification
network to detect stop signs. Then, the desired property can
be expressed straightforwardly as “if the specification network
detects a stop sign, the network controlling the autonomous
vehicle has to issue a braking command”. We present our
neuro-symbolic framework in Section 4, where we also dis-
cuss ways of obtaining specification networks in practice.

An essential feature of our framework is that it can be built
on top of the existing verification infrastructure for neural
networks. We demonstrate this fact in Section 5, where we
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describe a prototype implementation of a verifier for NESAL
properties based on the popular Marabou verifier [Katz et al.,
2019]. Specifically, we show that our prototype effectively ver-
ifies a wide range of neuro-symbolic properties. As targets for
our verification, we have trained deep neural networks on the
German Traffic Sign Recognition Benchmark (GTSRB) [Stal-
lkamp et al., 2011] and MNIST [LeCun et al., 2010].

Finally, we want to highlight that our neuro-symbolic frame-
work is general and not limited to deep neural networks. In-
stead, it can—in principle—be applied to any system that
allows for suitable verification techniques, including differen-
tial models, hardware, and software. However, we leave an
in-depth study of this promising direction to future work.

2 Related Work

Driven by the demand for trustworthy and reliable artificial
intelligence, the formal verification of deep neural networks
has become a very active and vibrant research area over the
past five years (we refer the reader to a textbook [Albarghouthi,
2021] for a detailed overview). To the best of our knowledge,
Seshia et al. [2018] conducted the first comprehensive survey
of correctness properties arising in neural network verification.
The authors classify these properties into several categories,
including system-level specifications, robustness, fairness, se-
mantic invariance, and monotonicity. However, we are not
aware of any work proposing a neuro-symbolic verification
approach, neither for deep neural networks or other differential
models nor for hardware or software.

The key motivation of neuro-symbolic Al is to com-
bine the advantages of symbolic and deep neural represen-
tations into a joint system [d’Avila Garcez et al., 2009;
d’Avila Garcez and Lamb, 2020]. This is often done in a
hybrid fashion where a neural network acts as a perception
module that interfaces with a symbolic reasoning system (e.g.,
see Yi et al. [2018]). The goal of such an approach is to
mitigate the issues of one type of representation by the other
(e.g., using the power of symbolic reasoning to handle the
generalizability issues of neural networks and to handle the
difficulty of noisy data for symbolic systems via neural net-
works). Recent work has also demonstrated the advantage
of neuro-symbolic XAl [Stammer et al., 2021] and common-
sense reasoning [Arabshahi er al., 2021]. The link to verifica-
tion, however, has not been explored much. Indeed, Yang et
al. [2021] explore symbolic propagation, but a higher-order
specification framework does not exist.

To automatically verify correctness properties of deep neu-
ral networks, a host of distinct techniques have been proposed.
The arguably most promising and, hence, most popular ones
are abstract interpretation [Gehr et al., 2018; Henriksen and
Lomuscio, 2021] and deductive verification [Ehlers, 2017,
Katz et al., 2019] (we survey both in Section 3). In addi-
tion, various other approaches have been suggested. Exam-
ples include optimization-based methods [Gowal et al., 2019],
concolic testing [Sun er al., 2018], and decomposition-based
methods [Batten et al., 2021]. While our neuro-symbolic
framework is independent of the actual verification technique,
this paper focuses on deductive verification.
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3 Background on Neural Network Verification

Neural Network Verification is the task of formally proving
that a deep neural network satisfies a semantic property (i.e., a
property that refers to the semantic function computed by the
network). To not clutter this section with too many technical
details, let us illustrate this task through two popular examples:
adversarial robustness and fairness. We will later formalize
neural network verification in Section 4 when we introduce
our neuro-symbolic verification framework.

In the case of adversarial robustness, one wants to prove that
a neural network is robust to small perturbations of its inputs
(i.e., that small changes to an input do not change the output).
To make this mathematically precise, let us assume that we are
given a multi-class neural network f: R™ — {c1,...,c,}
with m features and n classes, a specific input ¥* € R™, a
distance function d: R™ x R™ — R,, and a distance € > 0.
Then, the task is to prove that

d(#, ) < < implies f(7*) = f(7) ()

for all inputs £ € R™. In other words, the classes of ¥*
and every input at most € away from &* must coincide. An
input & € R™ violating Property (1) is called an adversarial
example and witnesses that f is not adversarially robust.

In the case of fairness, one wants to prove that the output of
a neural network is not influenced by a sensitive feature such
as sex or race. Again, let us assume that we are given a neural
network f: R™ — R”™ with m features, including a sensitive

feature ¢ € {1,...,m}. Then, the task is to prove that
zi # ) A J\ z; = 2 implies f(Z) = (&) (2
j#i

for all pairs Z, 7' € R™ of inputs with & = (z1,...,2,,) and
@ = (z,...2,). In other words, if two inputs Z and &’ only
differ on a sensitive feature, then the output of f must not
change. Note that in the case of fairness, a counterexample
consists of pairs &, Z’ of inputs.

Properties (1) and (2) demonstrate a fundamental challenge
of neural network verification: the task is to prove a property
for all (usually infinitely many) inputs. Thus, cross-validation
or other statistical approaches from machine learning are no
longer sufficient because they test the network only on a finite
number of inputs. Instead, one needs to employ methods that
can reason symbolically about a given network.

Motivated by the success of modern software verification,
a host of symbolic methods for the verification of neural
networks have been proposed recently [Albarghouthi, 2021].
Among the two most popular are deductive verification [Ehlers,
2017; Katz et al., 2019] and abstract interpretation [Gehr et
al., 2018; Singh er al., 2018]. Let us briefly sketch both.

The key idea of deductive verification is to compile a deep
neural network f: R™ — R"™ together with a semantic prop-
erty P into a logic formula ¢ p, called verification condition.
This formula typically falls into the quantifier-free fragment
of real arithmetic and is designed to be valid (i.e., satisfied by
all inputs) if and only if f satisfies P. To show the validity
of ¢ p, one checks whether its negation )¢ p is satisfiable.
This can be done either with the help of an off-the-shelf Sat-
isfiability Modulo Theory solver (such as Z3 [de Moura and
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Bjgrner, 2008]) or using one of the recently proposed, spe-
cialized constraint solvers such as Planet [Ehlers, 2017] or
Marabou [Katz ef al., 2019]. If =) p is unsatisfiable, then
1y, p is valid, and—by construction—f satisfies P. If -9y p
is satisfiable, on the other hand, then 1y p is not valid, im-
plying that f violates the property P. In the latter case, most
constraint solvers (including the ones mentioned above) can
produce an assignment satisfying =) p, which can then be
used to extract inputs to f that witness a violation of P.

Abstract interpretation is a mathematical framework for
computing sound and precise approximations of the semantics
of software and other complex systems [Cousot and Cousot,
1977]. When applied to neural network verification, the basic
idea is to over-approximate the computation of a deep neural
network on an infinite set of inputs. Each such infinite set is
symbolically represented by an element of a so-called abstract
domain, which consists of logical formulas capturing shapes
such as n-dimensional boxes, polytopes, or zonotopes. To ap-
proximate a network’s computation, an element of the abstract
domain is propagated through the layers of the network. Since
layers operate on concrete values and not abstract elements,
this propagation requires replacing each layer with an abstract
one (called abstract transformer) that computes the effects of
the layer on abstract elements. Thus, when given an abstract
element A in the input space of a network f (e.g., representing
the neighborhood of a fixed input z*), the result of abstract
interpretation is an abstract element A’ in the output space
over-approximating all outputs f(z) of concrete inputs 2 € A.
To verify that a property P holds, it is then enough to check
whether A’ is included in an abstract element representing all
outputs satisfying P. Since abstract interpretation computes
over-approximations of the actual input-output behavior of a
network, the property P typically describes a safety condition.

While neural network verification is a vibrant and highly
active field, virtually all existing research suffers from three
substantial shortcomings:

1. Existing research focuses on verifying “simple” proper-
ties that can be formalized using quantifier-free first-order
constraints on the inputs and outputs of a network. Ex-
amples of such properties include adversarial robustness
and fairness, illustrated by Properties (1) and (2) above.
However, the overwhelming majority of relevant correct-
ness properties cannot be expressed in this simple way.
As an example, consider a neural network controlling an
autonomous car and the property that the car needs to
decelerate as soon as a stop sign appears in the front view.
It is clear that formalizing this property is extremely hard:
it would require us to mathematically capture all essen-
tial features of all possible stop signs, including their
position, shape, angle, color, etc.

2. Virtually all properties considered in neural network veri-
fication today are either local (referring to inputs in the
neighborhood of an a priori fixed input #*) or global
(referring to all inputs). Adversarial robustness is an ex-
ample of the former type, while fairness illustrates the
latter. However, a more natural and helpful approach
would be to restrict the verification to inputs from the
underlying data distribution since we do typically not

expect our networks to process out-of-distribution data.
Again, such a restriction is very hard to capture logically
and, therefore, not featured by current methods.

3. A fundamental problem, especially when verifying global
properties, is that counterexamples (i.e., inputs witness-
ing the violation of the property) are often out of distri-
bution and, hence, of little value. Again, restricting the
verification to inputs originating from the underlying data
distribution would mitigate this issue but is not supported
by current approaches.

In the next section, we address these drawbacks by introducing
a neuro-symbolic framework for neural network verification.

4 A Neuro-Symbolic Verification Framework

As illustrated by Properties (1) and (2), the primary obstacle
in today’s neural network verification is that correctness prop-
erties have to be formalized in a suitable—often relatively
simple—logical formalism that relates inputs and outputs of
a neural network (e.g., the quantifier-free fragment of real
arithmetic). This requirement fundamentally limits current
verification approaches to only a few different types of correct-
ness properties, arguably making them ill-equipped to tackle
real-world Al verification tasks.

As a first step towards overcoming this severe practical
limitation, we propose a neuro-symbolic approach to neural
network verification. Our main idea is seemingly simple yet
powerful: we propose the use of highly specialized deep neu-
ral networks, named specification networks, as proxy objects
for capturing semantic correctness properties. We introduce
the concept of specification networks and possible ways of
how to obtain them in Section 4.1. In Section 4.2, we then pro-
pose a fragment of quantifier-free first-order logic to formalize
correctness properties involving specification networks. We
call this type of properties neuro-symbolic and the resulting
assertion language NESAL. In an extended version of this pa-
per [Xie et al., 2022], we demonstrate how checking NESAL
properties can be reduced to traditional deductive verifica-
tion of deep neural networks. This reduction allows utilizing
any existing deductive verifier (e.g., Planet [Ehlers, 2017] or
Marabou [Katz er al., 2019]), making our neuro-symbolic
verification framework easily accessible to researchers and
practitioners alike. The key idea is that—on the level of logic
formulas—it does not matter whether a verification condition
involves one or multiple deep neural networks.

4.1 Specification Networks

Generally speaking, a specification network is a highly spe-
cialized deep neural network trained for a specific task (e.g.,
perception, anomaly detection, recognizing the underlying
data distribution, etc.). We use one (or multiple) of such net-
works as proxy objects to capture correctness properties. Their
precise architecture does not matter at this point, but might
influence the choice of which verification engine to use.

Let us illustrate the concept of specification networks using
the autonomous vehicle example from Section 3. For the sake
of simplicity, let us assume that we are given
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¢ a deep neural network f that takes pictures Z from the
front camera as input and outputs the steering commands
“left”, “right”, “accelerate”, and “decelerate”; and

 aproperty P stating “f has to issue a deceleration com-
mand as soon as a stop sign appears in the front camera”.

Instead of trying to formalize all characteristics of stop signs
in logic (i.e., their possible positions, shapes, colors, etc.),
we now train a second deep neural network g for the specific
perception task of recognizing stop signs. Assuming that g
is a binary-class network (outputting “yes” if it detects a stop
sign in the image & and “no” otherwise), one can then express
the property P above straightforwardly as

if g(Z) = yes, then f(Z) = decelerate. 3)

Note that our original property P now amounts to a simple
constraint over the inputs and outputs of the networks f and g.

An essential requirement of our framework is the availabil-
ity of adequate specification networks. We here sketch three
conceivable ways of how to obtain them:

1. The perhaps simplest way of obtaining specification net-
works is to train them explicitly. To avoid systematic
errors, it is crucial to train a specification network on a
dataset that is different from the one used to train the
network under verification. Preferably, one should addi-
tionally use a different architecture and hyperparameters.

2. Similar to standard datasets such as MNIST [LeCun ef
al., 2010], researchers and interested companies might
create public repositories for specification networks (such
as Hugging Face'). To boot-strap such efforts, we have
made the specification networks used in our experimental
evaluation available on GitHub.?

3. Regulatory or notified bodies might provide specification
networks as references for future Al-enabled systems.
Such an approach can be used, for instance, to guarantee
minimum standards for the correctness and reliability of
deep neural networks in safety-critical applications.

4.2 A Neuro-Symbolic Assertion Language

Inspired by neuro-symbolic reasoning [d’ Avila Garcez et al.,
2019; De Raedt et al., 2020], we now describe how to use
specification networks to formalize correctness properties of
neural networks. Specifically, we introduce an assertion lan-
guage, named Neuro-Symbolic Assertion Language, which
is inspired by the Hoare logic used in software verification
and adapts the notation introduced by Albarghouthi [Albargh-
outhi, 2021]. This language is a fragment of the quantifier-free
first-order logic over the reals and allows formalizing com-
plex correctness properties—involving multiple specification
networks—in an interpretable and straightforward manner.
Throughout the remainder of this paper, we assume that
we are given k € N specification networks gy, . .., g with
gi: R™ — R™ fori € {1,...,k}. Moreover, let us assume
that we want to formalize a correctness property for a single
deep neural network f: R™0 — R™_ which we call the net-
work under verification (NUV). Note that the latter assumption

"https://huggingface.co
“https://github.com/LebronX/Neuro- Symbolic- Verification

is not a restriction of our framework, but it simplifies the fol-
lowing presentation. Our framework can easily be extended to
multiple networks under verification.

Let us now turn to the definition of our Neuro-Symbolic
Assertion Language (NESAL). Formally, NESAL is the
quantifier-free fragment of first-order logic over the reals that
contains all logic formulas of the form

{gppre(fl,...,fg)}
71— hi(Z) A NG he(Zy)
{cp,,ost(fl,...,fg,g’l,...,gjg)},
where
e hi € {f,g1,...,gr} fori € {1,...,¢} are function

symbols representing the given neural networks, one of
which is the NUV f;

e ¥y,...,%, are vectors of real variables representing the
input values of the networks h; € {f, g1,...,9k};

* 141,..., Y are vectors of real variables representing the
output values of the networks h; € {f,91,...,9x};

* the expressions ¢; < h;(Z;) store the results of the com-
putations h;(Z;) in the variables ¢;, where we assume
that &; and 3; match the dimensions of the input and
output space of h;, respectively;

* Ypre 1s a quantifier-free first-order formula over the free
variables 71, ...,Ty, called pre-condition, expressing
constraints on the inputs to the networks f, g1, ..., gk;

* Ypost 18 a quantifier-free first-order formula over the
free variables Z1,...,Zy and ¥, ..., ¥, called post-
condition, expressing desired properties of f while con-
sidering the computations of g1, ..., gi.

We call each such formula a neuro-symbolic property to em-
phasize that correctness properties are no longer restricted to
simple first-order constraints on the inputs and outputs of the
NUYV but can also depend on other networks.

The intuitive meaning of a neuro-symbolic property is that
if the inputs Z1,..., 2 satisfy ¢, and the output of the
networks on these inputs is ¥, . . ., %, then ¢, has to be
satisfied as well. Let us illustrate this definition with our
example of Section 4.1. In this example, we are given a
NUV f: R™*™ — {left7 right, accelerate, decelerate} map-
ping m x m pixel images to steering commands and a single
specification network g: R™*™ — {yes,no} detecting stop
signs. Then, Property (3) can be formalized in NESAL as

— —

{l‘l = T2
y1 < f(Z1) Ny2 < g(d2)
{y2 =yes = y; = decelerate}.

This neuro-symbolic property is a prototypical example of
how our approach mitigates the first shortcoming of classical
neural network verification discussed in Section 3. To address
the second and third shortcomings, we can train an autoen-
coder g: R™ — R™ to capture the distribution underlying
the training data. To restrict the verification of a network

3625


https://huggingface.co
https://github.com/LebronX/Neuro-Symbolic-Verification

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

f: R™ — R™ to the underlying data distribution, we can use
the neuro-symbolic property

{true} 1  f(&) A1 < g(2) {d(Z,52) < e — P(,51)}

where P is the original property we want to verify and the
condition d(Z, 72) < € for some £ > 0 follows the usual idea
of using autoencoders to detect out-of-distribution data [Saku-
rada and Yairi, 2014]. As a byproduct, we obtain that any
counterexample to this new property violates the original prop-
erty P and originates from the underlying data distribution.

It is not hard to verify that “simple” properties, such as
adversarial robustness and fairness, can easily be expressed as
neuro-symbolic properties as well. For instance, adversarial
robustness can be formalized in NESAL as

) {7 =7}

{d(@*,2) <e} " « f(&

where £* € R™ is a fixed input, ¢ > 0, and assuming that
the distance function d can be expressed in the quantifier-
free fragment of first-order logic over the reals. Note that
individual networks can appear multiple times in a neuro-
symbolic property.

Given a neuro-symbolic property {¢pre } Qassign {@post }
with @gssign = /\f=1 ¥i < hi(Z;), the overall goal is to
check whether the logic formula

YA f(&

¢ = (@pre A Qpassign) — (ppost

is valid (i.e., whether V&, : 9 is a tautology). In analogy
to software verification, we call this task the neuro-symbolic
verification problem and the formula v a neuro-symbolic verifi-
cation condition. The supplementary material shows how this
verification problem can be reduced to deductive verification.

S Empirical Evaluation

We have implemented a Python3 prototype based on the
state-of-the-art deductive verifier Marabou [Katz et al., 20191,
named Neuro-Symbolic Verifier (NSV). Since the original
Marabou tool does not support NESAL properties—or any
verification query with multiple networks—, we have modified
it as described in the extended version of this paper [Xie et
al., 2022]. Our code and all experimental data can be found at
https://github.com/LebronX/Neuro-Symbolic- Verification.

In our experimental evaluation, we have considered two
widely used datasets:

1. The MNIST dataset [LeCun e al., 2010], containing
60,000 training images and 10.000 test images of hand-
written digits.

2. The German Traffic Sign Recognition Benchmark
(GTSRB) [Stallkamp et al., 2011], containing 39,209
training images and 12,630 test images with 43 types of
German traffic signs. To not repeat similar experiments
over and over, we restrict ourselves to the first ten classes.

It is paramount to stress that we are not interested in the
absolute performance of NSV, how well it scales to huge net-
works, or how it compares to other verification techniques on
non-neuro-symbolic properties. Instead, our goals are twofold:
(1) we demonstrate that our neuro-symbolic approach can be
implemented on top of existing verification infrastructure for

deep neural networks and is effective in verifying neuro-sym-
bolic properties; and (2) we showcase that our neuro-symbolic
framework can find more informative counterexamples than
a purely deductive verification approach. Note that the for-
mer makes it possible to leverage future progress in neural
network verification to our neuro-symbolic setting, while the
latter greatly improves the debugging of learning systems.

5.1 Effectiveness in Verifying NESAL Properties

For both the GTSRB and the MNIST datasets, we considered
the following three prototypical neuro-symbolic properties. By
convention, we use f to denote the network under verification
(NUV) and g to denote a specification network. Moreover, we
use the L..-norm as distance function d.

Py “If the input image is of class ¢, then the NUV outputs ¢”,
expressed in NESAL as

{true}
71 < f(Z) Aya < g(F)
{yz =1— argmax (¢1) = c}.

Here, the NUV f is a multi-class deep neural network
mapping images to their class (i.e., one of the 43 traffic
signs or ten digits), while the specification network g is a
deep neural network specifically trained by an authority
to detect the specific class ¢ (outputting 0 or 1). This
property is a simplified version of Property (3) on Page 4.

Ps: “If the input follows the distribution of the underlying
data, then the NUV classifies the input correctly with
high confidence”, expressed in NESAL as

{true}
U1 < [(Z) N2 g(2)
{(d(#, %) < e Aargmax (i) = ¢) — conf > b},

where €, > 0 and conf = (%1l-yi=2 ;. v)/|7) is the
confidence of the NUV that the input & is of class c. Here,
the NUV f is a multi-class deep neural network mapping
images to their class, while the specification network g is
an autoencoder used to detect out-distribution data (via
d(a, &) > ¢€) [Sakurada and Yairi, 2014].

P5: “Two deep neural networks (of different architecture)
compute the same function up to a maximum error of €”,
expressed in NESAL as

{true} it « f(Z) Ao < 9() {d(F1,72) < e},

where € > 0. Here, the NUV f and the specification
network g have the same dimensions of the input and
output space but potentially distinct architectures.

For each benchmark suite, each class (remember that we
have only considered ten classes of GTSRB), and each of the
three properties, we have trained one NUV and one specifi-
cation network with the architectures shown in Table 1 (all
using ReLU activation functions). We have resized the MNIST
images for property P to 14 x 14 and the GTSRB images to
16 x 16 for all properties to keep the verification tractable. For
property P>, we have chosen 0.05 < ¢ < 0.14 with step size
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Property and NUV Spec. network

benchmarks in out hid. in  out hid.
P;-MNIST 784 10 3-10 784 2 3-10
P>-MNIST 196 10 1-10 196 196 1-10
P3;-MNIST 784 10 3-20 784 10 3-20
P-GTSRB 256 43 3-12 256 2 3:5
P>-GTSRB 256 43 1-10 256 256 1-10
P3-GTSRB 256 43 3-35 256 43 3-35

Table 1: Architectures used in our experimental evaluation. Each
line lists the number of neurons in the input layer (“in”), output layer
(“out”), and hidden layers (“hid.”), respectively.

0.01 and 1 < § < 20 with step size 1. For property P;, we
have chosen 0.05 < ¢ < 0.14 with step size 0.01.

To avoid statistical anomalies, we have repeated all experi-
ments five times with different neural networks (trained using
different parameters) and report the average results. This way,
we obtained 5 - 2 - (10 + 200 + 10) = 2, 200 verification tasks
in total. We have conducted our evaluation on an Intel Core
15-5350U CPU (1.80 GHz) with 8 GB RAM running MacOS
Catalina 10.15.7 with a timeout of 1, 800 s per benchmark.

Figure 1 depicts the results of our experiments in terms of
the accumulated average runtimes. On the MNIST benchmark
suite, NSV timed out on one benchmark (for property P;)
and terminated on all others. It found a counterexample in
all cases (i.e., none of the NUVs satisfied the properties). On
the GTSRB suite, NSV always terminated. It proved that all
NUVs satisfied property P;, while finding counterexamples
for all benchmarks of properties P, and Ps. Note that the
single timeout on the MNIST benchmark suite causes the steep
increase in the graph of property P; on the left of Figure 1. To
avoid any bias, we have not taken measures during the training
process to ensure that our NUVs satisfy any of the properties,
which explains the large number of counterexamples. We
believe that the relatively low resolution of the GTSRB images
caused property P; to be vacuously true since the specification
network ¢ did not detect the correct class (i.e., y2 # 1).

In total, our experiments show that NSV is effective at
verifying a diverse set of neuro-symbolic properties. The fact
that it was built on top of existing infrastructure shows that
our neuro-symbolic framework is easy to adopt in practice.

5.2 Quality of Counterexamples

To assess the quality of the counterexamples generated by
NSV, we have modified Property P; to exclude the require-
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Figure 1: Accumulated average runtimes for the experiments on the
MNIST dataset (left) and the GTSRB dataset (right).

Figure 2: Counterexamples to the neuro-symbolic property P» (left)
and the corresponding non-neuro-symbolic property Py (right).

ment that the data must come from the underlying distribution.
The resulting property Pj, expressed in NESAL, is

{tme} ih < f(Z) {argmax (7h) = ¢ — conf > 5}.

Note that P involves only one network and represents a typi-
cal property arising in classical neural network verification.

We have verified Property P on the deep neural networks
from the MNIST dataset using the original Marabou frame-
work. The result is shown on the right-hand-side of Figure 2.
Since Property P is global, the verification has to consider all
possible inputs. As Figure 2 demonstrates, counterexamples
to such properties are often random noise and arguably of little
value. In fact, we could not identify a single counterexample
that looked close to the original dataset.

By contrast, the left-hand-side of Figure 2 shows two coun-
terexamples to the neuro-symbolic property P». These coun-
terexamples are substantially more meaningful and intuitive
because they originate from the underlying distribution of the
data (as captured by an autoencoder trained to reconstruct the
data). This demonstrates that neuro-symbolic verification pro-
duces meaningful counterexamples that can greatly simplify
the development and debugging of learning systems.

6 Conclusion and Future Work

We have introduced the first neuro-symbolic framework for
neural network verification, which allows expressing complex
correctness properties through specification networks. We
have demonstrated that our framework can straightforwardly
be implemented on top of existing verification infrastructure
and provides more informative counterexamples than existing
methods. To the best of our knowledge, we are the first to
propose a neuro-symbolic approach to formal verification.

The concept of neuro-symbolic verification can, in principle,
also be applied to hardware and software verification (e.g., to
express properties involving perception), and we believe this
to be a promising direction of future work. Another task will
be to develop novel verification algorithms (e.g., based on
abstract interpretation) that exploit the neuro-symbolic nature
of correctness properties and can reason about multiple deep
neural networks. To further improve scalability, we also intend
to investigate neuro-symbolic approaches to testing.
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