
Offline Time-Independent Multi-Agent Path Planning

Keisuke Okmura∗ , François Bonnet , Yasumasa Tamura and Xavier Défago
Tokyo Institute of Technology

{okumura.k, bonnet.f, tamura.y, defago.x}@coord.c.titech.ac.jp

Abstract
This paper studies a novel planning problem
for multiple agents that cannot share hold-
ing resources, named OTIMAPP (Offline Time-
Independent Multi-Agent Path Planning). Given
a graph and a set of start-goal pairs, the problem
consists in assigning a path to each agent such that
every agent eventually reaches their goal without
blocking each other, regardless of how the agents
are being scheduled at runtime. The motivation
stems from the nature of distributed environments
that agents take actions fully asynchronous and
have no knowledge about those exact timings of
other actors. We present solution conditions, com-
putational complexity, solvers, and robotic applica-
tions.

1 Introduction
The eventual goal of collective path planning for multiple
agents is to make each agent in a shared workspace be on
their respective goal status. This problem becomes non-trivial
when agents cannot pass through each other, i.e., each agent
occupies some resources in the space while the others are
blocked to access these resources at that time. We see such
situations in fleet operations of warehouses [Wurman et al.,
2008], intersection management for self-driving cars [Dres-
ner and Stone, 2008], multi-robot 3D printing systems [Zhang
et al., 2018], packet-switched networks with limited buffer
spaces [Tel, 2000], and lock operations of transactions on dis-
tributed databases [Knapp, 1987], to name just a few.

In such multi-agent systems, each agent inherently takes
and finishes actions (or moves) at their own timings indepen-
dently and unpredictably from other actors, regardless of cen-
tralized or decentralized controls. This is due to the nature
of distributed environments such as message delay or clock
shift/drift, as well as uncaptured individual differences be-
tween agents like frictions of physical robots. Nevertheless,
the cutting-edge research on pathfinding for multiple agents,
known as Multi-Agent Path Finding (MAPF) [Stern et al.,
2019] that aims at finding a set of collision-free paths on
graphs, heavily rely on timing assumptions. Typical MAPF

∗Contact Author

i j i j

Figure 1: Example of OTIMAPP. A graph is depicted with black
lines. Two agents (i, j) and their paths are colored. left: Both agents
stop progression permanently due to mutual exclusion (i.e., no col-
lision) if i moved two steps before j moves. right: As long as each
agent follows a respective path, both agents eventually reach their
last vertex; these paths constitute an OTIMAPP solution.

assumes that agents take actions just at the same time. Not
to mention, such “timed” schedules contradict the nature of
distributed environments. Even worse, on-time execution of
offline planning is too optimistic with more agents.

One counter approach to the timing uncertainties is run-
time supports by online monitoring, re-planning, and inter-
vention, e.g., [Van Den Berg et al., 2011; Ma et al., 2017;
Atzmon et al., 2020b; Okumura et al., 2021]. This approach
however requires runtime effort and additional infrastructures
(e.g., steady network and monitoring systems) to manage
agents’ status in real-time. Moreover, how to realize such
schemes in large systems is not trivial at all.

Instead, this paper studies a novel planning problem in
which agents spontaneously take actions without any tim-
ing assumptions. The problem requests a set of paths (i.e.,
solution) ensuring that all agents eventually reach their des-
tinations without blocking each other permanently. To see
this, consider the situation in Fig. 1(left). This plan runs a
risk of execution failure; if the agent j gets delayed for any
reason while the agent i moves two steps to the right, then
each agent blocks each other and neither agent can progress
on its respective path. In contrast, in Fig. 1(right), regard-
less of how the two agents are scheduled, both agents even-
tually reach their destinations unless they permanently stop
the progression. We call the corresponding problem Offline
Time-Independent Multi-Agent Path Planning (OTIMAPP).

The contribution of this paper is to establish the foundation
of OTIMAPP for both theory and practice. Specifically, the
topics are categorized into two:

I We formalize and analyze OTIMAPP. Section 3 identifies a
necessary and sufficient condition for a solution, i.e., a set of
paths that makes all agents reach their goals without timing
assumptions. This is based on characterization of deadlocks.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4649

Section 4 conducts a series of complexity analyses and re-
veals that (1) finding a solution is NP-hard on directed graphs,
(2) finding a solution is NP-hard on undirected graphs when
solutions are restricted to simple paths, and (3) verifying a
solution is co-NP-complete.

I We present algorithms to solve OTIMAPP and demonstrate
the utility of OTIMAPP via robotic applications. Section 5
presents two approaches to derive solutions: prioritized plan-
ning (PP) and deadlock-based search (DBS). Both algorithms
are respectively derivative from basic MAPF algorithms [Erd-
mann and Lozano-Perez, 1987; Sharon et al., 2015] and rely
on a newly developed procedure to detect deadlocks within
a set of paths. Section 6 shows that either PP or DBS can
compute large OTIMAPP instances to some extent. Further-
more, we show that solutions keep robots’ moves efficient in
an adverse environment for timing assumptions compared to
existing approaches with runtime supports [Ma et al., 2017;
Okumura et al., 2021]. Moreover, we demonstrate that solu-
tions are executable with physical robots in both a centralized
style and a decentralized style with only local interactions,
without cumbersome procedures of online interventions.

In the remainder, all omitted proofs including sketches are
available in the appendix. The appendix, code, and movie are
available on https://kei18.github.io/otimapp. Related work
will be discussed at the end.

2 Problem Definition
An OTIMAPP instance is given by a graph G = (V,E), a
set of agents A = {1, 2, . . . , N}, an injective initial state
function s : A 7→ V , and an injective goal state function
g : A 7→ V . An OTIMAPP instance on digraphs is similar to
the undirected case.

An execution schedule is an infinite sequence of agents. An
OTIMAPP execution is defined by an OTIMAPP instance, an
execution schedule E , and a set of paths {π1, . . . , πN} as fol-
lows. The agents are activated in turn according to E . Upon
activation and until reaching the end of its path πi, an agent i
takes a single step along πi if the vertex is vacant or stays at
its current location otherwise. After reaching the end of the
path, the agent only stays. E is called fair when every agent
appears infinitely-many times in E .

An OTIMAPP problem is to decide whether there is a set
of paths {π1, . . . , πN} such that (1) each path for an agent i
begins from s(i) and ends at g(i), (2) for any fair execution
schedule, all agents reach the end of their paths (i.e., goals)
in a finite number of activations. A solution is a set of paths
satisfying these two.

Other Notations Let si and gi denote s(i) and g(i), respec-
tively. A location for an agent i is associated with a progress
index clock i ∈ {1, · · · , |πi|} and represented as πi[clock i],
where πi[j] is the j-th vertex in πi. Every progress index
starts at one and is incremented each time the agent moves a
step along its path. The progress index is non-decreasing and
no longer increases after reaching the end of the path. We use
S[−1] to denote the last element of the sequence S.

i j

k

i j

Figure 2: Examples of unreachable potential deadlocks. left: cyclic;
((i, j, k), (3, 1, 2)). right: terminal; (i, j, 2).

Rationale and remarks Any solution must deal with all
timing uncertainties because execution schedules are un-
known when offline planning. We assume that agents are ac-
tivated sequentially and that each activation is atomic. How-
ever, there is no loss of generality as long as an agent can
atomically reserve its destination before each move. Indeed,
several robots acted simultaneously in our demos. Through-
out the paper, we assume that each path πi starts from si and
ends at gi to focus on analyses related to schedules.

3 Solution Analysis
Given a set of paths, our first question is to determine whether
it is a solution. This section derives a necessary and sufficient
condition for solutions. For this purpose, we introduce four
types of deadlocks, categorized as; cyclic or terminal; poten-
tial or reachable. Informally, a cyclic deadlock is a situation
where agent i wants to move to the current vertex of j, who
wants to move to the current vertex of k, who wants to move
to ... of i. A terminal deadlock is a situation where agent
i reaches its destination and blocks the progress of another
agent j. A potential deadlock is called reachable when there
exists an execution schedule leading to the deadlock.

Definition 3.1 (potential cyclic deadlock). Given an
OTIMAPP instance and a set of paths {π1, . . . πN},
a potential cyclic deadlock is a pair of tuples
((i, j, k, . . . , l), (ti, tj , tk, . . . , tl)) such that πi[ti + 1] =
πj [tj] ∧ πj [tj + 1] = πk[tk] ∧ . . . ∧ πl[tl + 1] = πi[ti]. The
elements of the first tuple are without duplicates.

Definition 3.2 (potential terminal deadlock). Given an
OTIMAPP instance and a set of paths {π1, . . . πN}, a poten-
tial terminal deadlock is a tuple (i, j, tj) such that πi [−1] =
πj [tj] and i 6= j.

Definition 3.3 (reachable cyclic deadlock). A potential
cyclic deadlock ((i, j, . . . , l), (ti, tj , . . . , tl)) is reachable
when there is an execution schedule leading to a situation
where clock i = ti ∧ clock j = tj ∧ . . . ∧ clock l = tl. This
deadlock is called a reachable cyclic deadlock.

Definition 3.4 (reachable terminal deadlock). A potential ter-
minal deadlock (i, j, tj) is reachable when there is an execu-
tion schedule leading to a situation where clock i = |πi| ∧
clock j = tj − 1. This deadlock is called a reachable terminal
deadlock.

We refer to both reachable (or potential) cyclic/terminal
deadlocks by reachable (resp. potential) deadlocks and sim-
ply use “deadlock” whenever the context is obvious. At least
one execution schedule is required to verify whether a po-
tential deadlock is reachable. For instance, in Fig. 1 (left),

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4650

https://kei18.github.io/otimapp

a schedule (i, i, . . .) is evidence. A potential deadlock is not
always reachable as illustrated in Fig. 2.
Theorem 3.5 (necessary and sufficient condition). Given an
OTIMAPP instance, a set of path {π1, . . . , πN} is a solution
if and only if there are (1) no reachable terminal deadlocks
and (2) no reachable cyclic deadlocks.

Proof sketch. Verifying that they are necessary is straightfor-
ward. To see that they are sufficient, consider a potential func-
tion φ :=

∑
i∈A(|πi| − clock i) defined over a configuration

{clock1, . . . , clockN}. Observe that φ is non-increasing and
φ = 0 means that all agents have reached their goals. Fur-
thermore, when φ > 0, φ is guaranteed to decrease if each
agent is activated at least once.

4 Computational Complexity
This section studies the complexity of OTIMAPP. In partic-
ular, we address two questions: the difficulty to find solu-
tions (Sec. 4.1) and the difficulty to verify solutions (Sec. 4.2).
Our main results are that both problems are computationally
intractable; the former is NP-hard and the latter is co-NP-
complete. Both proofs are based on reductions from the 3-
SAT problem, deciding satisfiability for a formula in conjunc-
tive normal form with three literals in each clause.

4.1 Finding Solutions
We distinguish directed graphs and undirected graphs to ana-
lyze the complexity. The following proof is partially inspired
by the NP-hardness of MAPF on digraphs [Nebel, 2020].
Theorem 4.1 (complexity on digraphs). OTIMAPP on di-
rected graphs is NP-hard.

Proof. The proof is a reduction from the 3-SAT problem.
Figure 3 is an example of the reduction from a formula
(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3).

A. Construction of an OTIMAPP instance. We introduce two
gadgets, called variable decider and clause constrainer. The
OTIMAPP instance contains one variable decider for each
variable and one clause constrainer for each clause.

The variable decider for a variable xi assigns xi to true or
false. This gadget contains one agent χi with two paths to
reach its goal: left or right. Taking a left path corresponds to
assigning xi to false, and vice versa. For the j-th clause Cj

in the formula, when its k-th literal is either xi or ¬xi, we
further add one agent cjk to the gadget. Its start and goal are
positioned on the right side from χi when the literal is a nega-
tion; otherwise, on the left side. When several such agents are
positioned on one side, let them connect (see the gadget for
x2). cjk has two alternate paths to reach its goal: a path within
the variable decider or a path via a clause constrainer. The
former is available only when χi takes a path of the opposite
direction to avoid a reachable cyclic deadlock.

The clause constrainer for a clause Cj connects the start
and the goal of cjk. The gadget contains a triangle. Each literal
cjk enters this triangle from a distinct vertex and exits from
another vertex. As a result, this gadget prevents three literals
in Cj from being false simultaneously; if not so, three agents
enter the gadget and there is a reachable cyclic deadlock.

χ1

c1
1

c2
1

c1
1

c2
1

χ1

χ2

c2
2

c1
2

c2
2

c1
2

χ2

χ3

c2
3

c1
3

c2
3

c1
3

χ3

start goal

variable decider : x3

clause constrainer
C2 : ¬x1 ∨ x2 ∨ x3

false true

Figure 3: An OTIMAPP instance reduced from the 3-SAT formula
(x1 ∨ x2 ∨ ¬x3) ∧ (¬x1 ∨ x2 ∨ x3).

u
z2

v
z1

z1

z2

start goal

Figure 4: A oneway constrainer. This gadget transforms an undi-
rected edge (u, v) to a directed one. Any agent is allowed to move
only the way from u to v when limiting solutions to simple paths.

The number of agents, vertices, and edges are all polyno-
mial with respect to the size of the formula.

B. The formula is satisfiable if OTIMAPP has a solution: the
use of one clause constrainer by three agents leads to a reach-
able cyclic deadlock. Thus, at least one literal for each clause
becomes true in any OTIMAPP solution.

C. OTIMAPP has a solution if the formula is satisfiable: If
satisfiable, let χi take a path that follows the assignment.
Let cjk take a path within the variable decider when χi takes
the opposite direction; otherwise, use the clause constrainer.
Since three agents never enter one clause constrainer due to
satisfiability, those paths constitute a solution.

For undirected graphs, we limit solutions to those contain-
ing only simple paths.1

Theorem 4.2 (complexity on undirected graphs). For
OTIMAPP on undirected graphs, it is NP-hard to find a solu-
tion with simple paths.

Proof sketch. We add a new gadget called oneway con-
strainer, which transforms an undirected edge to a virtually
directed one, to the proof of the NP-hardness on digraphs
(Thm. 4.1). We derive the claim by replacing all directed
edges, except for bidirectional edges, with this gadget. Fig-
ure 4 illustrates it, including two new agents: z1 and z2. In

1We recently proved that it is NP-hard for the general case of
undirected graphs. The formal proof will appear soon.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4651

this gadget, any agents outside of the gadget are allowed to
move only in the direction from u to v.

4.2 Verification
The co-NP completeness of the verification relies on the fol-
lowing lemma, stating that finding cyclic deadlocks is com-
putationally intractable. Its entire proof is delivered in the
Appendix.
Lemma 4.3 (complexity of detecting cyclic deadlocks). De-
termining whether a set of paths contains either reachable or
potential cyclic deadlocks is NP-complete.

We then derive the complexity result since a solution has
no reachable deadlocks.
Theorem 4.4 (complexity of verification). Verifying a solu-
tions of OTIMAPP is co-NP-complete.

Proof. Thm. 3.5 states that a solution has no reachable ter-
minal/cyclic deadlocks. Verifying no terminal deadlocks is
in co-NP; a terminal deadlock is verified in polynomial time
with an execution schedule. Verifying no potential deadlocks
is co-NP-complete according to Lemma 4.3.

5 Solvers
We now focus on how to solve OTIMAPP. In practice,
it is difficult to use the necessary and sufficient condition
(Thm. 3.5) because we have to find corresponding schedules.
This motivates to build a relaxed sufficient condition.
Theorem 5.1 (relaxed condition). Given an OTIMAPP in-
stance, a set of path {π1, . . . , πN} is a solution when there
are (1) no use of other goals, i.e., gj 6∈ πi for all i 6= j except
for si = gj , and (2) no potential cyclic deadlocks.

It is straightforward to see that the above conditions are
respectively sufficient for the two conditions in Thm. 3.5.
Given a set of paths, “no use of other goals” is easy to check
while “no potential cyclic deadlocks” is intractable to com-
pute (Lemma 4.3). Nevertheless, detecting potential cyclic
deadlock is the heart of solving OTIMAPP. Thus, we first ex-
plain how to detect potential cyclic deadlocks. After that, two
algorithms to solve OTIMAPP are presented.

5.1 Detection of Potential Deadlocks
Due to the space limit, we only describe the intuition be-
hind the algorithm. The details are in the Appendix (Alg. 3).
We first introduce a fragment, a candidate of potential cyclic
deadlocks.
Definition 5.2 (fragment). Given a set of paths {π1,. . . ,πN},
a fragment is a tuple ((i, j, k, . . . , l), (ti, tj , tk, . . . , tl)) such
that πi[ti + 1] = πj [tj] ∧ πj [tj + 1] = πk[tk] ∧ . . . = πl[tl].
The elements of the first tuple are without duplicates.
We say that a fragment starts from a vertex uwhen πi[ti] = u
and a fragment ends at a vertex v when πl[tl + 1] = v. A
fragment that ends at its start (i.e., πl[tl + 1] = πi[ti]) is a
potential cyclic deadlock.

Using fragments, we construct an algorithm to detect
a potential cyclic deadlock in a set of paths if it exists.
This is based on induction on πi. The induction hypothe-
sis for i is that there are no potential cyclic deadlocks for

induction key new fragments

{π1} u [(1), (1), (u, v)]
v [(1), (2), (v, w)]

{π1, π2} u [(1, 2), (1, 1), (u, v, x)]
v [(2), (1), (v, x)]
x [(2), (2), (x, y)]

{π1, π2, π3} u [(1, 2, 3), (1, 1, 2), (u, v, x, u)]
v [(2, 3), (1, 2), (v, x, u)]
x [(3), (2), (x, u)], [(3, 1), (2, 1), (x, u, v)]
z [(3), (1), (z, x)], [(3, 2), (1, 2), (z, x, y)]

Table 1: Example of detecting potential cyclic deadlocks. We de-
scribe the update of Θs for π1 = (u, v, w), π2 = (v, x, y), π3 =
(z, x, u). The table uses [(agents), (progress indexes), (path)] as a
notation of fragment, where “path” is a corresponding sequence of
vertices of the fragment. The algorithm halts with a blue-colored
fragment, a detected potential cyclic deadlock.

{π1, . . . , πi−1} and all fragments for them are identified. All
new fragments about πi are categorized into three groups:
(1) a fragment only with πi, (2) a fragment that extends exist-
ing fragments, and (3) a fragment that connects existing two
fragments. In either case, if a newly created fragment ends at
its start, this is a deadlock.

The algorithm realizes this procedure by managing two ta-
bles that store fragments: Θs and Θt . Both tables take one
vertex as a key. One entry in Θs stores all fragments starting
from the vertex. One entry in Θt stores all fragments ending
at the vertex. Table 1 presents an example to detect deadlocks.

5.2 Prioritized Planning (PP)
Prioritized planning [Erdmann and Lozano-Perez, 1987; Sil-
ver, 2005] is neither complete nor optimal, but it is compu-
tationally cheap hence a popular approach to MAPF. It plans
paths sequentially while avoiding collisions with previously
planned paths. Instead of inter-agent collisions, solvers for
OTIMAPP have to care about potential cyclic deadlocks.

Algorithm 1 is prioritized planning for OTIMAPP, named
PP. When planning a single-agent path, PP avoids using
(1) goals of other agents and (2) edges causing potential
cyclic deadlocks [Line 3]. The latter is detected by storing
all fragments created by previously computed paths. For this
purpose, PP uses the adaptive version of Alg. 3 [Line 5] in
the Appendix. A path satisfying the constraints can be found
by ordinary pathfinding algorithms. If not, PP returns FAIL-
URE. The correctness of PP is derived from Thm. 5.1.

PP is simple but incomplete. In particular, the planning or-
der of agents is crucial; an instance may be solved or may not
be solved as illustrated in Fig. 5. One resolution is repeating
PP with random priorities until the problem is solved; let call
this PP+. However, finding good orders can be challenging
because there are |A|! patterns. This motivates us to develop
a search-based solver, described in the next.

5.3 Deadlock-based Search (DBS)
We present deadlock-based search (DBS) to solve OTIMAPP,
based on a popular search-based MAPF solver called conflict-
based search (CBS) [Sharon et al., 2015]. CBS uses a two-

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4652

Algorithm 1 PP: Prioritized Planning
Input: an OTIMAPP instance
Output: a solution {π1, . . . , πN} or FAILURE

1: Θs ,Θt ← ∅
2: for i = 1 . . . |A| do
3: πi ← a path for agent i while avoiding the use of

· gj , ∀j 6= i, except for si
· (u, v) ∈ E s.t. ∃θ ∈ Θt [u] and θ starts from v

. avoiding cyclic deadlocks for πj , j < i

4: if πi is not found then return FAILURE
5: update Θs and Θt with πi using Algorithm 3
6: end for
7: return {π1, . . . , πN}

i

j

Figure 5: Example that the planning order affects the solvability.
When i plans prior to j, PP results in success with solid lines. PP
fails if j plans first and takes the dotted line.

level search. The high-level search manages collisions be-
tween agents. When a collision occurs between two agents at
some time and location, two possible resolutions are depend-
ing on which agent gets to use the location at that time. Fol-
lowing this observation, CBS constructs a binary tree where
each node includes constraints prohibiting to use space-time
pairs for certain agents. In the low-level search, agents find a
single path constrained by the corresponding high-level node.

Instead of collisions, DBS considers potential cyclic dead-
locks. When detecting a deadlock in a set of paths, a reso-
lution is that one of the agents in the deadlock avoids using
the edge. Thus, the constraints identify which agents prohibit
using which edges in which orientation.

Algorithm 2 describes the high-level search of DBS. Each
node in the high-level search contains constraints, a list
of tuples consisting of one agent and two vertices (repre-
senting “from vertex” and “to vertex”), and paths as a so-
lution candidate. The root node does not have any con-
straints [Line 1]. Its paths are computed following “no
use of other goals” of Thm. 5.1 [Line 2]. Then, the node
is inserted into a priority queue OPEN [Line 3]. In the
main loop [Line 4–13], DBS repeats; (1) Picking up one
node [Line 5]. (2) Checking a deadlock and creating con-
straints [Line 6]. (3) Returning a solution if the paths contain
no deadlocks [Line 7]. (4) If not, creating successors and
inserting them to OPEN [Line 8–12]. DBS returns FAIL-
URE when OPEN becomes empty [Line 14]. We comple-
ment several details below.

I Line 5: OPEN is a priority queue and needs the order of
nodes. DBS works in any order but good orders reduce the
search effort. As effective heuristics, we use the descending
order of the number of deadlocks with two agents, which is

Algorithm 2 DBS: Deadlock-based Search
Input: an OTIMAPP instance
Output: a solution {π1, . . . , πN} or FAILURE

1: R.constraints ← ∅
2: R.paths ← find paths with “no use of other goals”
3: insert R to OPEN . OPEN : priority queue
4: while OPEN 6= ∅ do
5: N ← OPEN .pop()
6: C ← get constraints of N using Algorithm 3
7: if C = ∅ then return N.paths
8: for (i, u, v) ∈ C do
9: N ′ ← {constraints : N.constraints + (i, u, v),

paths : N.paths}
10: update πi in N ′.paths to follow N ′.constraints
11: if πi is found then insert N ′ to OPEN
12: end for
13: end while
14: return FAILURE

computed within a reasonable time.
I Line 6: Let ((i, j, k, . . . , l),(ti, tj , tk, . . . , tl)) be a returned
deadlock by Alg. 3. Then, create constraints (i, πi[ti], πi[ti +
1]), (j, πj [tj], πj [tj + 1]), . . . , (l, πl[tl], πl[tl + 1]).
I Line 10: forces one path πi in the node to follow the new
constraints. This low-level search must follow “no use of
other goals,” furthermore, all edges in the constraints for i.
If not found, DBS discards the corresponding successor.

Theorem 5.3 (DBS). DBS returns a solution when solutions
satisfying Thm. 5.1 exist; otherwise returns FAILURE.

Example We describe an example of DBS using Fig. 5. As-
sume that the initial path of i is the solid blue line and the path
for j is the dashed red line [Line 2]. This node is inserted
into OPEN [Line 3] and is expanded immediately [Line 5].
There is one potential cyclic deadlock in the paths then two
constraints are created: either i or j avoids using the shared
edge [Line 10]. Two child nodes are generated, however, the
node that changes i’s path is invalid because there is no such
path without the use of the goal of j. Another one is valid;
j takes the solid red line. Therefore, one node is added to
OPEN from the root node. In the next iteration, this newly
added node is expanded. There are no potential cyclic dead-
locks in this node; DBS returns its paths as a solution.

Optimization Although this paper focuses on a feasibility
problem, DBS can adapt to optimization problems. As ob-
jective functions, total path length and maximum path length
in a solution can be defined. Those optimization problems
are solved optimally by DBS when it prioritizes high-level
search nodes with smaller scores, as commonly done in CBS.
Note that metrics that assess time aspects such as total trav-
eling time used in MAPF studies are significantly affected by
execution schedules; the adaptation is not trivial.

6 Evaluation
This section empirically demonstrates that OTIMAPP so-
lutions are computable to some extent (Sec. 6.1) and they

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4653

random-32-32-10
32×32 (922)

random-64-64-10
64×64 (3687)

den520d
256×257 (28178)

0 20 40 60 80 100
agents

0

20

40

60

80

100

su
cc

es
s

ra
te

 (%
)

PP
PP+
DBS
DBS*

0 40 80 120 160 200
agents

0

20

40

60

80

100

su
cc

es
s

ra
te

 (%
)

PP
PP+
DBS
DBS*

0 40 80 120 160 200
agents

0

20

40

60

80

100

su
cc

es
s

ra
te

 (%
) PP

PP+
DBS
DBS*

0 50 100 150 200 250 300
runtime (sec)

0

20

40

60

80

100

so
lv

ed
 in

st
an

ce
s

DBS(*)

PP+

PP

60 agents

0 50 100 150 200 250 300
runtime (sec)

0

20

40

60

80

100

so
lv

ed
 in

st
an

ce
s

DBS(*)
PP+

PP

120 agents

0 50 100 150 200 250 300
runtime (sec)

0

20

40

60

80

100

so
lv

ed
 in

st
an

ce
s

DBS(*)

PP(+)

80 agents

0.0 0.5 1.0 1.5 2.0
runtime (sec), 60 agents

PP
DBS

deadlock
detection

0 2 4 6 8 10
runtime (sec), 120 agents

PP
DBS

deadlock detection

0.0 0.5 1.0 1.5 2.0
runtime (sec), 80 agents

PP
DBS

deadlock
detection

Figure 6: Stress test on 4-connected grids. The success rate is based
on 25 identical instances. DBS∗ includes detected instances that are
unsolvable for DBS before timeout, which is not possible for PP(+).
We also present accumulated runtime with a fixed number of agents
over 100 instances, and runtime profiling (median) of each solver
over success instances for both solvers.

are useful in adverse environments about timings (Sec. 6.2)
through the simulation experiments. We also present
OTIMAPP execution with robots (Sec. 6.3). The simulator
was coded in C++ and the experiments were run on a desktop
PC with Intel Core i9 2.8 GHz CPU and 64 GB RAM.

6.1 Stress Test
Setup Each solver was tested with a timeout of 5 min on
four-connected undirected grids picked up from [Stern et al.,
2019], as a graph G. We also tested random graphs, shown in
the Appendix. All instances were generated by setting a start
si and a goal gi randomly while ensuring that si and gi have
at least one path without the use of other goals; otherwise,
it violates “no use of other goals” of Thm. 5.1. Note that
unsolvable instances might still be included.

Result Fig. 6 presents the results. The main findings are:
(1) Both solvers can solve instances with tens of agents in
various maps within a reasonable time. (2) PP often fails
due to priority orders (e.g., Fig. 5) while PP+ and DBS can
overcome such limitations to some extent. (3) A bottleneck
of each solver is the procedure of detecting potential cyclic
deadlocks, an NP-hard problem (Lemma. 4.3). This also
leads to similar success rates of PP+ and DBS.

6.2 Delay Tolerance
We next show that OTIMAPP solutions (if found) are useful
in a simulated environment with stochastic delays of agents’
moves built on conventional MAPF, called MAPF-DP (with
Delay Probabilities) [Ma et al., 2017]. Given a graph and
start-goal pairs for each agent, the aim of MAPF is to move
agents to their goals without collisions. Collisions occur
when two agents occupy the same vertex or traverse the

|A| = 35 p̄ = 0.2 p̄ = 0.5 p̄ = 0.8

MCPs+ECBS 1015 (1004,1026) 1422 (1404,1440) 2551 (2507,2596)

Causal-PIBT 986 (976,995) 1238 (1225,1250) 1841 (1816,1866)

OTIMAPP 941 (931,951) 1178 (1165,1190) 1730 (1707,1752)

p̄ = 0.5 |A| = 20 |A| = 40 |A| = 60

MCPs+ECBS 724 (711,736) 1698 (1678,1716) 2938 (2911,2964)

Causal-PIBT 662 (653,671) 1466 (1453,1479) 2425 (2405,2444)

OTIMAPP 639 (631,648) 1395 (1383,1408) 2328 (2311,2345)

Table 2: Total traveling time on MAPF-DP. All settings used
random-32-32-10. For each setting, we first picked up 10 instances
that OTIMAPP solutions were found by PP+. For each instance and
approach, we then performed 50 trials while changing the random
seed. Thus, the scores are means on 500 executions, accompanied
with 95% confidence intervals. upper: Results of changing p̄ while
fixing |A|. lower: Results of changing |A| while fixing p̄. Note that
the probability that someone delays increases with more agents.

same edge simultaneously. Time is discrete. All agents syn-
chronously take actions, i.e., either move to an adjacent ver-
tex or stay at the current location. MAPF-DP emulates the
imperfect execution of MAPF by introducing the possibility
pi of unsuccessful moves for agent i (remaining there).

Setup The delay probabilities pi were chosen uniformly
at random from [0, p̄], where p̄ is the upper bound of pi.
The higher p̄ means that agents delay often, and vice versa.
The metric is the total traveling time of agents; smaller val-
ues mean less wasting time at runtime. We tested the fol-
lowing two as baselines: (1) MCPs [Ma et al., 2017] force
agents to preserve order relations of visiting one vertex in
an offline MAPF plan at runtime. The plan was obtained by
ECBS [Barer et al., 2014]. (2) Causal-PIBT [Okumura et al.,
2021] is online time-independent planning, that is, each agent
repeats one-step planning and action adaptively to surround-
ing current situations. The other details are in the Appendix.

Result Table 2 shows that the execution of OTIMAPP so-
lutions outperforms the alternatives. This is because: (1) Un-
like MCPs, OTIMAPP solutions are free from temporal de-
pendencies of offline plans that one agent delays are possibly
fatal. (2) Unlike Causal-PIBT, agents follow long-term plans
and avoid possible congested locations.

Discussion Although finding OTIMAPP solutions is chal-
lenging, Table 2 motivates us to compute them. Meanwhile,
the other approaches can solve larger instances with more
agents (e.g., |A| = 200) and with much smaller planning time
than solving OTIMAPP. Moreover, there are situations where
OTIMAPP has no solutions while the others can find feasible
plans because OTIMAPP assumes no intervention at runtime.
One future direction pursues to fill these gaps.

6.3 Robot Demonstrations
We present two OTIMAPP execution styles: (1) a centralized
control using the toio robots (https://toio.io) and (2) a decen-
tralized one with only local interactions using a multi-robot
platform [Kameyama et al., 2021]. A solution was obtained
by DBS. Figure 7 is snapshots. A video is available online.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4654

https://toio.io

Figure 7: An OTIMAPP execution with 10 robots in an 8 × 8 grid.
Colored arrows represent an OTIMAPP solution.

In both cases, robots move without any synchronization pro-
cedures but are ensured to eventually reach their goals thanks
to the nature of OTIMAPP. Moreover, for the latter, any ac-
tor has no methods to know the entire configuration, which
cannot be addressed by conventional execution strategies.

7 Related Work

A deadlock [Coffman et al., 1971] is a widely recognized
phenomenon not limited to robotics; a system state that
several components claim resources that others hold, then
block each other permanently. Strategies to cope with dead-
locks are categorized into prevention, detection/recovery, and
avoidance [Silberschatz et al., 2006; Fanti and Zhou, 2004];
OTIMAPP is prevention. A non-deadlock state that is “in-
evitable” to reach deadlocks is called unsafe [Silberschatz et
al., 2006]. Meanwhile, reachable deadlocks of OTIMAPP
correspond to states that are “possible” to reach deadlocks.
The notion of potential terminal deadlock is related to well-
formed instances of MAPF [Čáp et al., 2015], that is, for each
start-goal pair, a path exists that traverses no other starts and
goals. The notion of reachable cyclic deadlock is mentioned
as nonlive states/sets for deadlock management in automated
manufacturing systems [Fanti and Zhou, 2004] or in a multi-
robot scheduling problem [Mannucci et al., 2021].

The multi-agent pathfinding (MAPF) problem [Stern et
al., 2019] aims at finding a set of collision-free paths on a
graph. Many studies on MAPF consider timing uncertainties
because they are inevitable in multi-agent scenarios. How-
ever, current methods largely rely on additional assumptions
on the travel speed of agents or assume delays to follow
some probability distributions [Wagner and Choset, 2017;
Mansouri et al., 2019; Peltzer et al., 2020; Atzmon et al.,
2020a]. Failing to represent the inherent uncertainty in the
domain means the system behavior can be unpredictable.
Alternative approaches are online intervention during exe-
cution, e.g., forcing agents to preserve temporal dependen-
cies of offline planning via communication [Ma et al., 2017;
Hönig et al., 2019; Atzmon et al., 2020b]. Another direction
is online time-independent planning [Okumura et al., 2021]
that incrementally moves agents based on current situations.
OTIMAPP shares the concept of time independence but aims
at offline planning without or less runtime effort.

In graph theory, the (vertex) disjoint path problem and its
variants [Robertson and Seymour, 1985] are partly related to
ours in the sense that a set of disjoint paths clearly satisfies
the solution condition of OTIMAPP, but the reverse does not.

8 Conclusion
This paper studied a novel path planning problem called
OTIMAPP, motivated by the nature of distributed environ-
ments (i.e., timing uncertainties) that multi-agent systems
must address. We focused on robotic applications in evalu-
ation but believe that OTIMAPP can be leveraged to other
resource allocation problems with mutual exclusion, e.g, dis-
tributed databases, which is our future direction.

Acknowledgments
We thank the anonymous reviewers for their many insightful
comments and suggestions. This work was partly supported
by JSPS KAKENHI Grant Numbers 20J23011, 21K11748,
and 21H03423. Keisuke Okumura thanks the support of the
Yoshida Scholarship Foundation.

References
[Atzmon et al., 2020a] Dor Atzmon, Roni Stern, Ariel Fel-

ner, Nathan R Sturtevant, and Sven Koenig. Probabilistic
robust multi-agent path finding. In Proceedings of Interna-
tional Conference on Automated Planning and Scheduling
(ICAPS), 2020.

[Atzmon et al., 2020b] Dor Atzmon, Roni Stern, Ariel Fel-
ner, Glenn Wagner, Roman Barták, and Neng-Fa Zhou.
Robust multi-agent path finding and executing. Journal of
Artificial Intelligence Research (JAIR), 2020.

[Barer et al., 2014] Max Barer, Guni Sharon, Roni Stern,
and Ariel Felner. Suboptimal variants of the conflict-based
search algorithm for the multi-agent pathfinding problem.
In Proceedings of Annual Symposium on Combinatorial
Search (SOCS), 2014.

[Čáp et al., 2015] Michal Čáp, Peter Novák, Alexander
Kleiner, and Martin Seleckỳ. Prioritized planning al-
gorithms for trajectory coordination of multiple mobile
robots. IEEE Transactions on Automation Science and En-
gineering (T-ASE), 2015.

[Coffman et al., 1971] Edward G Coffman, Melanie Elph-
ick, and Arie Shoshani. System deadlocks. ACM Com-
puting Surveys (CSUR), 1971.

[Dresner and Stone, 2008] Kurt Dresner and Peter Stone. A
multiagent approach to autonomous intersection manage-
ment. Journal of Artificial Intelligence Research (JAIR),
2008.

[Erdmann and Lozano-Perez, 1987] Michael Erdmann and
Tomas Lozano-Perez. On multiple moving objects. Al-
gorithmica, 1987.

[Fanti and Zhou, 2004] Maria Pia Fanti and MengChu Zhou.
Deadlock control methods in automated manufacturing
systems. IEEE Transactions on systems, man, and
cybernetics-part A: systems and humans, 2004.

[Hönig et al., 2019] Wolfgang Hönig, Scott Kiesel, Andrew
Tinka, Joseph W Durham, and Nora Ayanian. Persistent
and robust execution of mapf schedules in warehouses.
IEEE Robotics and Automation Letters (RA-L), 2019.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4655

[Kameyama et al., 2021] Shota Kameyama, Keisuke Oku-
mura, Yasumasa Tamura, and Xavier Défago. Active mod-
ular environment for robot navigation. In Proceedings of
IEEE International Conference on Robotics and Automa-
tion (ICRA), 2021.

[Knapp, 1987] Edgar Knapp. Deadlock detection in dis-
tributed databases. ACM Computing Surveys (CSUR),
1987.

[Ma et al., 2017] Hang Ma, TK Satish Kumar, and Sven
Koenig. Multi-agent path finding with delay probabilities.
In Proceedings of AAAI Conference on Artificial Intelli-
gence (AAAI), 2017.

[Mannucci et al., 2021] Anna Mannucci, Lucia Pallottino,
and Federico Pecora. On provably safe and live multirobot
coordination with online goal posting. IEEE Transactions
on Robotics (T-RO), 2021.

[Mansouri et al., 2019] Masoumeh Mansouri, Bruno Lac-
erda, Nick Hawes, and Federico Pecora. Multi-robot plan-
ning under uncertain travel times and safety constraints.
In Proceedings of International Joint Conference on Arti-
ficial Intelligence (IJCAI), 2019.

[Nebel, 2020] Bernhard Nebel. On the computational com-
plexity of multi-agent pathfinding on directed graphs. In
Proceedings of International Conference on Automated
Planning and Scheduling (ICAPS), 2020.

[Okumura et al., 2021] Keisuke Okumura, Yasumasa
Tamura, and Xavier Défago. Time-independent planning
for multiple moving agents. In Proceedings of AAAI
Conference on Artificial Intelligence (AAAI), 2021.

[Peltzer et al., 2020] Oriana Peltzer, Kyle Brown, Mac
Schwager, Mykel J Kochenderfer, and Martin Sehr. Stt-
cbs: A conflict-based search algorithm for multi-agent
path finding with stochastic travel times. 2020.

[Robertson and Seymour, 1985] Neil Robertson and Paul D
Seymour. Disjoint paths—a survey. SIAM Journal on Al-
gebraic Discrete Methods, 1985.

[Sharon et al., 2015] Guni Sharon, Roni Stern, Ariel Felner,
and Nathan R Sturtevant. Conflict-based search for opti-
mal multi-agent pathfinding. Artificial Intelligence (AIJ),
2015.

[Silberschatz et al., 2006] Abraham Silberschatz, Peter B
Galvin, and Greg Gagne. Operating system concepts. John
Wiley & Sons, 2006.

[Silver, 2005] David Silver. Cooperative pathfinding. AIIDE,
2005.

[Stern et al., 2019] Roni Stern, Nathan Sturtevant, Ariel Fel-
ner, Sven Koenig, Hang Ma, Thayne Walker, Jiaoyang
Li, Dor Atzmon, Liron Cohen, TK Kumar, et al. Multi-
agent pathfinding: Definitions, variants, and benchmarks.
In Proceedings of Annual Symposium on Combinatorial
Search (SOCS), 2019.

[Tel, 2000] Gerard Tel. Deadlock-free packet switching. In
Introduction to distributed algorithms, chapter 5. 2000.

[Van Den Berg et al., 2011] Jur Van Den Berg, Stephen J
Guy, Ming Lin, and Dinesh Manocha. Reciprocal n-body
collision avoidance. In Robotics Research. 2011.

[Wagner and Choset, 2017] Glenn Wagner and Howie
Choset. Path planning for multiple agents under uncer-
tainty. In Proceedings of International Conference on
Automated Planning and Scheduling (ICAPS), 2017.

[Wurman et al., 2008] Peter R Wurman, Raffaello
D’Andrea, and Mick Mountz. Coordinating hun-
dreds of cooperative, autonomous vehicles in warehouses.
AI magazine, 2008.

[Zhang et al., 2018] Xu Zhang, Mingyang Li, Jian Hui Lim,
Yiwei Weng, Yi Wei Daniel Tay, Hung Pham, and Quang-
Cuong Pham. Large-scale 3d printing by a team of mobile
robots. Automation in Construction, 2018.

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

4656

	Introduction
	Problem Definition
	Solution Analysis
	Computational Complexity
	Finding Solutions
	Verification

	Solvers
	Detection of Potential Deadlocks
	Prioritized Planning (PP)
	Deadlock-based Search (DBS)

	Evaluation
	Stress Test
	Delay Tolerance
	Robot Demonstrations

	Related Work
	Conclusion
	Proof of Solution Analysis
	Proofs of Computational Complexity
	Detecting Potential Cyclic Deadlocks
	Proof of DBS
	Stress Test on Random Graphs
	Details of Experimental Setup
	Implementation of DBS
	Setup of MAPF-DP
	Setup of Robot Demonstrations
	Centralized Execution
	Decentralized Execution

