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Abstract

Margin has played an important role on the design
and analysis of learning algorithms during the past
years, mostly working with the maximization of the
minimum margin. Recent years have witnessed the
increasing empirical studies on the optimization of
margin distribution according to different statistics
such as medium margin, average margin, margin
variance, etc., whereas there is a relative paucity of
theoretical understanding.

In this work, we take one step on this direction
by providing a new generalization error bound,
which is heavily relevant to margin distribution by
incorporating ingredients such as average margin
and semi-variance, a new margin statistics for the
characterization of margin distribution. Inspired by
the theoretical findings, we propose the MsvMav,
an efficient approach to achieve better performance
by optimizing margin distribution in terms of its
empirical average margin and semi-variance. We
finally conduct extensive experiments to show the
superiority of the proposed MsvMav approach.

1 Introduction

Margin has played an important role on the design of learning
algorithms from the pioneer work [Vapnik, 1982], which
proposed the famous Support Vector Machines (SVMs) by
maximizing the minimum margin, i.e. the smallest distance
from the instances to the classification boundary. Boser et
al. [1992] introduced the kernel technique for SVMs to relax
the linear separation. Large margin has been one of the most
important principles on the design of learning algorithms in
the history of machine learning [Cortes and Vapnik, 1995;
Schapire et al., 1998; Rosset et al., 2003; Shivaswamy and
Jebara, 2010; Ji et al., 20211, even for recent deep learning
[Sokolié et al., 2017; Weinstein et al., 2020].

Various margin-based bounds have been presented to
study the generalization performance of learning algorithms.
Bartlett and Shawe-Taylor [1999] possibly presented the first
generalization margin bounds based on VC dimension and
fat-shattering dimension. Bartlett and Mendelson [2002]
introduced the famous margin bounds based on Rademacher
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complexity, a data-dependent and finite-sample complexity
measure. Kabén and Durrant [2020] took advantage of geo-
metric structure to provide margin bounds for compressive
learning. Grgnlund er al. [2020] presented the near-tight
margin generalization bound for SVMs. Margin has also
been an ingredient to analyze the generalization performance
for other algorithms such as boosting [Schapire et al., 1998;
Breiman, 1999; Gao and Zhou, 2013], and deep learning
[Bartlett ef al., 2017; Wei and Ma, 2020].

Margin distribution has been considered as an important
ingredient on the design and analysis of learning algorithms,
and the basic idea is to optimize some margin statistics,
relevant to the whole margin distribution rather than single
margin. Garg and Roth [2003] introduced the model com-
plexity measure to optimize margin distribution. Pelckmans
et al. [2007] optimized margin distribution via average mar-
gin, while Aiolli et al. [2008] tried to maximize the minimum
margin and average margin. Zhang and Zhou [2014] pro-
posed the large margin distribution machine by considering
average margin and margin variance simultaneously, which
motivates the design of a series learning algorithms on the
optimization of margin distribution [Cheng et al., 2016;
Rastogi et al., 2020]. For deep learning, Jiang et al. [2019]
introduced some margin distribution statistics, such as total
variation, median quartile, etc., to analyze the generalization
of neural networks. There is a relative paucity of theoretical
understanding on how to correlate margin distribution with
the generalization of learning algorithms.

This work tries to fill the gap between theoretical and
empirical studies on the optimization of margin distribution,
and the main contributions can be summarized as follows:

e We present a new generalization error bound, which is
heavily relevant to margin distribution by incorporating
factors such as average margin and semi-variance. Here,
semi-variance is a new statistics, counting the average
of squared distances between average margin and the
instances’ margin, that is smaller than average margin.

* Motivated from our theoretical result, we develop the
MsvMav approach, which tries to achieve better gener-
alization performance by optimizing margin distribution
in terms of empirical average margin and semi-variance.
We find the closed-form solution in optimization, and
improve its efficiency via Sherman-Morrison formula.
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* We conduct extensive empirical studies to validate the
effectiveness of the MsvMav approach in comparisons
with the state-of-the-art algorithms on large-margin or
margin distribution optimization.

The rest of this paper is organized as follows. Section 2
introduces some preliminaries. Section 3 presents theoretical
analysis. Section 4 proposes the MsvMav approach. Section 5
conducts extensive empirical studies, and Section 6 concludes
with future work.

2 Preliminaries

Let ¥ € R?and Y = {+1,—1} denote the instance and
label space, respectively. Suppose that D is an underlying
(unknown) distribution over the product space X x ). Let

Sﬂ = {<w1’y1)7 (w27y2)7 e ’<wnayn)}

be a training sample with each element drawn independently
and identically (i.i.d.) from distribution D. We use Prp|[-] and
Ep[] to refer to the probability and expectation according to
distribution D, respectively.

Let H = {h: X — [—1,41]} be a function space. We
define the classification error (or generalization risk) with
respect to function h € H and distribution D, as

&(h) = Prp|sgn[h(x)] # y| = Ep[llyh(z) < 0],

where the sign function sgn[-] returns +1, 0 and —1 if the
argument is positive, zero and negative, respectively, and the
indicator function I[-] returns 1 when the argument is true,
and O otherwise.

Given an example (x, y), the margin of h € H is defined as
yh(x), which can be viewed as a measure of the confidence
of the classification. We further define the average margin of
h € H over distribution D as

On = Ezy)~plyh(z)] . ()

We also introduce the empirical Rademacher complexity
[Bartlett and Mendelson, 2002] to measure the complexity of
function space H as follows:

where each o; is a Rademacher variable with Pr[o; = +1] =
Pr{o; = —1] =1/2fori € [n].

We finally introduce some notations used in this work.
Write [d] = {1,2,...,d} for integer d > 0, and (w,x)
represents the inner product of w and x. Let I; be the
identity matrix of size d x d, and denote by ' the transpose
of vectors or matrices. For positive f(n) and g(n), we write
f(n) =0(g(n)) if g(n)/f(n) — cfor constant ¢ < +o0.

3 Theoretical Analysis
We begin with the squared margin loss as follows:

Definition 1. For 8 > 0, we define the squared margin loss
Ly with respect to function h € H as

lo(h, (.y)) = [(1 —yh(z)/0),]”

where (a)+ = max(0, a).
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This is a simple extension from the traditional margin
loss [Bartlett and Mendelson, 2002], while we consider
the squared loss and unbounded constraint for the negative
yh(x). The margin parameter 6 is generally irrelevant to
learned function h and data distribution in most previous
theoretical and algorithmic studies.

In this work, we select margin parameter 6 as the average
margin when 8, > 0, to correlate generalization performance
with margin distribution, that is,

0 =0n = Ep[yh(z)],

which is dependent on data distribution and learned function.
Given training sample S,,, we try to learn a function h by
minimizing the squared margin loss as follows:

2
. 1 yih(x;)
heH: B0 EZ l(l o, )—i-] ' @

=1

For simplicity, we further introduce the notion of margin
semi-variance [Markowitz, 1952] as follows:

Definition 2. Given function h € H and training sample Sy,
we define the margin semi-variance as
1 & 2
SV(h) = — > [(0n = yi()) ]

i=1
where 0}, denotes the average margin defined by Egn. (1).

The margin semi-variance essentially counts the average of
squared deviation between average margin and the margins
yi;h(x;), which are smaller than average margin. This yields
an equivalent expression for Eqn. (2) as follows:

. 2
nerlid, o ISVIN/O0}
that is, optimizing the squared margin loss with parameter
0 = 60}, is equivalent to minimizing margin semi-variance and
maximizing average margin simultaneously.

For most real applications, we could learn some relatively-
good functions from sufficient training data. Motivated from
the notion of weak learner in boosting [Freund and Schapire,
19961, we formally define the set of relatively-good functions
for function space H as follows:

H, ={h € H,0, > v} for some small constant v > 0.

Essentially, a relatively-good function is similar to a weak
learner, which achieves slightly better performance than the
randomly-guessed classifier.

We now present the main theoretical result as follows:

Theorem 1. For small constant v > 0, let H be a function
space with relative-good set H,,. For any § € (0,1) and for
every h € H,, the following holds with probability at least
1 — § over the training sample S,

R, (H,) 1 4n
— In =
+O< 67 + m 5) ’

with empirical Rademacher complexity R, (H,) < R (H).

Sv(h)
£ <



Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

This theorem presents a new generalization error bound,
which is heavily relevant to margin distribution by incorpo-
rating factors such as average margin and semi-variance. This
could shed some new insights on the design of algorithms on
the optimization of margin distribution as shown in Section 4.

The proof follows the empirical Rademacher complexity
[Bartlett and Mendelson, 2002], while the challenge lies in
the distribution-dependent average margin 6,. We solve it by
constructing a sequence of intervals for average margin 6,
and the detailed proof is presented in [Qian et al., 2022].

It remains to study the empirical Rademacher complexity
in Theorem 1, and we focus on linear and kernel functions.
For instance space X = {z € R?: ||z|| < r} and linear
function space H = {h(z) = w x: |[w| < A}, let H,
denote the set of relatively-good classifiers. We upper bound
the empirical Rademacher complexity as

ﬁsn (Ho) < 9?{5" (H) <rA/vn

from the work of [Shalev-Shwartz and Ben-David, 2014]. For
kernel function «(-, -), we have the kernel function space

H= {h(w) = iam(mi,w) z": a;ajr(xq, ;) < A2}.

ij=1
We could upper bound the empirical Rademacher complexity
for kernel functions, from [Bartlett and Mendelson, 2002],

(o)

It is also noteworthy that the average margin 6}, is unknown
on the design of new algorithms because of the unknown
distribution D, and we resort to the empirical average margin
from training sample .S,, in practice.

~

Rs, (M) < Rs, (H) <

n

4 The MsvMAv Approach

Motivated from Theorem 1, this section develops the MsvMav
approach on the optimization of margin distribution, and we
focus on linear and kernel functions.

4.1 Linear Functions

For linear space H = {hy(x) = (w,x): |w| = 1} and
training sample .S;,, we have the empirical average margin

1 n
w =~ Z;yi<w7wi>
1=

For simplicity, we omit a bias term on the design of algorithm,
and we will augment w and instance  with bias term b and
1 in experiments, respectively, as shown in Section 5. Our
optimization problem can be formally written as

min ~ 3
lwllz=1 Ow
where empirical average margin 0 > 0 and empirical mar-

gin semi-variance SV(w) = 3.1, [(Bw — vi(w, x;))1]?/n.
Obviously, this is a non-convex optimization problem, and
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we would optimize the empirical margin semi-variance and
average margin alternatively.

Initialize the linear function wy by optimizing empirical
average margin, that is,

yz w, mz
wy = arg max

lwl3=1 =1

Z”Znyiw? —, ©)

i=1 Yizi |2

where we solve w from its dual problem using Lagrangian
function, and the details are given by Qian et al. [2022].

Optimization of Empirical Margin Semi-variance
In the k-th iteration (k > 1) with previous classifier wy_1,
we first calculate the empirical average margin 0,,, , as

1 n
= ﬁ;yﬂwmhfﬂﬁ . €]

We then introduce the minimization of empirical margin
semi-variance as follows:

min{zn: [(éwkfl - y;<W,$i>)+]2

w
=1

+ il — w3},

where [ is a proximal regularization parameter. We now
introduce the following index set, to present a closed-form
solution for the above minimization,

A = {it yi(wi—1,2:) < Oy, for i€ n]}, (5

i.e., the index set of instance with margins below the empiri-

cal average margin 6,,, ,. We can rewrite the minimization
of empirical margin semi-variance as

— ))2
mln{ Z (ewkfl i7,<’U),-'BZ>) +6k Hw _ wk—l”; } ]

w
i€EA

Denote by 'w; the minimizer of the above problem, and we
obtain the closed-form solution for wy, as follows

(fa+ > nﬁk) ( TRPIILELS D) ©

One problem is to calculate the inverse in Eqn. (6), which
takes O(d?) computational costs (d is dimensionality). This
remains one challenge to deal with high-dimensional tasks.

We now present an efficient method to calculate of the
inverse in Eqn. (6). For simplicity, we denote by

Mk - (Id + ZiEAk

and it is easy to derive the following recursive relation:

] T
Z m;mﬂz + Z m;;gz ,

iEAkfl\Ak ’L‘E.Ak\.Akfl

1
miw?/nb’k) for k=1,2,---,

Mt =M -

with My = I,.
We calculate M, efficiently from Mj,_; and Sherman-
Morrison formula [Sherman and Morrison, 1950]. In other



Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

Algorithm 1 The MsvMav Approach
Input: Training sample .S,,, iteration number 7', and proximal
parameters «j, and S
Output: w
1: Initialize My = I, Ag = () and wq by Eqn. (3)
2: fork=1,2,---,T do
3:  Compute empirical average margin O ., by Eqn. (4)
4:  Solve the index set Ay by Eqn. (5)
5

(Id + EiEAk azia:;r/nﬁk)_l by

Compute M =
Eqns. (7) and (8)

6:  Compute the minimizer wj, for empirical margin semi-
variance by Eqn. (9)

7:  Solve the empirical average margin maximizer wy, by
Eqn. (10), and normalize wy, = wg/ |wg||,

8: end for

9: return w = wr

words, we initialize M’ = Mj_,, and make the following
updates iteratively, based on Sherman-Morrison formula,

M'x;x] M’

M =M — =TT g i A\ A, (T
o Mz —ngy, O €A VA ()
Mzl M’

M = M — Lit; for i€ A\ Ap_1. (8)

:ciTM’:Bi + nP

We then obtain M}, = M’, and the minimizer of empirical
margin semi-variance is given by

0
/:M/( Wk —1 T _)' 9
Wy, "B Zyic + Wi 1 ©))
1€EA
Optimization of Empirical Average Margin

We now study the maximization of empirical average margin,
which can be formalized as:

. 1 2
wg = argurjmn{ - E;ydwﬁﬁ + ag Hw - wchz }»
i=

where o, is a proximal regularization parameter. It is easy to
obtain the closed-form solution as follows:

1 n
wy, = wy, + Yo > i (10)
i=1

We obtain wy, = wy,/||wy]| in the k-th iteration. Algorithm 1
presents a detailed description of our MsvMav approach.

4.2 Kernelization

This section focuses on kernel mapping ¢ : X — H for
Hilbert space H, we consider h(x) = (w, ¢(x)) withw € H
and ¢(x) € H. The optimization problem is given by

_ (SV(w)
Hi},n{ O }

where average margin 0, = S yilw, () /n > 0, and
margin semi-variance

n

SV(w) = %Z [(éw - yi<w,¢<wi>>)+r .

i=1
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Figure 1: Cumulative frequency versus margin of our MsvMav and
other algorithms such as SVM, ODM and FMM. The more right the
curve, the better the margin distribution.

It is intractable to solve such optimization problem directly
because of high or even infinity dimensionality. According to
Representer theorem [Scholkopf er al., 2002], we first have

w* = > a;¢(x;), spanned by {¢p(x;),i € [n]} with
coefficients ay, - - - , a,. This follows the prediction

h(ﬂl‘) - <w,¢(m)> = Zai/{(mami) )

where k(-,-) denotes the kernel function. For simplicity,
denote by @ = (a1, a2, -+ ,a,) ", and write the gram matrix
of instances in .S,, as

K = (K17K27. o 7Kn) = (Kl)nxn = (H(wi,il,'j))an,

where K; denotes the k-th column of matrix K. Hence, our
optimization problem can be further rewritten as

wl 2[00 e (52

where the empirical average margin 6, = | y;(K;,a)/n
and semi-variance SV (a) = Y7 [(0a — v (K, a))4]?/n.

We first initialize the classifier @y by maximizing the
empirical average margin as follows:

1 n
= = E (K, }
ag argmax{n yi(K;, a)

a’ Ka=1 i—1

In the k-th iteration with previous classifier a1, we min-
imize the margin semi-variance based on previous average

margin 0q, ,. We write

I+K — ((a—ap—1)" (I, +K) (a*ak—l))lﬂ ,

and the optimization problem can be given by

la—ai—|

. " (Bay_, — vi(Ki,a)) 4]
mam{;[( yn( )+

+5k|\a—ak71||i+x}a
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Dataset MsvVMAv SVM SVR LSSVM ODM MAMC FMM
advertise  .9837£.0015 .9823+.0021e .9825+.0024e .9819+.0019e¢ .9701£.0021e .9132+.0007e¢ .9799+.0025e
australian  .83144.0079 .8167£.0077e .8171+£.0048e .8220+.0036e .8104+.0065e .7700+.0201e  .8295+.0100

bibtex 74174+.0040 .7378+.0069e .74694.00600 .7478+.00460 .7469+.00530 .6689+.0123e .7371£.0062e
biodeg .8712+.0087  .8741£.0068 .8490+.0107e¢  .8741£.0068  .8681+.0075 .6872+.0000e .8613£.008%e
breastw  .9730+£.0038 .9725+.0041 .9701+£.0051e .9684+.0051e .8428+.0099e .4088+.0000e .9720+.0063
diabetes  .7530+.0088 .7561+.0104 .7478+.0077e .74914£.0078e .6110+.0146e .5974+.0000e .7496+.0082
emotions  .8216+.0074 .7983+.0130e .7675+.0181e .8036+.0127e .8084+.0111e .6975+.0000e .7697+.0218e
german  .7518+.0097 .7457+.0095e  .7525+.0107  .7530+.0106  .7502+£.0095 .6800+.0000e  .7525+.0102
halloffame .9644+£.0025 .9617+.0047e¢ .9593+.0041e .9617+.0047e¢ .9620£.0028e .9280+.0000e .9598+.0036e
hill-valley .7771£.0631 .5972£.0195e .6999+.0572e .59724.0195e¢ .8898+.00790 .5000+£.0000e .8526=£.02960
kel .8713+£.0025 .8711+.0039  .8642+.0026e  .8711+£.0039  .8690+.0035e .8649+.0000e .8701+£.0028e
parkinsons .9222+.0277 .8923+.0388e  .93424.0315 .9444+.03380 .8863£.0342e .7949+.0000e .8932+.0266e
pbcseq .66261+.0074 .6439+.0147e  .6595£.0104 .65551+.0104e .6562+.0125e .6700+£.01870 .6549+.0117e
sleepdata  .6925+.0056 .6743£.0051e .6833+.0064e .6712+.0124e .5691£.0156e .5659+.0000e .6833+.0047e
students ~ .8957+.0062 .8913+.0088e .8870+.0064e .8867+.0069e¢ .8893+.0046e .51331+.0129e¢ .8898+.0040e
titanic .7658+.0038 .7636+.0000e .7636+.0000e .7636+.0000e .7509+.0211e .6386£.0000e .7636=£.0000e
tokyol .93514+.0040 .93074.0031e  .93374.0027e .9281+.0054e .9248+.0053e .7523+.0534e  .9363+.0037
vehicle  .9708£.0057 .9422+.0473e .9746£.00310 .9748+.0034c .9720£.0061 .7041+.0000e  .9718+.0083
vertebra  .81944+.0197 .7978+.0149e .7731+.0144e .77531+.0131e .7957+.0105e¢ .7581+£.0000e .7763£.0100e
wdbc 9778+.0067 .9787+£.0084 .9725+.0030e .9696+.0044e .9237+.0094e .5398+.1287e .9655+.0064e
a%a .84331+.0009 .8417£.0007e .84031.0007e .8358+.0006e  .84304.0012 .7577+£.0000e .8390£.0012e
acoustic  .7494+.0011 .7321£.0037e .73944.0004e N/Ae .7406+£.0023e  .7206£.0055e .7402=£.0005e
bank .90574.0004 .8960£.0008e .90154.0004e N/Ae .9021+£.0006e  .8854+£.00000 .9021£.0005e
eurgbp .53324+.0027 .5042+.0061e  .53174.0028e N/Ae S5111+£.0084e  .4985+.0000e .5288+.0028e
jml .8125+.0015  .8132+.0012  .8119£.0016  .8123+.0015 .8065+£.0000e .8065+.0000e .8076=£.0010e
magic 7998+.0005 .7976+.0012e  .7928+.0008e .79124.0009e .7943+.0007e .6514+£.0000e .7987£.0014e
nomao .9453£.0005 .94214+.0061e  .94394.0005e N/Ae .94524.0004  .7062£.0000e .94424-.0008e
phishing  .9388+.0011 .9405+.00170 .93714.0007e .9343+.0008e  .9386+.0014 .5532+.0008e .9318=£.0009e
pol .90544+.0013 .8746+.0398e  .9002+.0019e .9041+.0018e .6788+.0037e .6740+.0000e .8866+.0016e
run-walk  .7260£.0007 .7169+.0000e .7077=£.0004e N/Ae 7104+.0061e  .5431+£.0757e  .72611.0054
Win/Tie/Loss 23/6/1 24/472 23/4/3 22/6/2 29/0/1 22/7/1

Table 1: Comparisons of the test accuracies (mean=std.) on 30 datasets. e /o indicates that our MSVMAv approach is significantly better/worse
than the corresponding algorithms (pairwise t-tests at 95% significance level). ‘N/A’ indicates that LSSVM does not return results on the data

set within 12 hours.

where (), is a proximal regularization parameter. We intro-
duce the index set Ay, = {i: y;(K;,a) < 0q,_, fori € [n]},
and obtain the empirical margin semi-variance minimizer

=

az. = M, ((K + In)ak—l + éa; Z
i€AL

where we use the Sherman-Morrison formula to calculate

-1

I{Z-I{»—r

Mk(Z i +K+In> .
€A n

We finally maximize the empirical average margin based
on the following optimization problem:

1 n
min{ - = ZyZ-(Ki,ak) + ag(ay —a}) " K(ay, — a%)},
(273 n P

where o is a proximal regularization parameter, and it is
easy to get the closed-form solution as follows:

T

ap = a;c + [ylay27 tee 7yn] /ZOZkTL .

We get the final a;, = ay/|lax| x in the k-th iteration.

S Empirical Study

In this section, we present extensive empirical studies to
verify the effectiveness of our proposed MsvMav approach.
We consider 30 datasets, including 20 regular and 10 large-
scale datasets. The number of instances varies from 208
to 88588 while the feature dimensionality ranges from 2 to
1836, covering a wide range of properties. The statistics for
all datasets can be found in [Qian et al., 2022].

We compare our proposed MsvMav approach with state-
of-the-art algorithms on large-margin and margin distribution
optimization: 1) SVM [Boser er al., 1992], 2) SVR [Drucker
et al., 1997] with binary targets, 3) LSSVM [Suykens et al.,
20021, 4) MAMC [Pelckmans et al., 20071, 5) ODM [Zhang
and Zhou, 20191, 6) FMM [Ji et al., 2021]. The details of
compared algorithms can be found in [Qian et al., 2022].

For each dataset, we scale all features into the interval
[0, 1], and augment each instance & with constant 1 for the
bias of linear model. The empirical average margin 6.,
may be smaller than zero in experiments, when the proximal
regularization parameter [y, is set too small. In such case, we
take the opposite model —w so as to keep the positiveness of
empirical average margin.

For our MsvMav approach, parameters ay, and [y are set

3391
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Dataset MSsvMAv SVM SVR LSSVM ODM MAMC FMM
advertise  .9837+£.0014 .9820+£.0023e  .98351+.0019 .9848+.00160 .9838+£.0016 .9547+.0026e .9810+.0028e
australian  .85804.0078 .8225+.0087e .8210+.0080e .8357+.0111e .8329+.0088e .8302+.0122e .8237+.0060e

bibtex .75544.0036  .7506+.0050e .7508+.0053e .7505+.0056e .75704.0045 .6714+£.0397e .7509+£.0050e

biodeg .8834+.0081 .8687+.0115e .8580+.0089e .8712+.0093e  .8845+.0095 .8559+.0098e .8915=£.00960
breastw  .9783+.0013 .9710+.0013e .9703+.0050e .9713+.0018e .9710+.0013e .97744.0022e .9710£.0013e
diabetes  .7576+.0074 .7574+.0094 .7502+.0096e .7411+.0112e .7504+.0082e .6779+.0197e .7385£.0105e
emotions  .7986+.0122 .7899+.0156e .7756+.0164e .8115+.01240 .8101+.01470 .79524+.0120 .8078+.01260
german  .7465+.0099 .7443+.0096 .7198+.0174e .7353+.0143e .7285+.0156e .7198+.0154e .7277+.0127e
halloffame .9677+£.0025 .96254.0020e .9578+.0053e .9523+.0060e .9617+£.0025e .9510+.0028e .9590+.0034e
hill-valley .6826+.0184 .6668+.0177e .6482+.0135e¢ .7116+.06780 .5950+.0360e .5402+.0320e .7886=£.02990
kel .8739+£.0042 .8701£.0057e .8689+.0045¢ .8703+.0044e  .8716+.0055 .8764+.00270 .8706+£.0038e
parkinsons .9573+.0223 .9282+.0203e .9393+.0193e .9393+.0224e .9385+.0157e .9214+.0174e .9402+.0167e
pbcseq 7350£.0143  .7214+.0152e  .7317£.0151  .7312+£.0165 .7269+.0221e .7076£.0149e .7238-+.0184e
sleepdata  .7407£.0129 .7192£.0105e .7211£.0061e .7037+.0083e .7050+.0083e .7055+.0056e .7182+.0094e
students  .8977£.0119 .8920+.0079e .8665+.0098e .8898+.0072e .8805+.0142e .65434.0185e  .8993+.0062
titanic 7825+.0048  .7823£.0052  .7823£.0052  .7823+.0052 .7767+£.0075e  .7823+.0052  .7823+.0052
tokyol .94061.0037 .92414.0050e  .92574.0060e .93371.0054e .9253+.0053e .9229+.0039e .9248+.0050e
vehicle  .9793£.0083  .9795+.0090 .9856£.00730 .9899+.0070c .97224+.0088e .9625+.0105e¢  .9805+4.0093
vertebra  .82804.0240 .7898+.0098e .7957+.0183e .8108+.0176e .8000+.0122e¢ .7769+.0126e0 .7962+.0153e
wdbc 9819+.0081 .9810+£.0056 .97724+.0066e  .9842+.0035  .97954+.0052 .9526+.0089e .9526=£.008%e
Win/Tie/Loss 15/5/0 16/3/1 13/3/4 14/5/1 17/2/1 14/3/3

Table 2: Comparisons of the test accuracies (mean=+std.) on 20 datasets. We use Gaussian kernel for all algorithms. /o indicates that our
MsvVMaAv approach is significantly better/worse than the corresponding algorithms (pairwise t-tests at 95% significance level).

to be constant and selected by 5-fold cross validation from
{2710 278 ... 2101 "and the width of Gaussian kernel is
chosen from {271°/d,278/d,--- ,2'0/d}. We select the
maximum iteration number 7' = 100 as a stopping criteria
for MsvMav . For SVM, SVR, LSSVM and ODM, we set
regularization parameter C' € {2710 278 ... 2101 py 5.
fold cross validation again, and the others are set according to
their respective references, also shown in [Qian et al., 2022].

We first compare the margin distributions of our proposed
MsvMav approach with other algorithms. Figure 1 illustrates
the cumulative margin distributions of different algorithms
on four datasets, and similar trends can be observed on other
datasets. As can be seen, the curves of our MsvMav approach
generally lie on the rightmost side, which shows the margin
distributions of MsvMav are generally better than that of
SVM, ODM and FMM.

We further analyze the generalization performance of our
proposed MsvMav approach with other compared algorithms.
All algorithms are evaluated by 30 times of random partitions
of datasets with 80% and 20% of data for training and testing,
respectively. The test accuracies are obtained by averaging
over 30 times. Tables 1 and 2 show the empirical results of
our MsvMav and other algorithms with linear and Gaussian
kernel functions, respectively.

From Tables 1 and 2, our proposed MsvMav approach takes
significantly better performance than other algorithms for lin-
ear and kernel functions, since win/tie/loss counts show that
our approach wins for most datasets, and rarely losses. One
intuitive explanation is that our MsvMav approach achieves
better margin distribution by maximizing the empirical aver-
age margin and minimizing empirical margin semi-variance,
as shown in Figure 1. SVM, SVR and FMM maximize
the minimum margin, which ignores the margin distribution.
LSSVM and MAMC essentially maximize average margin

only, which fails to learn from other margin statistics. ODM
takes the average margin and margin variance into consider-
ation, but the process of margin variance minimization could
constrain some large margins.

This section omits partial empirical results due to the page
limit, including the empirical curves of margin distributions,
as well as running time comparisons for our MsvMav and
other compared algorithms. Relevant results can be found
in our full work [Qian et al., 2022].

6 Conclusion

Large margin has been one of the most important principles
on the design of algorithms in machine learning, and recent
empirical studies show new insights on the optimization of
margin distribution yet without theoretical supports. This
work takes one step on this direction by providing a new gen-
eralization error bound, which is heavily relevant to margin
distribution by incorporating factors such as average margin
and semi-variance. Based on the theoretical results, we
develop the MsvMav approach for margin distribution opti-
mization, and extensive experiments verify its superiority. An
interesting future work is to exploit more effective statistics
to characterize the whole margin distribution.
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