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Abstract

Bin packing is a classic optimization problem with
a wide range of applications from load balancing to
supply chain management. In this work, we study
the online variant of the problem, in which a se-
quence of items of various sizes must be placed
into a minimum number of bins of uniform ca-
pacity. The online algorithm is enhanced with a
(potentially erroneous) prediction concerning the
frequency of item sizes in the sequence. We de-
sign and analyze online algorithms with efficient
tradeoffs between the consistency (i.e., the compet-
itive ratio assuming no prediction error) and the ro-
bustness (i.e., the competitive ratio under adversar-
ial error), and whose performance degrades near-
optimally as a function of the prediction error. This
is the first theoretical and experimental study of on-
line bin packing in the realistic setting of learnable
predictions. Previous work addressed only extreme
cases with respect to the prediction error, and relied
on overly powerful and error-free oracles.

1 Introduction

Bin packing is a classic optimization problem and one of the
original NP-hard problems. Given a set of items, each with
a (positive) size, and a bin capacity, the objective is to as-
sign the items to the minimum number of bins so that the
sum of item sizes in each bin does not exceed the bin capac-
ity. Bin packing is instrumental in modelling resource alloca-
tion problems such as load balancing and scheduling [Coff-
man et al., 1996], and has many applications in supply chain
management such as capacity planning. Efficient algorithms
for the problem have been proposed within AI [Korf, 2002;
Schreiber and Korf, 2013].

In this work, we focus on the online variant of bin packing,
in which the set of items is revealed in the form of a sequence.
Upon the arrival of a new item, the online algorithm must ei-
ther place it into one of the currently open bins, as long as this
action does not violate the bin’s capacity, or into a new bin.
The online model has several applications related to dynamic
resource management such as virtual machine placement for
server consolidation [Song ef al., 2013].

We rely on the standard framework of competitive analy-
sis for evaluating the performance of the online algorithms.
In fact, as stated in [Coffman et al., 1996], bin packing has
served as an early proving ground for this type of analysis.
The competitive ratio of an online algorithm is the worst-case
ratio of the algorithm’s cost (total number of opened bins used
by the algorithm) over the optimal offline cost (optimal num-
ber of opened bins given knowledge of all items). For bin
packing, in particular, the standard performance metric is the
asymptotic competitive ratio, in which the optimal offline cost
is unbounded (i.e., the sequence is arbitrarily long) [Coffman
et al., 1996].

While the standard online framework assumes that the al-
gorithm has no information on the input sequence, a recently
emerged, and very active direction in machine learning seeks
to leverage predictions on the input. More precisely, the al-
gorithm has access to some machine-learned information on
the input, which can be inherently erroneous, namely there
is a prediction error 1 associated with it. The objective is
to design algorithms whose competitive ratio degrades gen-
tly as the error increases. Following [Lykouris and Vassil-
vitskii, 2018], we refer to the competitive ratio of an algo-
rithm with error-free prediction as the consistency of the algo-
rithm, and to the competitive ratio with adversarial prediction
as its robustness. Several online problems have been studied
in this setting, including caching [Lykouris and Vassilvitskii,
2018; Rohatgi, 20201, non-clairvoyant scheduling [Purohit ez
al., 2018; Wei and Zhang, 2020], contract scheduling [An-
gelopoulos and Kamali, 20211, rent-or-buy problems [Baner-
jee, 2020; Anand et al., 2020; Gollapudi and Panigrahi,
2019], and time-series search [Angelopoulos et al., 2022].
See also the survey [Mitzenmacher and Vassilvitskii, 2020].

1.1 Contribution

We give the first theoretical and experimental study of on-
line bin packing with machine-learned predictions. Previous
work on this problem has either assumed ideal and error-
free predictions from a very powerful oracle, or only consid-
ered tradeoffs between consistency and robustness (see Sec-
tion 1.2). In contrast, our algorithms exploit natural, and
PAC-learnable predictions concerning the frequency at which
item sizes occur in the input, and our analysis incorporates
the prediction error into the performance guarantee. As in
other Al-related works on this problem, we assume a discrete

4574



Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

model in which item sizes are integers in [1, k], for some con-
stant k (see Section 2). This assumption is not indispensable,
and in Section 5.2 we extend to items with fractional sizes.

We first present and analyze PROFILEPACKING, which is
an algorithm of optimal consistency, but also efficient for
small prediction error. As the error grows, this algorithm may
not be robust; we show, however, that this is an unavoidable
price that any optimally-consistent algorithm with frequency
predictions must pay. We thus design and analyze a more gen-
eral class of algorithms which offers a more balanced tradeoff
between robustness and consistency.

We perform extensive experiments on our algorithms.
Specifically, we evaluate them on a variety of publicly avail-
able benchmarks, such as the BPPLIB benchmarks [Delorme
et al., 2018], but also on distributions studied in the con-
text of offline bin packing, such as the Weibull distribu-
tion [Castifieiras et al., 2012]. The results show that our algo-
rithms outperform the known, and efficient algorithms with-
out any predictions that are typically used in practice.

In terms of techniques, we rely on the concept of a pro-
file set, which serves as an approximation of the items that
are expected to appear in the sequence, given the prediction.
This is a natural concept which, perhaps surprisingly, has not
been exploited in over 50 years of previous theoretical and ex-
perimental work on this problem, and which may be further
applicable in other online packing problems, such as multi-
dimensional packing [Christensen er al., 2017] and vector
packing [Azar er al., 2013]. In fact, our online algorithms
can also serve as fast approximations to the offline problem.
In terms of the theoretical analysis, it is worth pointing out
that it is specific to the setting at hand, and treats items “col-
lectively”. In contrast, almost all known online bin packing
algorithms are analyzed using a weighting technique [Coff-
man et al., 1996], which treats each bin “individually”, and
independently from the others (by assigning weights to items,
and independently comparing a bin’s weight in the online al-
gorithm and the offline optimal solution). Last, in our experi-
ments, the prediction error is a natural byproduct of the learn-
ing phase, unlike certain other works in which the prediction
error is generated ad-hoc, and in which the error is applied to
some perfect prediction obtained by a powerful oracle.

Due to space limitations, we omit certain proofs. All omit-
ted details can be found in [Angelopoulos et al., 2021].

1.2 Related Work

Online bin packing has a long history of study. Simple al-
gorithms such as FIRSTFIT (which places an item into the
first bin of sufficient space, and opens a new bin if required),
and BESTFIT (which works similarly, except that it places the
item into the bin of minimum available capacity which can
still fit the item) are 1.7-competitive [Coffman et al., 1996].
The currently best upper bound on the competitive ratio is
1.57829 [Balogh et al., 2018], whereas the best known lower
bound is 1.54278 [Balogh et al., 2021]. The results above
apply to the standard model with no prediction on the input.
Other studies include sequential [Gyérgy er al., 2010] and
stochastic settings [Gupta and Radovanovic, 2020].

The problem has also been studied under the advice
model [Boyar et al., 2016; Mikkelsen, 20161, in which the on-
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line algorithm has access to some error-free information, and
the objective is to quantify the tradeoffs between the competi-
tive ratio and the size of this advice (in terms of bits). We em-
phasize that such studies are only of theoretical interest, not
only because the advice is assumed to have no errors, but also
because it may encode any information, with no learnability
considerations (i.e., it may be provided by an omnipotent or-
acle that knows the optimal solution).

Online bin packing was recently studied under an extension
of the advice complexity model, in which the advice may be
untrusted [Angelopoulos et al., 2020]. Here, the algorithm’s
performance is evaluated at the extreme cases in which the
advice is either error-free, or adversarially generated, namely
with respect to its consistency and its robustness, respectively.
In particular, this model is not concerned with the perfor-
mance of the algorithm on typical cases in which the predic-
tion does not fall in one of the two above extremes, does not
incorporate the prediction error into the analysis, and does not
consider the learnability of advice. In particular, even with
error-free predictions, the algorithm of [Angelopoulos et al.,
2020] has competitive ratio as large as 1.5.

[Im er al., 2021] studied a related problem under frequency
predictions, namely the online knapsack problem. In this
problem, each item has a value and a size, and the predic-
tions defined in [Im et al., 2021] provide, for each value, an
estimate of the total size of all items of that value. For the
bin packing problem (in which there is no value), our predic-
tions are precisely the size frequencies. Furthermore, such
predictions are PAC-learnable, and in our experiments they
are learned by sampling a prefix of the input. Last, in this
work, we define a clear notion of error as the L; distance be-
tween the actual and the predicted frequencies, which helps
us quantify the impact of the error on the performance. In
contrast, [Im er al., 2021] assumes that the algorithm knows
some upper and lower bounds on the predicted frequencies.

2 Online Bin Packing: Model and Predictions

We begin with some preliminary discussions related to our
problem. The input to the online algorithm is a sequence o =
ai,...,a,, where a; is the size of the i-th item in 0. We
denote by n the length of o, and by o[i, j] the subsequence of
o that consists of items with indices 7,...,j in 0.

We denote by k € Z™ the bin capacity. Note that k is inde-
pendent of n, and is thus constant. We assume that the size of
each item is an integer in [1, k], where k is the bin capacity.
This is a natural assumption on which many efficient algo-
rithms for bin packing rely, e.g., [Schreiber and Korf, 2013;
Fukunaga and Korf, 2007; Csirik et al., 2006].

Given an online algorithm A (with no predictions), we de-
note by A(o) its output (packing) on input o (i.e., the set
of bins opened by A), and by |A(c)| the number of bins in
its output. We denote by OPT(o) the offline optimal algo-
rithm with knowledge of the input sequence. The (asymp-
totic) competitive ratio of A is defined [Coffman et al., 1996]
as limy, 00 SUP,. o=y, |A(0)]/|OPT(a)].

Consider a bin b. For the purpose of the analysis, we
will often associate b with a specific configuration of items
that can be placed into it. We thus say that b is of type
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(s1,82,...,81,€), with s; € [1,k], e € [0, k] and 2221 s; +
e = k, in the sense that the bin can pack [ items of sizes
$1, ..., S, with aremaining empty space equal to e. We spec-
ify that a bin is filled according to type (s1, s, ..., s, €), if
it contains [ items of sizes sy, ..., s;, with an empty space e.
Note that a type induces a partition of & into [+ 1 integers; we
call each of the [ elements sq,...,s; a placeholder, and de-
note by 7% the number of all possible bin types. Observe that
Tk depends only on k£ and not on the length n of the sequence,
and is constant, since k is constant.

Consider an input sequence o. For any x € [1,k], let ng
denote the number of items of size x in 0. We define the fre-
quency of size x in o, denoted by f, ., to be equal to ny ,/n,
hence f;, € [0,1]. Our algorithms will use these frequen-
cies as predictions, i.e., for every x € [1, k|, there is a pre-
dicted value of the frequency of size z in o, which we denote
by fg’w. The predictions come with an error, and in general,

w0 7 fz,0- To quantify the prediction error, let fo and f/,
denote the frequencies and their predictions in o, respectively,
as points in the k-dimensional space. In line with previous
work, e.g. [Purohit et al., 2018], we can define the error 7 as
the L1 norm of the distance between f, and f.. It should
be emphasized that unlike the ideal predictions in previous
work [Angelopoulos et al., 20201, the item frequencies are
PAC-learnable. Namely, for any given e > 0 and § € (0,1}, a
sample of size O((k +1og(1/4))/e€?) is sufficient (and neces-
sary) to learn the frequencies of k item sizes with accuracy e
and error probability J, assuming the distance measure is the
L1 -distance (see, e.g., [Canonne, 2020].)

In general, the error 7 may be bounded by a value H, i.e.,
n < H. We can thus make a distinction between H-aware
and H-oblivious algorithms, depending on whether the algo-
rithm knows . Such an upper bound may be estimated e.g.,
from available data on typical sequences. Unless otherwise
specified, we will assume that the algorithm is H-oblivious.

We denote by A(o, f2) the output of A on input o and
predictions f.. To simplify notation, we will omit o when it
is clear from context, i.e., we will use f’ in place of f..

3 Profile Packing

In this section we present an online algorithm with predic-
tions f’ which we call PROFILEPACKING. The algorithm
uses a parameter m, which is a sufficiently large, but constant
integer, that will be specified later. The algorithm is based on
a the concept of a profile, denoted by Py, which is defined
as a multiset that consists of [f.m] items of size x, for all
x € [1,k]. One may think of the profile as an “approxima-
tion” of the multiset of items that is expected as input.

Consider an optimal packing of the items in Py-. Since the
size of items in P/ is bounded by £, it is possible to compute
the optimal packing in constant time [Korf, 2002]). We will
denote by pys the number of bins in the optimal packing of all
items in the profile. Note that each of these pg- bins is filled
according to a certain type that is specified by the optimal
packing of the profile. We simplify notation and use P and p
instead of Py, and py-, respectively, when f’ is implied.

We define the actions of PROFILEPACKING. Prior to serv-
ing any items, PROFILEPACKING opens p empty bins of types
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that are in accordance with the optimal packing of the profile
(so that there are [ f.m] placeholders of size x in these empty
bins). When an item of size x arrives, the algorithm will place
it into any placeholder reserved for items of size x, provided
that such one exists. Otherwise, i.e., if all placeholders for
size x are occupied, the algorithm will open another set of p
bins, again of types determined by the optimal profile pack-
ing. We call each such set of p bins a profile group. Note that
the algorithm does not close any bins at any time, that is, any
placeholder for an item of size = can be used at any point in
time, so long as it is unoccupied.

We require that PROFILEPACKING opens bins in a lazy
manner, that is, the p bins in the profile group are opened vir-
tually, and each bin contributes to the cost only after receiv-
ing an item. Last, suppose that for some size z, it is f, > 0,
whereas its prediction is f, = 0. In this case,  is not in the
profile set P. PROFILEPACKING packs these special items
separately from others, using FIRSTFIT.

3.1 Analysis of PROFILEPACKING

We first show that in the ideal setting of error-free prediction,
PROFILEPACKING is near-optimal. We will use this result in
the analysis of the realistic setting of erroneous predictions.
We denote by € any fixed constant less than 0.5. We define m
to be any constant such that m > 37.k/e.

Lemma 1. For any constant € € (0,0.5], and error-free pre-
diction (f' = f), PROFILEPACKING has competitive ratio at
most 1 + €.

Proof. Let ¢’ = ¢/3 and note that m > 7k/€¢’. Given an in-
put sequence o, denote by PP(o, f’) the packing output by
the algorithm. This output can be seen as consisting of g pro-
file group packings (since each time the algorithm allocates a
new set of p bins, a new profile group is generated). Since the
input consists of n items, and the profile has at least m items,
we have that g < [n/m].

Given an optimal packing OPT (o), we define a new pack-
ing, denoted by N, that not only packs items in o, but also
additional items as follows. N contains all (filled) bins of
OPT(0), along with their corresponding items. For every bin
type in OPT (o), we want that N contains a number of bins of
that type that is divisible by g. To this end, we addupto g —1
filled bins of the same type in N.

We can argue that | N| is not much bigger than |OPT(0)|.
We have that |[N| < |OpT(0)| + (g — 1)7 < |OPT(o)| +
nt/m < |OPT(0)|(1 4 71k/m) (since |OPT(0)| > [n/k]).
We conclude that |N| < (1 + €)|OPT(0)|.

By construction, /N contains g copies of the same bin (i.e.,
bins that are filled according to the same type). Equivalently,
N consists of g copies of the same packing, which we denote
by N. Let ¢ = |N| be the number of bins in this packing. We
will show that p is not much bigger than ¢, which is crucial in
the proof. The number of items of size z in the packing N is
at least [n,/g], since N contains at least n,, items of size x.

Proposition 1. [n,/g] > [n,m/n] — 1.

Proposition 1 implies that for z € [1,k], N packs each
item of size x that appears in the profile set, with the ex-
ception of at most one such item. From the statement of
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PROFILEPACKING, and its optimal packing of the profile set,
we infer that ¢ + k > p. Note that ¢ > |OPT(0)|/g >
n/(kg) = n/(k[n/m]) > ([n/mlm — m)/(k[n/m]) >
m/k—m?/kn > m/k—e > 1./ =€ > (1.—1)/€ > k€.
We thus showed that ¢ > k/¢’, and the inequality p < ¢+ k
implies that p < ¢(1 + €’). We conclude that the number of
bins in each profile group is within a factor (1 + €') of the
number of bins in N. Moreover, recall that PP(o, f’) con-
sists of g profile groups, and N consists of g copies of N.
Combining this with previously shown properties, we have
that [PP(o, )] < g-p < g(1+€)g < (1+¢)(1 +
€)|OPT(0)| < (1 + 3€)|OPT(0)| = (1 + €)|OPT(c)|. O

We will now use Lemma 1 to prove a more general result.

Theorem 1. For any constant ¢ € (0,0.5], and predictions
f! with error , PROFILEPACKING has competitive ratio at
most 1 + (2 + 5e)nk + €.

Proof. Let f be the frequency vector for the input o. Of
course, f is unknown to the algorithm. In this context,
PP(o, f) is the packing output by PROFILEPACKING with
error-free prediction, and from Lemma 1 we know that
|PP(o, f)] < (1 + €)|OPT(0)|. Recall that Py, denotes
the profile set of PROFILEPACKING on input o with predic-
tions f’, and pgs denotes the number of bins in the optimal
packing of Pg,; Py and py are defined similarly. We will
first relate pg and pg/ in terms of the error 1. Note that

the multisets Py and Py differ in at most ZI;=1 Ly ele-
ments, where pu, = |[fzm] — [fim]|. We call these ele-
ments differing. We have p, < |(f. — fi)m| + 1, hence
Zi=1 po < k+ Zf::l |(fe = fz)m| < k + nm. We con-
clude that the number of bins in the optimal packing of Pg-
exceeds the number of bins in the optimal packing of Pf by
at most k + nm, i.e., pgr < pg + k +nm.

Let g and ¢’ denote the number of profile groups in
PP(o, f) and PP(o, f’), respectively. We aim to bound
|PP(0, f')|, and to this end we will first show a bound on
the number of bins opened by PP(c, f’) in its first g pro-
file groups, then in on the number of bins in its remaining
g’ — g profile groups (if ¢’ < g, there is no such contribu-
tion to the total cost). For the first part, the bound follows
easily: There are g profile groups, each one consisting of
pys bins, therefore the number of bins in question is at most
g-pg < g(pg + k + nm). For the second part, since PRO-
FILEPACKING is lazy, any item packed by PP(c, f’) in its
last ¢’ — g packings has to be a differing element, which im-
plies from the discussion above that PP(c, f’) opens at most
g(k 4+ nm) bins in its last ¢’ — g profile groups. The result
follows then from the following technical proposition.

Proposition 2. |PP(o, f')| < (14 (24 5¢)nk+¢)|OPT(0)|.

O

In addition, we prove the following impossibility result
which shows that the dependency in k, as stated in Theorem 1,
is unavoidable.
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Theorem 2. Fix any constant ¢ < 1. Then for any o > 0,
with o < 1/k, any algorithm with frequency predictions that
is (1 + «)-consistent has robustness at least (1 — ¢)k/2.

We conclude that the robustness of PROFILEPACKING is
close-to-optimal and no (1 + €)-consistent algorithm can do
asymptotically better. It is possible, however, to obtain more
general tradeoffs between consistency and robustness, as we
discuss in the next section.

4 A Broader Class of Algorithms

In this section we obtain a more general class of algo-
rithms which offer better robustness in comparison to PRO-
FILEPACKING, at the expense of slightly worse consistency.
Let A denote any algorithm of competitive ratio c4, in the
standard online model in which there is no prediction. We
will define a class of algorithms based on a parameter A\ €
[0,1] which we denote by HYBRID(A). Let a,b € NT be
such that A\ = a/(a + b). We require that the parameter m
in the statement of PROFILEPACKING is a sufficiently large
constant, namely m > 57, max{k,a + b} /e.

Upon arrival of an item of size x € [1, k], HYBRID(\)
marks it as either an item to be served by PROFILEPACK-
ING, or as an item to be served by A; we call such an item
a PP-item or an A-item, in accordance to this action. More-
over, for every z € [1, k], HYBRID()) maintains two coun-
ters: count(zx), which is the number of items of size x that
have been served so far, and ppcount(x), which is the num-
ber of PP-items of size x that have been served so far.

We describe the actions of HYBRID(A). Suppose that an
item of size x arrives. If there is an empty placeholder of
size x in a non-empty bin, then the item is assigned to that
bin (and to the corresponding placeholder), and declared PP-
item. Otherwise, there are two possibilities: If ppcount(x)
< A count(z), then it is served using PROFILEPACKING and
is declared PP-item. If ppcount(z) > A- count(x), then it
is served using A and declared A-item.

Note that in HYBRID(\), A and PROFILEPACKING main-
tain their own bin space, so when serving according to one
of these algorithms, only the bins opened by the correspond-
ing algorithm are considered. Thus, we can partition the bins
used by HYBRID() into PP-bins and A-bins.

Theorem 3. For any e € (0,0.5] and X € [0, 1], HYBRID())
has competitive ratio (1+¢)((14(2+5¢)nk+e) A +ca(1-X)),
where c 4 is the competitive ratio of A.

One can choose A as the algorithm of the best known com-
petitive ratio [Balogh et al., 2018]. However, algorithms such
as the one of [Balogh et al., 2018] belong in a class that is tai-
lored to worst-case competitive analysis and do not tend to
perform well in typical instances [Kamali and Lépez-Ortiz,
2015]. For this reason, simple algorithms such as FIRSTFIT
and BESTFIT are preferred in practice [Coffman et al., 1996].
We obtain the following corollary.

Corollary 1. For any € € (0,0.5] and A € [0, 1], there is
an algorithm with competitive ratio (1+€)(1.5783 + A((2 +
5¢)nk—0.57834¢)). Furthermore, HYBRID(\) using FIRST-
FIT has competitive ratio (1+€)(1.7+A((2+5€)nk—0.7+¢)).



Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

We can do even better if an upper bound on the error
is known. Specifically, let H-AWARE denote the algorithm
which executes HYBRID(1), if H < (ca—1—¢€)/(k(2+5¢)),
and HYBRID(0), otherwise. An equivalent statement is that
H-AWARE executes PROFILEPACKING if H < (¢4 — 1 —
€)/(k(2 + 5¢)), and A, otherwise. The following corollary
follows directly from Theorem 3 with the observation that as
longasn < (ca —1—¢€)/(k(2+5¢)), PROFILEPACKING has
a competitive ratio better than c4.

Corollary 2. For any € € (0,0.5], H-AWARE using algo-
rithm A has competitive ratio min{ca,1 + (2 + 5¢)nk +
€}, where c4 is the competitive ratio of A. In particular,
choosing FIRSTFIT as A, H-AWARE has competitive ratio
min{1.7,1 + (2 + 5e)nk + €}.

5 Applications & Extensions

5.1 Virtual Machine Placement

An important application of online bin packing is Virtual Ma-
chine (VM) placement in large data centers. Here, each VM
corresponds to an item whose size represents the resource re-
quirement of the VM, and each bin corresponds to a physical
machine (i.e., host) of a given capacity k. In the context of
this application, the consolidation ratio [Mann, 2015] is the
number of VMs per host, in typical scenarios. Note that the
consolidation ratio is typically much smaller than k. For ex-
ample, VMware server virtualization achieves a consolidation
ratio of up to 15:1 [VMware, ].

Let r denote the consolidation ratio (but note that this quan-
tity is an integer). We can express the competitive ratio of
HYBRID()) in Theorem 3, as well as the impossibility result
in Theorem 2, so that the term k is replaced with . We can
thus exploit the fact that typically  is much smaller than &,
and improve the theoretical analysis of our algorithms.

5.2 Handling Items with Fractional Sizes

As stated in Section 2, items have integral sizes in [1,k].
While this is a natural model for many Al applications, we
can still handle fractional item sizes in [1, k], by treating them
as “special” items which are not predicted to appear. PRO-
FILEPACKING and HYBRID(A) will then pack these fractional
items separately from all integral ones, using FIRSTFIT. For
the analysis, we need a measure of “deviation” of the input se-
quence ¢ (that may contain fractional items) from a sequence
of integral sizes. The most natural approach is to use the L,
distance between o, and the sequence in which each item is
rounded to the closest integer in [0, k]. However, we show
that this definition can be overly restrictive.

Theorem 4. Let |x] denote the integer closest to x, and de-
fine d(o) = > .. |z — [x]|. No online algorithm can have
competitive ratio better than 4/3, even if all frequency predic-
tions are error-free (that is, n = 0), and even if d(c) = ¢, for
arbitrarily small € > 0.

A different measure of “deviation” is the ratio between the
total size of fractional items in o over the total size of all
items in 0. The following theorem shows that this measure
can better capture the performance of the algorithm.

>

Theorem 5. Define d(o) = %ifx Let A be any al-
TE€Eo

gorithm with frequency predictions that has competitive ratio
c if all items have integral size. Then there is an algorithm A’

that has competitive ratio at most ¢ + 2d(o) for inputs with
fractional sizes.

6 Experimental Evaluation

6.1 Benchmarks and Input Generation

Several benchmarks have been used in previous work on (of-
fline) bin packing (see [Castifieiras er al., 2012] for a list of
related work). Many of these benchmarks typically rely on
either uniform or normal distributions. There are two im-
portant issues to take into account. First, such simple dis-
tributions are often unrealistic and do not capture typical ap-
plications of bin packing such as resource allocation [Gent,
1998]. Second, in what concerns online algorithms, simple
algorithms such as FIRSTFIT and BESTFIT are very close
to optimal for input sequences generated from uniform dis-
tributions [Coffman ez al., 1996] and very often outperform,
in practice, many online algorithms of better competitive ra-
tio [Kamali and Lépez-Ortiz, 2015].

We evaluate our algorithms on two types of benchmarks.
The first type is based on the Weibull distribution, which was
first studied in [Castifieiras et al., 2012] as a model of sev-
eral real-world applications of bin packing, e.g., the 2012
ROADEF/EURO Challenge on a data center problem pro-
vided by Google and several examination timetabling prob-
lems. The Weibull distribution is specified by two param-
eters: the shape parameter sh and the scale parameter sc
(with sh,sc > 0). The shape parameter defines the spread
of item sizes: lower values indicate greater skew towards
smaller items. The scale parameter represents the statistical
dispersion of the distribution. In our experiments, we chose
sh € [1.0,4.0]. This is because values outside this range re-
sultin trivial sequences with items that are generally too small
(hence easy to pack) or too large (for which any online algo-
rithm tends to open a new bin). The scale parameter is not
critical, since we scale items to the bin capacity, as discussed
later; we thus set sc = 1000, as in [Castifieiras et al., 2012].

The second type of benchmarks is generated from the BP-
PLIB library [Delorme et al., 2018], a collection of bin pack-
ing benchmarks used in various works on (offline) algorithms
for bin packing. Due to space limitations, we report results
on the most recent benchmark of the BPPLIB Library, namely
the GI Benchmark [Gschwind and Irnich, 2016], and we refer
to [Angelopoulos er al., 2021] for additional benchmarks.

We fix the size of the sequence to n = 10°. We set the
bin capacity to & = 100, and we also scale down each item
to the closest integer in [1, k]. This choice is relevant for ap-
plications such as VM placement (Section 5.1).We generate
two classes of input sequences. For Weibull benchmarks, the
input sequence consists of items generated independently and
uniformly at random, for the shape parameter set to sh = 3.0.
For BPPLIB benchmarks, each item is chosen uniformly and
independently at random from the item sizes in one of the
benchmark files; this file is also chosen uniformly at random.
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Figure 1: Number of bins opened by the algorithms as function of the prediction error.

6.2 Compared Algorithms, Predictions and Error

We evaluate HYBRID(A) for A € {0,0.25,0.5,0.75,1} us-
ing FIRSTFIT. This means that HYBRID(0) is FIRSTFIT,
whereas HYBRID(1) is PROFILEPACKING. We fix the size
of the profile set to m = 5000. To ensure a time-efficient
and simplified implementation of PROFILEPACKING, we use
FIRSTFITDECREASING [Coffman ef al., 1996] to compute
the profile packing, instead of an optimal algorithm. FIRST-
FITDECREASING first sorts items in the non-increasing order
of their sizes and then packs the sorted sequence using FIRST-
F1T. This helps reduce the time complexity, and the results
only improve by using an optimal profile packing instead.
We generate the frequency predictions as follows: For a
parameter b € N, we define f’ as for1,e)- In words, we
use a prefix of size b of ¢ so as to estimate the frequencies of
item sizes in o. In our experiments, we consider b of the form
b = [100 - 1.05%], with i € [25,125], i.e., 100 prefix sizes.
We define the prediction error 7 as the L, distance between
the predicted and the actual frequencies. Since we consider
100 distinct values for b, there are 100 possible error values.
As explained earlier, FIRSTFIT and BESTFIT perform very
well in practice, and we use them as benchmarks. As of-
ten in offline bin packing, we also report the L2 lower
bound [Martello and Toth, 1990] as a lower-bound estima-
tion of the optimal offline bin packing solution (no online or
even offline algorithm performs as well as this lower bound).

6.3 Results and Discussion

Figures 1a and 1b depict the cost of the algorithms, as func-
tion of the prediction error (For the GI benchmark, the chosen
file is file “csBA125.9”). We consider a single sequence, as
opposed to averaging over multiple sequences, because each
input sequence is associated with its own prediction error, for
any given prefix size (and naively averaging over both the
cost and the error may produce misleading results). We can
use a single sequence because the input size is considerable
(n = 109), and the distribution is fixed.

For both benchmarks, we observe that PROFILEPACKING
(X = 1) degrades quickly as the error increases, even though
it has very good performance for small values of error. As
A decreases, we observe that HYBRID(\) becomes less sensi-
tive to error, which confirms the statement of Corollary 1. For
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the Weibull benchmarks, HYBRID(\) dominates both FIRST-
FIT and BESTFIT for all A € {0.25,0.5,0.75} and forall <
0.27, approximately. For the GI benchmarks, HYBRID())
dominates FIRSTFIT and BESTFIT for A € {0.25,0.5}, and
for practically all values of error.

The results demonstrate that frequency-based predictions
indeed lead to performance gains. Even for very large pre-
diction error (i.e., a prefix size as small as b = 338) Hy-
BRID(A) with A < 0.5 outperforms both FIRSTFIT and BEST-
FIT, therefore the performance improvement comes by only
observing a tiny portion of the input sequence.

7 Conclusion

We gave the first results for online bin packing in a setting in
which the algorithm has access to learnable predictions about
item frequencies. We believe that our approach can be ap-
plicable to generalizations of the problem such as online 3D-
packing [Zhao et al., 2021], which has many applications in
transportation logistics, and vector bin packing [Azar et al.,
2013] which is another important problem in cloud comput-
ing. Here, it will be crucial to devise time-efficient profile
packing algorithms, since the profile size increases exponen-
tially in the vector dimension.
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