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Abstract
We consider designing reward schemes that incen-
tivize agents to create high-quality content (e.g.,
videos, images, text, ideas). The problem is at the
center of a real-world application where the goal is
to optimize the overall quality of generated content
on user-generated content platforms. We focus on
anonymous independent reward schemes (AIRS)
that only take the quality of an agent’s content as
input. We prove the general problem is NP-hard.
If the cost function is convex, we show the opti-
mal AIRS can be formulated as a convex optimiza-
tion problem and propose an efficient algorithm to
solve it. Next, we explore the optimal linear reward
scheme and prove it has a 1

2 -approximation ratio,
and the ratio is tight. Lastly, we show the propor-
tional scheme can be arbitrarily bad compared to
AIRS.

1 Introduction
User-generated content (UGC) platforms have become a ma-
jor source for users to acquire information, knowledge, and
entertainment. Representative platforms are video-sharing
platform YouTube, question-and-answer platform Quora, on-
line encyclopedia Wikipedia and lifestyle platforms Insta-
gram and TikTok. According to several measurements [Luca,
2015; Zhang and Sarvary, 2014; Park et al., 2014], the UGC
industry is just as important, if not more, as the search en-
gine industry. These platforms are fundamentally different
from search engines. The content returned by the former is
generated by content providers (agents), while the latter re-
turns mainly from professional authorities (at least for the first
few pages). On the one hand, user-generated content presents
diversity that is vital for the success of these platforms; on
the other hand, the platforms face challenges in maintain-
ing an overall high quality of the massive content generated.
From an economic perspective, the platforms are required to
design an incentive scheme that rewards high-quality con-
tent, given a restricted budget [Ghosh and Hummel, 2013;
Jain et al., 2014]. This is the central theoretical problem in-
vestigated in this paper.

∗corresponding author

The center designs a reward scheme, namely a reward
function that maps a profile of agents’ content (each with a
real-valued quality score) to a reward profile. The goal is
to maximize the overall quality of content on the platform
with a fixed budget. The proportional scheme where each
agent gets the reward is proportional to her contribution has
been widely studied by many researchers [Xia et al., 2014;
Ghosh and Hummel, 2014; Ghosh and McAfee, 2011; Tul-
lock, 1980]. The proportional scheme has been proven easy
to reach Nash equilibria among agents in the full information
setting [Xia et al., 2014].

In this paper, we will focus on designing anonymous in-
dependent reward schemes (AIRS) in which the reward only
depends on the quality of the individual content. Unlike the
proportional mechanism, it does not depend on the quality of
other agents’ content either. The merit of the independent re-
ward model is that it is easier for an agent to compute her best
strategy. For the sake of fairness, we restrict the anonymity
of the reward function, which is required by almost all real-
world UGC platforms.

In our model, the agents have cost functions that are con-
vex in their content quality to capture the idea that the ad-
ditional cost to improve the marginal quality becomes heav-
ier [Ghosh and McAfee, 2011; Ghosh and Hummel, 2014].1
Specifically, each agent has a type t indicating the ability, and
she costs c(x) · h(t) to produce content with quality x. When
the type t is higher, function h(t) is lower. The type of users
can be regarded as the skills of video clips or the design of
the content. In this paper, we assume the quality of content
entirely depends on the producer. We consider the Bayesian
setting where each agent’s ability is private information, and
others only know its distribution.

In our model, the UGC platform has a limited budget to
reward, such as money or web traffic. Given a simple reward
function, an agent can choose how much effort to make to
generate her content to maximize utility. Due to the incom-
plete information of each agent’s ability, we assume the bud-
get constraint is only required to be satisfied in expectation.
The problem faced by the designer is then to optimize the sum
of all content’s quality by designing anonymous independent
reward functions, subject to a fixed budget. Our model can be

1The previous version considered the linear cost setting [Chen et
al., 2019].
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applied when a central organization needs to incentivize the
community to accomplish some tasks.

We model the problem of finding an optimal AIRS as an
optimization problem in Section 2. In Section 3 we show that
the optimization problem is equivalent to a convex optimiza-
tion problem. Based on the analysis of the structure of the
solution, we propose an efficient algorithm in Section 4.

In Section 5, we claim the assumption of the cost func-
tion is somehow necessary since it is NP-hard to compute the
optimal AIRS for general cost functions. In Section 6, we
explore the linear reward scheme, which is a special case of
the AIRS. We show the optimal linear reward scheme is a
2-approximation to the optimal AIRS and the ratio is tight.

In Section 7 we exhibit the superiority of AIRS over other
reward schemes. When agents are independent and identi-
cally distributed, the optimal AIRS beats any reward scheme
implemented in a symmetric Bayes-Nash equilibrium. For
the proportional reward scheme, we show it cannot be better
than the optimal AIRS in the full information setting. It could
be arbitrarily bad compared to the optimal AIRS.

1.1 Related Work
Our work contributes to the body of literature on pricing
problem [O’Neill et al., 2005; Bjørndal and Jörnsten, 2008;
Azizan et al., 2020]. Azizan et al. [2020] consider the same
setting but focus on dealing with agents’ non-convex cost
functions in an approximation way. We focus on the opti-
mal solution in the convex cost setting. They allow different
reward functions for different agents while we do not.

Our problem of designing optimal reward schemes is re-
lated to the principal-agent problem in contract theory. The
principal designs compensation schemes (contracts) which
incentivize agents to choose actions that maximize the prin-
cipal’s utility [Holmstrom, 1982; Babaioff et al., 2006; Dut-
ting et al., 2021]. The contracts they considered are dif-
ferent among agents while we design the common reward
schemes. Nonetheless, there also exist researches on com-
mon contract design for multiple agents [Alon et al., 2020;
Xiao et al., 2020]. The significant differences between our
model and the principal-agent model are: (1) the action
spaces are usually finite and discrete in the principal-agent
problem while we consider continuous action spaces, (2) we
have a budget constraint in our model while principal-agent
model does not have that.

Another line of literature is crowdsourcing, where individ-
uals or organizations seek ideas or collect information from
a large group of participants. The objective is to obtain ideas
or solutions to some problems, and they only care about the
best one [Chawla et al., 2019; Moldovanu and Sela, 2006].
In contrast, we are interested in the sum of the quality of the
content.

2 Preliminaries
Let N = {1, 2, . . . , n} be the set of all agents. Each agent
i has a type, denoted by a real number ti, which stands for
the ability of the agent to produce content. For each agent,
the type is private information and drawn from a set Ti with
a probability mass function fi. Set Ti and function fi is

publicly known. We assume Ti is discrete and has a fi-
nite size. They are standard assumptions for compensation
schemes design in the contract theory. We also define the
union of type space T =

⋃
i Ti = {t1, . . . , tm} and the sum

of probabilities as f(t) =
∑n
i=1 fi(t). W.l.o.g., we assume

t1 < t2 < · · · < tm.2 Every agent posts content (e.g., an ar-
ticle or a short video) on the platform. We use a non-negative
number to represent the quality of the content (e.g., the ex-
pected number of views or likes) in which the platform is
interested. We assume an agent can regulate the quality of
her content and her action is choosing the quality. To produce
content with quality x ∈ R≥0, an agent with type t suffers
from a cost cost(x, t). We consider cost functions in the form
of cost(x, t) = c(x) · h(t) where h(t) is always positive. We
assume an agent with a higher type can produce content with
the same quality using a lower cost, i.e., the function h(t) is
decreasing in t. We assume c(x) is convex, strict increasing
and c(0) = 0.

The platform designs a reward scheme, which is essen-
tially a reward function R : Rn≥0 7→ Rn≥0 that maps a
quality profile of agents’ content to a reward profile. We
also define Ri : Rn≥0 7→ R≥0 to be the reward func-
tion for agent i, i.e., R(x) = (R1(x), . . . , Rn(x)) where
x = (x1, x2, . . . , xn). For agent i, we use xi ∈ R≥0 to rep-
resent her action of producing content with quality xi and
use x−i ∈ Rn−1

≥0 to represent other agents’ actions similarly.
An agent’s utility is defined as the reward she receives mi-
nus the cost in producing her content, i.e., agent i’s utility
function ui : Rn≥0 × Ti 7→ R that maps the quality profile
of all agents’ content and her type to her utility is defined as
ui(x

i,x−i, ti) = Ri(x
i,x−i)− c(xi)h(ti).

In this paper, we analyze the problem of incentivizing high-
quality content in the Bayesian information setting. The plat-
form aims to maximize the gross product which is defined as
the expectation of the overall quality of all content on the
platform within a fixed budget B. We assume the budget
constraint is only required to be satisfied in expectation. In
addition, we assume the reward scheme satisfies individual
rationality property so that an agent will not transfer money
to the platform, i.e., the reward must be non-negative.

We focus on a relatively simple reward scheme called
Anonymous Independent Reward Scheme in which the reward
each agent receives is only determined by the quality of con-
tent she produces and independent of other agents’ actions.
Any two agents receive the same reward if they create con-
tent with the same quality. The AIRS scheme has a simple
format and can be easily understood by agents. Besides, it is
anonymous thus has no price discrimination issue.

Definition 1 (Anonymous Independent Reward Scheme
(AIRS)). A reward scheme is an Anonymous Independent Re-
ward Scheme if

1. the reward each agent receives is only determined by
the quality of her content, i.e., for any i, Ri(xi,x−i) =
Ri(x

i, (x′)−i) for any xi ∈ R≥0,x
−i, (x′)−i ∈ Rn−1

≥0 ,
and

2Note that in this paper, the superscript refers to the agent while
the subscript refers to the order of types.
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2. the reward function always assigns the same reward to
any two agents if they produce content with the same
quality, i.e., for any i, j, if xi = xj , Ri(xi,x−i) =
Rj(x

j ,x−j) for any x−i,x−j ∈ Rn−1
≥0 .

With a slight abuse of notation, we use function R : R≥0 7→
R≥0 to represent the reward function in an AIRS. It only takes
the quality of an agent’s content as the input and specifies the
agent’s reward.

We assume every agent is strategic and will produce con-
tent with the optimal quality to maximize her utility. Given
the reward function, it is obvious that an agent’s action only
depends on her type. For convenience, we focus on an agent’s
type instead of her index number from now on. We formulate
the problem as an optimization problem presented as below.

max
Xk⊆R≥0

Gk∈∆(Xk)
R

∑
k∈[m]

f(tk)

∫
x∈Xk

x dGk(x) ,

s.t. R(x)− c(x)h(tk) ≥ R(y)− c(y)h(tk),

∀k ∈ [m], x ∈ Xk, y ≥ 0,∑
k∈[m]

f(tk)

∫
x∈Xk

R(x) dGk(x) ≤ B,

R(x) ≥ 0, ∀x ≥ 0.

(P1)

Here Xk represents the union of actions taken by all agents
of type tk, ∆(Xk) represents the set of all cumulative proba-
bility distributions over Xk, and Gk is one cumulative prob-
ability distribution function over Xk that represents the com-
bined mixed strategies used by agents of type tk. We will
use a triple (X, G,R) to represent a solution to this prob-
lem. The first constraint refers to agents choosing the best
actions to maximize the utilities. Let [m] represent the set
{1, 2, . . . ,m} throughout the paper. The second constraint
refers to the budget constraint. The last constraint refers to
individual rationality.

3 The Optimal AIRS
Problem P1 is complicated because it involves the design of
mixed strategies Gk and a reward function R which involves
a huge design space. To overcome these difficulties, we show
that, w.l.o.g., we can assume the agents are using pure strate-
gies. In addition, we reduce the design of the entire reward
function to the design of the rewards on a set of specific val-
ues. At last, we show the optimal AIRS can be found by
solving a convex optimization problem.

We first state that an agent with a higher type will post
content with (weakly) higher quality.
Lemma 1. We pick two numbers k, l ∈ [m] and assume k <
l. Given a feasible solution (X, G,R) to Problem P1, for any
xk ∈ Xk and xl ∈ Xl, we have xk ≤ xl.

We omit all proofs due to the lack of space, that are in-
cluded in the full version of this paper.

Given a reward scheme, an agent might have multiple best
actions and thus can use a mixed strategy. However, we can
construct a solution where agents only use pure strategies.

0 x1 x2 x3 xm−1 xm0

R̂
(x
)

Figure 1: Reward function R̂ is a step function which has at most m
breakpoints.

For any solution (X, G,R) to Problem P1, we define xk =∫
x∈Xk

x dGk(x) and X̃k = {xk}. We set G̃k(x) = 0 for
x < xk and G̃k(xk) = 1. In other words, an agent with type
tk will produce content with quality xk deterministically. By
Lemma 1, Xk is point-wise weakly larger than Xk−1. Then
the expectation of any distribution over Xk is weakly larger
than the expectation of any distribution over Xk−1, i.e., xk ≥
xk−1. Therefore it is proper to define R̃(x) = maxy{R(y)−
c(y)h(tk)} + c(xk)h(tk) for x ∈ [xk, xk+1) where xm+1

denotes infinity. We have the following result.
Lemma 2. Given a feasible solution (X, G,R) to Problem
P1, (X̃, G̃, R̃) is also a feasible solution to Problem P1 and
scheme R̃ achieves the same gross product as scheme R.

Function R̃ is a step function. It is characterized by its
break points {xk} and rewards on these points. It enables us
to focus on these break points instead of the whole reward
function. We continue to construct a new reward function R̂
under which every agent’s best action does not change, and
the reward given by the platform weakly decreases. We define
R̂(0) = 0 and x0 = 0. For x ∈ [xk, xk+1), k ∈ [m], we
define

R̂(x) = R̂(xk−1) + (c(xk)− c(xk−1))h(tk). (1)

Lemma 3. Under reward function R̂, xk is one best action
for an agent with type tk. In addition, R̃(xk) ≥ R̂(xk) for
k ∈ [m].

Given that R̃ is budget feasible, the above lemma tells us
scheme R̂ is budget feasible. Furthermore, it suffices to find
the optimal reward schemes R̂ to solve Problem P1. Figure 1
shows how function R̂ looks like. Function R̂ is fully charac-
terized by the best action profile {xk}. To simplify the prob-
lem, we rewrite R̂ and constraints in terms of functions c, h
and xk. By repeatedly using the definition of R̂ in Eq. (1),
we will get

R̂(xk) = c(xk)h(tk) +
k−1∑
l=1

c(xl)(−h(tl+1) + h(tl)). (2)

The total reward given to agents can be written as∑
k∈[m]

R̂(xk)f(tk)
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=
∑
k∈[m]

f(tk)

(
c(xk)h(tk) +

k−1∑
l=1

c(xl)(−h(tl+1) + h(tl))

)

=
∑
k∈[m]

c(xk)

(
h(tk)

m∑
l=k

f(tl)− h(tk+1)
m∑

l=k+1

f(tl)

)
.

In the second equality, we define h(tm+1) = 0. For the sake
of simplicity, we define αk:

αk = h(tk)
m∑
l=k

f(tl)− h(tk+1)
m∑

l=k+1

f(tl). (3)

Since function h(·) is decreasing, we have αk > 0. At this
point, we come to our first main result.
Theorem 1. P1 has the same optimal value as the following
problem where x0 = 0 and αk is given in Eq. (3).

max
x1,...,xm

∑
k∈[m]

xkf(tk),

s.t.
∑
k∈[m]

c(xk)αk ≤ B,

xk−1 ≤ xk, ∀k ∈ [m].

(P2)

Given P2’s optimal solution {x∗k}, we can construct the re-
ward scheme R̂ using Eq. (1).

Problem P2 is a convex optimization problem. The objec-
tive is a linear function, and the feasible region is convex.
Note that every point on the line segment connecting two fea-
sible solutions is still in the feasible region since c(x) is con-
vex.

4 Solution Characterization and Algorithm
In this section, we characterize the optimal solution of Prob-
lem P2 by analyzing the KKT conditions and thereafter pro-
pose an efficient algorithm to solve it.

4.1 Solution Characterization
First note that the objective function is continuous and the
feasible region is bounded and closed. Therefore, a global
maximum exists. We define the Lagrangian∑
k∈[m]

xkf(tk)+λ
(
B−

∑
k∈[m]

αkc(xk)
)

+
∑
k∈[m]

µk(xk−xk−1).

The KKT conditions for Problem P2 are:

f(tk)− λαkc′(xk) + µk − µk+1 = 0, k ∈ [m], (4)

λ
(
B −

∑
k∈[m]

αkc(xk)
)

= 0, (5)

µk(xk − xk−1) = 0, k ∈ [m], (6)∑
k∈[m]

αkc(xk) ≤ B, (7)

xk−1 − xk ≤ 0, k ∈ [m], (8)
λ ≥ 0, µk ≥ 0, k ∈ [m]. (9)

To handle the case where function c(·) does not have a deriva-
tive, we consider sub-derivatives such that c′(x) can be any
value in [∂−c(x), ∂+c(x)].

In Eq. (4), we set µm+1 = 0. If we sum up Eq. (4) for all
k, we get λ > 0. In addition, by Eq. (5), we deduce that there
is no surplus in the budget.

To find the solution, it is important to determine the set of
ks where µk = 0. We define S = {k | µk = 0, k ∈ [m+ 1]}.
Note that m + 1 ∈ S. There exists a unique number, de-
noted as q, such that {1, . . . , q} ∩ S = {q}. For k ∈ S and
k 6= q, we define pre(k) as the “predecessor” element such
that {pre(k), pre(k)+1, . . . , k−1}∩S = {pre(k)}. The ra-
tio between the sum of f and the sum of α shows a nice struc-
ture which can help us determine the set S. We first show a
relation between the ratio and the dual variable λ. For conve-
nience, we define avg(l, k) =

(∑k−1
j=l f(tj)

)
/
∑k−1
j=l αj . For

k ∈ [m], we define avg(k) = max1≤l<k{avg(l, k)}. For 2 ≤
k ≤ m+ 1, we define γ(k) = max {l : avg(l, k) = avg(k)}.
The following theorem states a strong connection between
functions pre(·) and γ(·).
Theorem 2. For any k ∈ S and k > q, we have pre(k) =
γ(k). For γ(k) ≤ j ≤ k− 1, variable xj has the same value.
Furthermore, λc′(xj) = avg(k).

For any integer larger than 1, function γ(·) maps it to a
smaller integer, so there exists an integer d such that γ(d)(m+
1) = γ(γ(...γ(m + 1))) = 1. Thus it is convenient for us
to define SB = {γ(d)(m + 1), γ(d−1)(m + 1), . . . ,m + 1}.
Lemma 2 tells us that for any k > q in S, we have pre(k) =
γ(k). Therefore, the set S consists of every element in SB
that is no less than q.

The next lemma states the monotonicity between any two
consecutive elements in SB . We design an O(m)-algorithm
(Algorithm 1) based on the monotonicity to compute SB .
Lemma 4. For any k1, k2 ∈ SB and k1 < k2, we have
avg(γ(k1), k1) ≤ avg(γ(k2), k2).

Theorem 3. Algorithm 1 computes SB in O(m) time.
We provide the intuition here. The input can be equiva-

lently regarded as a sequence of ratio f(tk)
αk

with weight αk.
While Algorithm 1 is searching a set of break points to “iron”
the given sequence into a non-decreasing sequence consists
of avg(γ(k), k). Note that each element can be pushed into
the stack at most once and be popped out at most once. So the
amortized time for each element in the array is O(1). Then
the total running time is O(m) as a result.

Given SB , we still need q to determine S. The next lemma
gives a way to determine q based on the value of λc′(0). The
optimal solution of Problem P2 must satisfy xm > 0 and thus
q ≤ m. Then we have λc′(0) ≤ λc′(xm) = avg(γ(m + 1))
which is an upper bound for λc′(0).
Lemma 5. If λc′(0) ∈ (avg(γ(k)), avg(k)] for some k ∈ SB
such that γ(k) > 1, k ≤ m, we have q = γ(k). If λc′(0) ∈
[0, avg(k)] for the k ∈ SB such that γ(k) = 1, we have
q = γ(k).

Up to now, we only make use of constraints (4),(6),(8), and
(9) in KKT conditions. Given a parameter λ, if we leave alone
the constraints (5) and (7), we can determine S and further
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Algorithm 1 An O(m) algorithm to compute SB
Input: f(ti), αi, ∀i ∈ [m]

Initilize empty stack SB , AG and WT
for each k ∈ [1,m] do

avg← f(tk)

αk
, weight← αk

while SB is not empty do
if AG.top > avg then

avg← avg × weight + AG.top×WT.top
weight + WT.top

weight← weight + WT
Pop(SB), Pop(AG) and Pop(WT)

else
break

end if
end while
Push(SB , k + 1), Push(AG, avg), Push(WT, weight)

end for
Push(SB , 1)
return SB

find {xk} satisfying (4),(6),(8), and (9). The following lemma
shows the influence of λ on the corresponding solution {xk}.
Lemma 6. When the dual variable λ increases, any {xk}
that satisfies the constraints (4),(6),(8) and (9) decreases.

Lemma 6 indicates an approach to finding the true λ. Re-
call that we would spend all the budget in the optimal solu-
tion. For a guess of λ, we can compute the {xk} and compare
the total cost

∑
k∈[m] αkc(xk) and the budget B. If the total

cost matches the budget B, the true λ is found (Figure 2).
Suppose there is a surplus in the budget. If c′(·) is not

differentiable at xk, we can tune down λ unilaterally. If
c′′(xk) = 0, we can increase xk to a large value with λ fixed.
If c′′(xk) > 0, we can tune down λ and increase xk simulta-
neously. In all three cases, we can spend more money. When
there is a deficit in the budget, we can use similar methods
to spend less money. Finally, the total cost would match the
budget B. The next lemma gives a lower bound and an upper
bound of λ such that we can compute any approximation of
the true λ by the bisection method.
Lemma 7. Assume c(y1) = B∑

k αk
and c(y2) = B

αm
, then

we have

avg(γ(m+ 1))

c′(y2)
≤ λ ≤ avg(γ(m+ 1))

c′(y1)
.

We conclude this section by summarizing the algorithm to
solve Problem P2.

4.2 The Algorithm
We first compute SB by Alg. 1. Then we determine the lower
bound and the upper bound of λ by Lemma 7. For a given
λ, we can compute q by Lemma 5 and the {xk} by Theorem
2. The true λ satisfies the equation

∑
k αkc(xk) = B. Since∑

k αkc(xk) is decreasing in λ, the true λ can be searched by
bisection method. In the last step, there are two cases for the
true λ. In one case, there is a unique solution profile {xk}. In

λ λ λ

B

∑
k αkc(xk)

Figure 2:
∑

k αkc(xk) is decreasing in λ on [λ, λ].

the other case, the possible values of
∑
k∈[m] αkc(xk) con-

stitute a continuous interval due to the multiple solutions of
xk given the value of c′(xk). Actually, for any solution satis-
fies the constraint

∑
k∈[m] αkc(xk) = B would be an optimal

solution.
Let λ and λ denote the lower bound and the upper bound

of λ respectively given by Lemma 7. We give the time com-
plexity of Algorithm 2 for certain precision in the following
theorem.

Theorem 4. Suppose that λ∗ is the optimal solution of Prob-
lem P2. Given ∀ε > 0, the run time of Algorithm 2 to find λ
such that |λ− λ∗| < ε|λ− λ| is O(m log 1

ε ).

Algorithm 2 Algorithm to solve P2
Input: f(ti), αi, ∀i ∈ [m], B, c(·), ε

for each k ∈ [m] do
avg(k) = max1≤l<k{avg(l, k)}

end for
Compute SB by Algorithm 1
γ(m+ 1) = max{SB/{m+ 1}}
λl = λ = γ(m+ 1)/c′(c−1( B

αm
)),

λh = λ = γ(m+ 1)/c′(c−1( B∑
k∈[m] αm

))

while λh − λl > ε(λ− λ) do
λ = (λh + λl)/2
S = {k|λc′(0) ≥ avg(k), k ∈ SB}
if S 6= SB then

S = S
⋃

max{SB/S}
end if
k0 = 1
for each k ∈ S do

xi = (c′)−1(avg(k)/λ), k0 < i ≤ k
k0 = k

end for
if
∑
k∈[m] αkc(xk) = B then break

else if
∑
k∈[m] αkc(xk) > B then λl = λ

else λh = λ
end if

end while
return λ, {xk}
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5 NP-Hardness
In the two previous sections, we consider the convex cost
function and propose an efficient algorithm to solve Problem
P1. If we relax the specific form of c(x, t) and the convex-
ity, the problem becomes difficult to solve, even in the full
information setting. We consider the following cost function.

cost(x, t) =


0, 0 ≤ x < 1,

t, 1 ≤ x ≤ 1 + t,

+∞, 1 + t < x.

We show the decision version of the reward design problem
with cost(x, t) is an NP-hard problem. Given every agent
type ti, i ∈ [n] and the above cost function, is there an
AIRS that can achieve gross product V within budget B?
When there are multiple best actions, we assume an agent
will choose the highest quality. We call this decision problem
the “General Cost Problem” for convenience.
Theorem 5. The General Cost Problem is NP-hard.

6 The Linear Reward Scheme
This section focuses on a simpler scheme where the reward
function is linear, denoted by R(x) = px. Here p is the per
unit price of contribution. We will show the optimal linear
reward function can achieve at least 1

2 gross product of that
achieved by the optimal AIRS.
Theorem 6. Optimal linear reward scheme is a 1

2 -
approximation to the optimal AIRS. The ratio is tight.

The proof of 1
2 -approximation is deferred to the appendix.

We show the ratio is tight by providing an example. There is
only 1 agent and she has a unique type t and h(t) = 1. The
budget is 1. We let

c(x) =

{
εx, x ≤ 1,

(1 + ε)x− 1, 1 < x.

We design an AIRS such that

R(x) =

{
0, x < 2

1+ε ,

1, x ≥ 2
1+ε .

Under scheme R, the agent will choose x = 2
1+ε . We con-

sider the linear reward scheme. If the price p is set larger than
1, the agent’s action x should be at most 1 according to the
budget constraint. If the price p is set at most 1, the agent’s
action x is still at most 1 according to the cost function. When
p = 1, agent’s best action would be 1. Thus the agent’s action
x is at most 1. The ratio between the two schemes is 1/ 2+ε

1+ε ,
which approaches 1

2 when ε moves towards zero.

7 Superiority over Other Schemes
This section demonstrates that the optimal AIRS gains high
gross product compared to other reward schemes. We first
show that when agents’ types are independent and identi-
cally distributed, the optimal AIRS has superiority over other
anonymous schemes implemented in symmetric Bayes-Nash
equilibrium. Then we prove that the proportional scheme,

which divides the reward according to the proportion of qual-
ity, can perform arbitrarily badly in the worst case. At last,
since the Bayes-Nash equilibrium is not known for the pro-
portional reward scheme, we only consider the full informa-
tion setting and show the optimal AIRS beats the proportional
reward scheme.

Theorem 7. When agents are independent and identically
distributed, for any anonymous reward scheme R in which
the Nash equilibrium is symmetric, there is an AIRS R′ that
can achieve at least the same gross product as R.

This theorem indicates that AIRS might be the optimal
anonymous reward scheme. Next, we focus on the propor-
tional scheme [Ghosh and Hummel, 2014]. Formally, the
utility of agent i in this scheme can be represented as

ui(x
i,x−i, ti) =

xiB∑n
j=1 x

j
− c(xi)h(ti).

For completeness, let ui(xi,x−i) be 0 if xi = 0 for all i.
This scheme has no guarantee on the gross product compared
to the optimal AIRS, even in the full information setting.

Theorem 8. There are two agents, for any ε > 0, there
exists h(·),c(·) and (t1, t2) such that the Nash equilibrium
(xprop,1, xprop,2) of the proportional scheme and for actions
(x∗,1, x∗,2) achieved in the optimal AIRS, we have

xprop,1 + xprop,2 ≤ ε(x∗,1 + x∗,2).

Theorem 8 is proved by constructing an instance that the
proportional scheme can perform arbitrarily bad compared to
the optimal AIRS. The idea is as follows. When there is an
agent A with high ability and an agent B with low ability,
agent A can get a big enough reward with mediocre content
since agent B has a low ability. Though the proportional
scheme is not an AIRS, the following theorem shows that
there is an AIRS such that agents choose the same actions
across two schemes and this AIRS demands less budget.

Theorem 9. Given agents’ types, we can design an AIRS
that achieves the same gross product as in the proportional
scheme. In addition, every agent chooses the same action
across two schemes.

8 Conclusion
We consider designing anonymous reward schemes for plat-
forms to maximize the overall quality of all content. This
paper introduces the anonymous independent reward scheme.
We first show the intractability of the general problems. Then,
when the cost function is convex, we propose an efficient al-
gorithm. We also give a tight approximation ratio for the op-
timal linear reward scheme compared to the optimal AIRS.
Finally, we show the superiority of AIRS over other anony-
mous schemes under several settings. Many open problems
remain in this research direction. How to compute the Bayes-
Nash equilibrium in the proportional reward scheme in the
Bayesian information setting? Will the reward scheme ben-
efit from using the rank information? What is the optimal
anonymous reward scheme?
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