
Parameterized Complexity of Hotelling-Downs with Party Nominees

Argyrios Deligkas , Eduard Eiben , Tiger-Lily Goldsmith
Royal Holloway, University of London

{Argyrios.Deligkas, Eduard.Eiben}@rhul.ac.uk, tigerlilygoldsmith@gmail.com

Abstract
We study a generalization of the Hotelling-Downs
model through the lens of parameterized complex-
ity. In this model, there is a set of voters on a line
and a set of parties that compete over them. Each
party has to choose a nominee from a set of can-
didates with predetermined positions on the line,
where each candidate comes at a different cost. The
goal of every party is to choose the most profitable
nominee, given the nominees chosen by the rest of
the parties; the profit of a party is the number of
voters closer to their nominee minus its cost. We
examine the complexity of deciding whether a pure
Nash equilibrium exists for this model under sev-
eral natural parameters: the number of different po-
sitions of the candidates, the discrepancy and the
span of the nominees, and the overlap of the par-
ties. We provide FPT and XP algorithms and we
complement them with a W[1]-hardness result.

1 Introduction
The Hotelling-Downs model [Downs, 1957; Hotelling, 1929]
is probably the most well-established framework in studying
strategic positioning on spatial competition. In the original
model, there are two ice cream sellers on a beach and they
want to choose a position for their shop in order to maxi-
mize their customers, under the assumption that a customer
will choose the seller that is closer to their location. The
simplicity and the elegance of this framework served as a
basis for numerous other models and applications ranging
from spatial design, to strategic candidacy [Eiselt et al., 1993;
Eiselt, 2011].

In fact, in [Downs, 1957] it was argued that the equilibrium
of the game above, could be potentially used to predict the po-
sitions of the parties within the political spectrum. However,
the original model has two strong assumptions: there are only
two agents and every agent can choose every possible loca-
tion in the spectrum; the unique equilibrium of the game is
when both vendors choose the median of the beach. In real-
ity though, several political parties are involved. In addition,
the available positions of a party in the political spectrum are
constrained from two crucial factors: the ideology of the party
and the available candidates or policies, it can choose from.

In order to bypass the aforementioned limitations, a new
model that is closer to reality was recently proposed [Harren-
stein et al., 2021]. In this model, there are many parties, each
of whom is associated with a set of candidates on a line. In
addition, there is a set of voters distributed in an arbitrary way
over the line. To play the game, every party should choose
one nominee from their set of candidates, while again they
are trying to maximize the number of voters that are closer
to their nominee compared to the nominees of the remaining
parties. The authors showed that these games do not always
possess a pure Nash equilibrium and in fact it is NP-complete
to decide if an equilibrium exists.

Indeed the extended model is closer to reality, albeit in the
current political spectrum there are further extra constraints
within the parties. In many cases, the ideology of a party dic-
tates a high level position of the party on the spectrum, which
is usually a priori fixed, while the different candidates and
policy adoptions correspond to the fine grained position of
the party. For example, it is not uncommon that the spread
of the candidates of a party within the political spectrum is
not too wide. Furthermore, not many parties share the same
ideology; usually the parties target a specific demographic of
voters within the political spectrum and the overlap of this
range with the remaining parties is limited. Inspired by these
constraints of real-life politics we study the following ques-
tion for the generalized Hotelling-Downs model.

What is the complexity of equilibrium computation
under natural constraints on the candidates?

Our contribution. Our contribution is twofold: (a) we fur-
ther extend the Hotelling-Downs framework of Harrenstein
et al. [2021] by associating each candidate with a cost and
(b) we study the equilibrium computation problem for the
extended model through the lens of parameterized complex-
ity. In real-life politics, many times, every position at the
political spectrum comes at a different cost. In fact, it is not
uncommon that even candidates on the same position come
at a different cost for different parties. For example, this
can be due to preexisting positions, investments, and adver-
tisements of the party towards specific campaigns. For this
extended model, we study the parameterized complexity of
the equilibrium-computation problem under several parame-
ters that capture natural constraints over the candidates of the
parties. We denote the corresponding computational prob-
lem HOTELLINGDOWNS-NE (HD-NE). More specifically,
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we focus on the overlap the parties have due to their can-
didates, and the span, the discrepancy, and the number of
different positions of the candidates. The overlap parameter
intuitively captures the maximum number of parties that have
overlapping ideologies, if we assume that the ideology of a
party is expressed via the spread of its candidates. The span
is the difference between the leftmost candidate of any party
and the rightmost candidate of any party; observe that the
span parameter naturally bounds the number of candidate po-
sitions. Finally, the discrepancy of the candidates of a party is
the difference between the leftmost and the rightmost candi-
date the party has; the discrepancy parameter is the maximum
discrepancy over the parties.

Firstly, we focus on the overlap parameter and we prove
that in this case HD-NE admits an XP algorithm (Theo-
rem 1). In fact, the same algorithm yields fixed-parameter
tractability by overlap and discrepancy (Corollary 2). In ad-
dition, by observing that overlap is trivially bounded by the
number of parties, we can get as an immediate corollary that
HD-NE is fixed-parameter tractable by discrepancy and the
number of parties. We show that the XP algorithm is in fact
the best we can hope for since the problem is W[1]-hard when
parameterized only by overlap, even when every candidate
has zero cost (Theorem 5). In fact, our result shows that our
XP algorithm is essentially optimal, assuming the exponen-
tial time hypothesis (ETH). This is our main technical result;
our hardness reduction is rather intricate and requires a care-
ful design of an instance that utilizes Sidon sequences [Erdös
and Turán, 1941]. Next, we turn our attention to discrepancy
and span parameters. In Theorem 6 we derive a fixed-pa-
rameter tractable algorithm parameterized by the number of
candidate positions for all parties when every party has uni-
form cost over their candidates. Using this result and the fact
that the span bounds the number of different positions of the
candidates, we get as corollary that HD-NE is fixed-parame-
ter tractable by span, when every party suffers uniform cost
over the candidates (Corollary 7). In our last result, we show
that the problem is XP by discrepancy (Theorem 8).

Further Related Work. Since the original Hotelling-
Downs model was introduced, several extensions have been
proposed and studied [Brusco et al., 2012; Shen and Wang,
2016; Feldman et al., 2016b]. Two influential studies in-
clude [Stokes, 1963] and [Eiselt et al., 1993], which study
Hotelling-Downs framework in spatial competition. [Sen-
gupta and Sengupta, 2008] and [Eaton and Lipsey, 1975]
study modifications of the model by considering multiple
players and different voting rules, while [Ben-Porat and Ten-
nenholtz, 2019] studies the case where each party can choose
multiple positions on the line. In algorithmic game theory,
our research relates to Voronoi games where every player’s
utility depends on the points closest to them [Ahn et al.,
2004]. This is a highly studied problem on graphs and [Dürr
and Thang, 2007] proved that it is NP-complete to decide
whether a Nash equilibrium exists on arbitrary graphs. The
Hotelling-Downs model is closely related to other problems
from computational social choice [Feldman et al., 2016a;
Faliszewski et al., 2016; Ahn et al., 2004; Brusco et al., 2012]
and strategic voting [Meir, 2018].

2 Preliminaries
The space of the game we consider is [m] = {1, 2, . . . ,m},
which we view as a path with m positions. There is a set of
voters located on [m]; on position i there are vi ∈ N voters.
Parties. There are n parties Π1, . . . ,Πn that correspond
to the players of the game. Every party Πi has a set of
candidates Ci ⊆ [m], where Ci := {ci1, . . . , ciki

} and
ci1 < ci2 < . . . < ciki

. In addition, every candidate is as-
sociated with a cost given by pi : Ci → N. If pi(x) = ai
for every x ∈ Ci, then we say that the party suffers uniform
cost. To play the game, every party Πi has to nominate a sin-
gle candidate si ∈ Ci; this is the strategy of Πi. We denote
s = (si, s−i) as the strategy profile for the parties, where s−i

is the (n−1)-dimensional vector produced by s, after deleting
its i-th entry.
Utilities. The utility of party Πi under strategy profile
(si, s−i), is denoted ui(si, s−i). At a high level, ui(si, s−i) is
the number of voters that are located closest to the candidate
si chosen by party Πi compared to the candidates s−i chosen
by the rest of the parties, minus the cost pi(si) associated for
the chosen candidate. To define formally ui(si, s−i) we will
need the auxiliary sets R(si, s−i) and T (si, s−i). R(si, s−i)
contains all points of [m] that are closer to si compared to
any other sj different than si of s−i; T (si, s−i) contains all
points of [m] (at most two of them) that are in equal distance
to si and some other sj different than si of s−i. In addition,
given a strategy profile s and a j ∈ [m], define nj to be the set
of parties i ∈ [n] such that si = j. We are now ready to for-
mally define the utility of any party. So, the utility ui(si, s−i)
of party i under strategy profile (si, s−i), where si = j, is

1

|nj |
·

 ∑
ℓ∈R(si,s−i)

vℓ +
∑

ℓ∈T (si,s−i)

vℓ
2

− pi(si).

Strategy si ∈ Ci is a best response against s−i, if
ui(si, s−i) ≥ ui(s

′
i, s−i), for every s′i ∈ Ci. A strategy pro-

file is a Nash equilibrium if every party plays a best response;
in other words, in a Nash equilibrium no party can increase
its utility by unilaterally changing its strategy.
Definiton 1 (HOTELLINGDOWNS-NE (HD-NE)). Input:
I = ⟨m,n, C,P,V⟩, where [m] is the space of the game,
n is the number of parties, C = {C1, . . . , Cn} is the set of
candidate sets, P = {p1, . . . , pn} are the cost functions, and
V = {v1, . . . , vm} are the voters on every position. Question:
Is there a Nash equilibrium for I?
Parameters. We will study the complexity of HD-NE un-
der the following parameters.

• Parties. This is the number of parties n.
• Candidate-positions. This is the number of different

positions of the candidates for all the candidates of all
the parties, formally |C1 ∪ C2 ∪ . . . ∪ Cn|.

• Discrepancy. This parameter captures the distance be-
tween the candidates within every party and is defined
as maxi∈[n]{ciki − ci1}. We denote the discrepancy of
an instance I as d(I), or d if the instance is clear from
the context.
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• Span. This parameter captures the distance between the
leftmost and the rightmost candidate, formally the span
is maxi∈[n] ciki

−mini∈[n] ci1.

• Overlap. This parameter captures the maximum num-
ber of parties who intersect on the line. For every
j ∈ [m], define oj := {i ∈ [n] : j ∈ [ci1, ciki ]}. The
overlap parameter is then defined as maxj∈[m] |oj |. We
denote the overlap of an instance I as ov(I) or ov if the
instance is clear from the context.

Parameterized Complexity. Parameterized complexity
studies the running-time of an algorithm with respect to a
parameter k ∈ N0 and input size n [Cygan et al., 2015]. The
most favorable complexity class is FPT, which contains all
problems that can be decided by an algorithm running in time
f(k) · nO(1), where f is a computable function. Algorithms
with this running-time are called fixed-parameter (FPT)
algorithms. A less favorable, but still positive, outcome
is an XP algorithm, which has running-time O(nf(k));
problems admitting such algorithms belong to the class XP.
Showing that a problem is W[1]-hard rules out the existence
of a fixed-parameter algorithm under the well-established
assumption that W[1] ̸= FPT.

3 Overlap
In this section we study HD-NE under the overlap parame-
ter. We first design an XP algorithm for the problem. Our
algorithm in fact allows us to derive fixed-parameter tractable
algorithms as corollaries that are parameterized by overlap
and discrepancy, or by discrepancy and number of parties.

Theorem 1 (⋆). HD-NE admits an XP algorithm parame-
terized by overlap and it runs in time O(dO(ov) · ovO(ov) ·
poly(|I|)), where |I| is the size of the input.

The algorithm is a dynamic programming along the space
of the game [m]. For each j ∈ [0,m + 1] we will compute
a table Γj . In order to define Γ0 and Γm+1, we define o0 =
om+1 = ∅. The table Γj has entries for some tuples of the
form (Nom,#Parties,Left,Right, aft, bef), where:

• Nom represents overlap nominees, that is for each party
i ∈ oj it contains a single candidate si ∈ Ci representing
the strategy of the party Πi;

• #Parties contains for each i ∈ oj the number ni ∈ [ov]
that represents the number of parties with the strategy si;

• Left contains for each i ∈ oj the position ℓi ∈ [m] ∪
{−∞}, representing the position of a closest nominee
selected as a strategy to the left of si;

• Right contains for each i ∈ oj the position ri ∈ [m] ∪
{∞}, representing the position of a closest nominee se-
lected as a strategy to the right of si;

• aft ∈ [j,m]∪{∞} represents the position of the closest
nominee selected as a strategy to the right of j− 1 (after
j − 1);

• bef ∈ {1, . . . j} ∪ {−∞} represents the position of the
closest nominee selected as a strategy to the left of j+1
(before j + 1).

We call each such tuple a configuration for j. We do not care
about all configurations for j; we care only about those for
which there exists a strategy profile s, called a satisfiability
witness, that conforms to the intended meaning of the config-
uration σ = (Nom,#Parties,Left,Right, aft, bef). A con-
figuration is satisfiable, if it admits a satisfiability witness.

Claim 1 (⋆). Given a configuration σ, we can in polynomial
time verify if there exists a satifiability witness of σ.

Claim 2. There are at most O(d3|oj |+2 · ov|oj |) many sat-
isfiable configurations for j and we can enumerate them in
O(d3|oj |+2 · ov|oj | · poly(|I|)) time.

Proof of Claim. Since for each i ∈ oj the party Πi has a
candidate at the position si, it follows that there are at most
|Ci| ≤ p + 1 possibilities for si for each i ∈ si. To verify
that, given si we have at most 2p + 2 many possibilities of
ℓi, we observe that it is either −∞ or it is within p positions
to the left of si, or there is a party Πi′ such that ci′ki′ < si
and for every party Πi′′ either ci′′ki′′ ≤ ci′ki′ or ci′′ki′′ ≥ si.
Since the configuration is satisfiable, we get that ℓi ≥ ci′1.
Moreover, by the choice of i′, no party has a candidate be-
tween ci′ki′ and si − p − 1. Finally, since if ℓi ̸= −∞, then
at least one party has to have a candidate at the position ℓi, it
follows that ℓ ∈ {−∞} ∪ [ci′1, ci′ki′ ] ∪ [si − p, si − 1]. By
an analogous argument, we can also show that there are only
2p+ 2 positions to consider for ri (i ∈ oj), aft, and bef .

Γj contains an entry for each satisfiable configuration and
Γj [(Nom,#Parties,Left,Right, aft)] is either NONE, or it
is a single partial strategy profile s that contains a strategy for
every party Πi with ci1 ≤ j, such that s satisfies the following
conditions:

1. for every i ∈ oj , the strategy of Πi is si;

2. for every i ∈ oj , if si ≤ j, then the number of parties
Πi′ such that the strategy of Πi′ is si is exactly ni;

3. for every i ∈ oj , no party has its strategy between ℓi
and si, moreover if ℓi ≤ j, then there exists a party with
strategy ℓi in s;

4. for every i ∈ oj , no party has its strategy between si
and ri, moreover if ri ≤ j, then there exists a party with
strategy ri in s.

5. for every si ∈ s, if si ≤ j, then si ≤ bef , moreover
there exists a party Πi′ with strategy bef in s;

6. for every party Πi and every s′i ∈ Ci ∩ [j] it holds
ui(si, s−i) ≥ ui(s

′
i, s−i), where the value of ui is com-

puted under the assumption that besides the parties with
a strategy in s there are additional parties with strategy
aft and the strategies ℓi and ri for i ∈ oj .

It is easy to see that Γm+1 contains at most m +
1 entries, one for each satisfiable configuration σbef =
(∅, ∅, ∅, ∅,∞, bef), bef ∈ [m] ∪ {−∞}, and any Nash equi-
librium s for the original instance satisfies all the conditions
for Γm+1[σbef ], for some satisfiable configuration σbef . Fi-
nally, if Γm+1[σbef ] is not NONE, then it contains a strategy
profile s that has a strategy for every party in [n], which is a
satisfiability witness for σbef . Moreover, from the fact that
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om+1 = ∅ and Condition 6, it follows that s is a Nash equi-
librium. It remains to show that we can correctly compute
values for all configurations with a satisfiability witness and
all tables Γ0, . . . ,Γm+1.

Claim 3 (⋆). We can compute Γ0 in time O(d).

Claim 4 (⋆). Given Γj , we can compute Γj+1 in time
O(dO(ov) · ovO(ov) · poly(|I|)).

Proof Sketch of Claim. It follows from Claim 2 that it suf-
fices to compute each entry in Γj+1 in time polynomial in |Γj |
and |I|. Let σ = (Nom,#Parties,Left,Right, aft, bef) be
a satisfiable configuration for Γj+1. First note that, for each
i ∈ oj+1 we can determine whether the utility of j + 1 is at
most the utility of si under any satisfiability witness. Hence,
we can already now check that ui(j + 1, s−i) ≤ ui(si, s−i)
for every i ∈ oj+1. From now on, we assume that it holds that
ui(j + 1, s−i) ≤ ui(si, s−i) for every i ∈ oj+1, where utili-
ties are computed under the assumption that aft, bef , and ni′ ,
ℓi′ , ri′ , for all i′ ∈ oj+1, have their intended meaning in s.

We say that σ′ = (Nom′,#Parties′,Left′,Right′, aft′,
bef ′) for Γj is a configuration that is compatible with σ, if
the following is satisfied: (a) for every i ∈ oj ∩oj+1, si = s′i,
ni = n′i ℓi = ℓ′i, and ri = r′i; (b) either bef = bef ′ or
bef = aft = j + 1; (c) either aft = aft′ or bef ′ = aft′ = j;
(d) if si = j+1 for i ∈ oj+1, then ℓi = bef ′; and (e) if s′i = j
for i ∈ oj , then r′i = aft.

To finish the proof of the claim one only needs to show
Γj+1[σ] is not NONE if and only if there exists a compatible
configuration σ′ such that Γj+1[σ] is not NONE.

The theorem is proven by applying Claim 3, then Claim 4
m+ 1 times, and finally checking all entries in Γm+1.

The running time of the XP algorithm from Theorem 1 im-
mediately yields the following corollary.

Corollary 2. HD-NE is fixed-parameter tractable parame-
terized by overlap and discrepancy.

In addition, since overlap is trivially bounded by the num-
ber of parties, Corollary 2 gives the following.

Corollary 3. HD-NE is fixed-parameter tractable parame-
terized by discrepancy and number of parties.

3.1 W[1]-hardness
Next, we derive W[1]-hardness for HD-NE, when parame-
terized by overlap. To prove our result, we reduce from PAR-
TITIONED SUBGRAPH ISOMORPHISM (PSI), which proves
that the XP algorithm from Theorem 1 is essentially optimal,
unless the exponential time hypothesis (ETH) fails 1.

In PSI we are given as input two undirected graphs G and
H with |V (H)| ≤ |V (G)| (H is smaller) and a mapping
ψ : V (G) → V (H) and the task is to determine whether H
is isomorphic to a subgraph of G, i.e., decide if there is an in-
jective mapping ϕ : V (H) → V (G) such that {ϕ(u), ϕ(v)} ∈
E(G) for each {u, v} ∈ E(H) and ψ ◦ ϕ is the identity.

1ETH states that 3SAT, the canonical NP-complete problem,
cannot be solved in subexponential time [Impagliazzo and Paturi,
2001].

Theorem 4 (see [Marx, 2010] and [Eiben et al., 2019]).
If there is an algorithm A and an arbitrary function f
such that A correctly decides every instance (G,H,ψ) of
PSI with the smaller graph H being 3-regular in time
f(|V (H)|)|V (G)|o(|V (H)|/ log |V (H)|), then ETH fails.2

Theorem 5 (⋆). HD-NE is W[1]-hard parameterized by
overlap of the input instance, even when the cost of the each
position for each party is zero. Moreover, assuming ETH,
there is no (n+m)o(ov)/ log(ov) time algorithm for HD-NE.

Proof Sketch. We give a reduction from an instance
(G,H,ψ) of PSI with H being 3-regular to HD-NE, such
that n + m is polynomial in the number of vertices of the
graph G and overlap is linear in the number of vertices of H .

Let q = |V (H)| and let V1, V2, . . . , Vq be the partition of
V (G) given by ψ−1. Hence, two vertices u, v ∈ V (G) are
in the same part if and only if ψ(u) = ψ(v). Let us denote
by ψ(Vi), i ∈ [q], the vertex ψ(u) for u ∈ Vi (it is the same
for every u ∈ Vi). Moreover, if for i, j ∈ [q] there is an edge
between ψ(Vi) and ψ(Vj) in E(H), then let Ei,j denote all
the edges with one endpoint in Vi and the other in Vj . Note
that the task in PSI is to select exactly one vertex in each of the
sets Vi, i ∈ [q], such that if ψ(Vi)ψ(Vj) is an edge in H and
we selected vi in Vi and vj in Vj , then vivj is an edge in Ei,j .

We now construct an instance of HD-NE that has a Nash
equilibrium if and only if (G,H,ψ) is Yes-instance of PSI.

The instance will have the following parties:
• for each i ∈ [q], there is a party Ri and a party Gi;
• for each i, j ∈ [q] such that there is the set Ei,j (i.e.,

there is the edge ψ(Vi)ψ(Vj) in H) we have a party Bi
j

(note that parties Bi
j and Bj

i are different);

• for each i, j ∈ [q] such that there is the set Ei,j and each
ℓ ∈ [|Ei,j | − 1] there is party P ℓ

i,j ;
• there are many so-called “dummy” parties, each dummy

party will have exactly one candidate and the main pur-
pose of dummy parties is to separate the gadgets we cre-
ate. We denote the set of dummy parties D.

We will now create |V (H)| + |E(H)| many “gadgets”,
where each gadget is a path and represents a subinterval of
the space of the game. Each gadget will start and end with
a candidate from some dummy parties that they have to be
selected always as a strategy of these dummy parties. Hence,
every non-dummy party that selects a candidate in some gad-
get, will only get voters inside that gadget. The game space is
obtained by putting these gadgets in series in arbitrary order.

To create our gadgets we need to assign to every vertex
of G a unique number such that given the sum of values as-
signed to two different vertices, we can uniquely determine
the vertices. That is if we afterwards assign to each edge the
sum of its endpoints, then each edge will be assigned a dif-
ferent value. Fortunately, such an assignment always exists.
Indeed, a Sidon sequence is a sequence of natural numbers
such that the sum of every two distinct numbers in the se-
quence is unique. Moreover, a result by [Erdös and Turán,

2We would like to point out that, as far as we know, it is open
whether PSI admits even an f(|V (H)|)·|V (G)|o(|V (H)|) algorithm.
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Figure 1: Illustration of the vertex set gadget for Vi. Above each
candidate is the party it belongs to, below is its position.

Figure 2: Illustration of the edge set gadget for Ei,j .

1941] implies that a Sidon sequence containing |V (G)| el-
ements, whose largest element is at most 8|V (G)|2, can be
found in polynomial time. In the following we will assume
that we are given such a Sidon sequence S and that for ev-
ery x, y ∈ S we have |x − y| ≥ 10 and min(x, y) > 10.
Finally, before we construct the gadgets, we also need to fix
some large number M that is much larger than max(S). Let
us fix, for example, M = (10max(S) + 100)2. Note that
M = O(|V (G)|4).

Let us assign to every vertex in G a unique number in S .
For the sake of exposition, for any i ∈ [q] and x ∈ S , we
will denote by vix the vertex of Vi that has been assigned the
number x from the Sidon sequence S . For each i ∈ [q], let Si

denote the elements of S assigned to vertices in Vi.
We will have two types of gadgets:

Vertex Set Gadget. For every i ∈ [q], we create the
following gadget, called the vertex set gadget for Vi, (see
Figure 1 for a depiction of the gadget). The gadget has
2M + 4 · max(Si) + 4 positions. We describe the gadget
as it was the interval [2M + 4 ·max(Si) + 3]. We have two
dummy parties, one with a unique candidate at 1 and one with
a unique candidate at 2M + 4 · max(Si) + 4. The party Gi

has a candidate at position 2. The party Ri has candidates
at position 2M + 4x + 3 for each x ∈ Si and a candidate
at 2M + 3. Each candidate, besides the candidate at the po-
sition 2M + 3, is associated with a single vertex in Vi and
we associate the candidate at the position 2M + 4x+ 3 with
the vertex vix (this is the vertex associated with the number
x ∈ S). Each of the parties Bi

j has a candidate at position
2M + 4x for each x ∈ Si. The party Ri will not have any
other candidate, while Gi and Bi

j’s will have also candidate
in other gadgets. Finally, there is a single voter at every po-
sition in [2M + 4 ·max(Si) + 3]. The intention behind this
gadget is that in a Nash equilibrium, Gi selects the candidate
at position 2, parties Bi

j do not choose their candidate inside
the vertex set gadget for Vi, and Ri chooses some candidate
at position 2M + 4x + 1, for some x ∈ Si, representing the
selection of the vertex vix from Vi. Note that in this case the
utility of Ri is M + 2max(Si), regardless of the selection of
x and the utility of Gi is M + 2x+ 1.
Edge Set Gadget. For every Ei,j we create the following
edge set gadget. Note that an edge e = vixv

j
y in Ei,j is as-

sociated with the number x + y and each edge is associated
with a different number. First, we order the edges in Ei,j in
ascending order according to x + y. Let us denote the ℓ-th
edge in this ordering eℓi,j . The edge set gadget is split into

Figure 3: Illustration of the edge gadget for eℓi,j . Above each can-
didate are the parties it belongs to, below each position with at least
one voter is the number of the voters at the position. At the bottom
are the indexes of the positions within the edge gadget.

|Ei,j | many ”edge” gadgets, each starting and ending with a
dummy candidate (i.e., a candidate for a dummy party) such
that the dummy candidate at the end of the gadget for the edge
eℓi,j , ℓ ∈ [|Ei,j | − 1], is the same as the dummy candidate at
the start of the gadget for eℓ+1

i,j (see Figure 2 for illustration).

The edge gadget of eℓi,j looks as follows (see Fig. 3 for
illustration). It has 199 positions and we describe it as the
interval [199]. There are two dummy parties with candidate
at 1 and 199. If ℓ > 1, then the party P ℓ−1

i,j has a candidate at
position 100. Similarly if ℓ < |Ei,j |, then P ℓ

i,j has also can-
didate at position 100. The party Gi has candidates at 15 and
25 and the party Bi

j has the candidate at position 20. Sym-
metrically, Gj has candidates at 175 and 185 and the party
Bj

i has the candidate at position 180. The number of voters
depends on the two vertices vix and vjy such that eℓi,j = vixv

j
y .

There is 1 voter at positions 11 and 189, there are 2x voters
at position 55 and 2y voters at position 145, finally there at
M voters at positions 75 and 125. The intention is that each
party P ℓ

i,j selects one of the two of its candidates in a way that
no two of these parties select the same candidate. In this case
the utility of P ℓ

i,j is 2(M + x + y) for some x, y ∈ S . This
leaves precisely one of the edge gadget inside of the edge set
gadget for Ei,j empty, in which the parties Bi

j and Bj
i select

their candidate. Bi
j gets utility M + 2x+ 1, for some x ∈ Si

and Bj
i gets utility M + 2y + 1, for some y ∈ Sj .

To obtain the game space we just fix an arbitrary ordering
of the vertex set and edge set gadgets and identify the candi-
date for the dummy party at the end of one gadget with the
candidate for the dummy party at the start of the next gadget
in the ordering. The game space is then [m], where m is the
position of the last dummy candidate. Note that each vertex
set gadget has length O(M + max(S)) = O(|V (G)|4) and
each edge set gadget has length O(|Ei,j |) = O(|V (G)|2).
Hence m = O(|V (H)| · |V (G)|4) = O(|V (G)|5). This fin-
ishes the construction of the instance. It is rather straightfor-
ward to verify that each set oj can contain an index of at most
one dummy party and at most two from the P j

ℓ,i parties. Since
the number of remaining parties is O(|V (H)| + |E(H)|) =
O(|V (H)|), the overlap of the instance is indeed O(|V (H)|).
It only remains to verify that the “intended strategy profile”
is the only possible Nash equilibrium of the instance and it
exists if and only if the instance (G,H,ψ) of PSI has a solu-
tion.
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4 Number of Positions, Discrepancy and Span
In this section, we study the number of different positions
for the candidates, the discrepancy, and the span. First, we
focus on the case where parties suffer uniform cost over the
candidates. This allows us to derive a fixed-parameter tracta-
ble algorithm by the number of candidates.

Theorem 6 (⋆). When every party suffers uniform cost, HD-
NE is in FPT parameterized by candidate positions.

Proof Sketch. Let cdp = |C1 ∪ · · · ∪ Cn|. We observe that
for every party Πi, we have Ci ⊆ C1 ∪ · · · ∪ Cn and hence
there are only 2cdp many different possibilities for the set of
the candidates of a party. For this proof, we will call the set
Ci the type of the party Πi. Since there are only 2cdp many
types and each type has at most cdp many candidates, we can
for each type t and each candidate j in the type branch on
whether at least one party of type t nominates j as the strat-
egy of the party in an Nash equilibrium. Moreover, for each
j ∈ C1 ∪ · · · ∪ Cn, we can branch on whether zero, one, or
at least two parties select j as their strategy. This results to
3cdp · 2cdp ·2cdp many branches. Moreover, in each branch,
the positions of all strategies in a strategy profile are deter-
mined by the branch and this is true even after removing one
party strategy from the profile. Given this, and since the par-
ties suffer uniform costs, the position of a best response for
each party only depends on the number of parties at each of
the positions determined by the branch. Moreover, given two
candidates j1 and j2 one can easily derive a linear inequality
(with number of parties with strategies j1 and j2, respectively,
as variables) that is satisfied if and only if the party is happy
with position j1 and switching to j2 would not increase its
utility. Moreover, this inequality is exactly the same for every
party with strategy j1 and candidate at j2. This allows us to
create in each branch an instance of INTEGER LINEAR PRO-
GRAMMING (ILP) that has variables xj , j ∈ C1 ∪ · · · ∪ Cn,
representing the number of parties with the strategy j and ytj
representing the number of parties of type t with strategy j.
The inequalities in the ILP then ensure that any solution to
the inequality is consistent with the branch, each party is as-
signed some strategy and if ytj ≥ 1, then j is a best response
for every party of type t. Note that the number of variables in
the ILP is at most cdp ·(1+ 2cdp), and hence it can be solved
in FPT-time [Lenstra, Jr., 1983].

Observe that the number of different positions for the can-
didates is trivially bounded by the span plus 1.

Corollary 7. When every party suffers uniform cost, HD-NE
is in FPT parameterized by span.

Theorem 8 (⋆). HD-NE admits an XP algorithm parame-
terized by discrepancy.

Proof Sketch. Similarly as in the proof of Theorem 6, we will
refer to the set of candidates Ci of the party Πi as the type of
the party Πi. The algorithm is again a dynamic programming
along the space of the game [m]. For every j ∈ m we have
an entry for every tuple (X,Y, aft, bef), where

• X = (xj−d, xj−d+1, . . . , xj+d) and xj′ ∈ [|oj′ |]; xj′
represent the number of parties with strategy j′;

• Y contains a number ytj′ ∈ [|oj′ |] for every j′ in [j −
d, j + d] and every t the type of some party Πi with
i ∈ oj ; ytj′ represents the number of parties of type t
with strategy j′.

• aft ∈ [j + d + 1,m] ∪ {∞} represents the position of
the closest nominee selected as a strategy to the right of
j + d (after j + d).

• bef ∈ {1, . . . , j} ∪ {−∞} represents the position of the
closest nominee selected as a strategy to the left of j+1
(before j+1). In particular if for some j′ ∈ [j−d, j] we
have xj′ > 0, then bef is the maximum j′ ∈ [j − d, j]
such that xj′ > 0, else bef < j − d.

Now for every j ∈ [m] we will compute a table Γj that con-
tains for every tuple (X,Y, aft, bef) either NONE or a partial
strategy profile s that contains a strategy for every party Πi

with ci1 ≤ j that is consistent with the tuple (X,Y, aft, bef).
We say that s is consistent with (X,Y, aft, bef) if:

1. for j′ ∈ [j − d, j], the number of parties with strategy j′
is precisely xj′ and for j′ ∈ [j + 1, j + d] it is at most
xj′ ;

2. for j′ ∈ [j − d, j, j + d] and type t, if Y contains ytj′ ,
then the number of parties of type t with strategy j′ is
precisely ytj′ ;

3. for every si ∈ s, if si ≤ j, then si ≤ bef , moreover
there exists a party Πi′ with strategy bef in s;

4. every party with a strategy in s plays the best response
if we assume in addition that the number of parties with
strategy j′ ∈ [j + 1, j + d] is precisely xj′ , there exist
at least xj′ parties with candidate j′, and there is a party
with candidate aft.

We finish the proof by showing that we need to consider only
(ov+1)(2d+1)(1+22d+1) · (2d+1)2 many tuples, we can com-
pute Γ0, and we can compute Γj+1 from Γj .

5 Conclusions
Our results show that natural constraints on the positions
of the candidates can, in many cases, yield fixed-parameter
tractable algorithms. To this end, there are several interesting
questions that stem from our work. First, can we strengthen
Theorem 6 by removing the assumption of uniform cost, or
does the problem become W[1]-hard? Another question is
whether HD-NE is in FPT parameterized by the discrepancy.
A different direction is to combine the model from [Ben-Porat
and Tennenholtz, 2019], where parties can choose more than
one positions, with our model.

Another, really intriguing, question is the computation of
mixed Nash equilibria; there each party chooses a candidate
according to a probability distribution. Then, a Nash equi-
librium always exists. In fact, in this case the problem be-
comes very interesting even if there are only two parties. If
the parties have uniform costs, then the underlying game is
constant sum and a Nash equilibrium can be computed via
linear programming. On the other hand, if the parties suffer
general costs, then it is not clear whether a polynomial-time
algorithm exists, or the problem becomes PPAD-complete!
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