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Abstract
We contribute to the programme of lifting propor-
tionality axioms from the multi-winner voting set-
ting to participatory budgeting. We define novel
proportionality axioms for participatory budget-
ing and test them on known proportionality-driven
rules such as Phragmén and Rule X. We investi-
gate logical implications among old and new ax-
ioms and provide a systematic overview of propor-
tionality criteria in participatory budgeting.

1 Introduction
First introduced in Porto Alegre, Brazil in 1988, Participatory
budgeting (PB) is a democratic budgeting practice in which
citizens are consulted, through some voting method, on how
to best allocate a given budget to public projects. The practice
is attracting increasing attention from both democracy practi-
tioners worldwide and researchers, among others within com-
putational social choice [Aziz and Shah, 2021].

The axiomatic study of PB has formulated a number of cri-
teria for the desirable behaviour of participatory budgeting
methods, or PB rules. Special attention has been dedicated to
forms of ‘fairness’ or ‘proportionality’. Intuitively, one may
want a PB rule to output a division of the available budget
over the projects that ‘reflects’ divisions in the voters’ prefer-
ences. A variety of proportionality axioms has been proposed
in recent literature, and this paper provides a first systematiza-
tion of the axiomatic landscape of proportionality in PB and
its special case of multi-winner voting (MWV, [Faliszewski et
al., 2017]), or committee selection, that is, a PB setting where
all projects (referred to as candidates) have identical cost.

State of the art. The current understanding of propor-
tionality in PB is rooted in MWV [Skowron et al., 2017;
Peters, 2018]. A key fairness axiom in MWV is justified rep-
resentation (JR) [Aziz et al., 2017]. In short, JR requires that
if a large enough group of voters agrees about a candidate,
there is at least one candidate in the chosen committee that
at least one of the group members approves. Proportionality
requirements have been added with the axioms of extended
justified representation (EJR) [Aziz et al., 2017] and propor-
tional justified representation (PJR) [Sánchez-Fernández et
al., 2017], following the intuition that if a larger group agrees

about more candidates, they should be represented by more
candidates in the winning committee. Aziz et al. [2018] gen-
eralize these concepts from MWV to PB within an approval
voting framework. A related fairness concept is the core [Fain
et al., 2016]. A set of projects, or bundle, is a core bundle if
there is no subset of agents who can afford a different bundle
(with their own share of the total budget) where every agent
in that subset gets more utility than in the chosen bundle.

In [Peters and Skowron, 2020], two MWV rules considered
to be proportional—Proportional Approval Voting (PAV) and
Phragmén’s rule (or simply Phragmén)—are analysed, and
shown to guarantee different types of proportionality. PAV
induces a fair distribution of welfare, so every group of agents
gets a utility proportional to its size, while Phragmén can be
seen as inducing a fair distribution of power: the influence of
a group of agents is proportional to its size. The authors intro-
duce two new proportionality axioms: priceability and lami-
nar proportionality (LP), and a new rule, Rule X, that is sim-
ilar to both PAV and Phragmén, but satisfies both new axioms
and the aforementioned EJR. Finally, work has started explor-
ing the logical relations between the proportionality axioms
proposed in the literature. For instance, Peters et al. [2021]
show that, in MWV, the core implies EJR, PJR, and JR. Mov-
ing to PB, research has focused on assessing the extent to
which the above MWV axioms and rules can be meaningfully
generalised to PB. Pierczyński et al. [2021] generalise Rule
X and EJR to PB, and show that, even in this context, Rule
X satisfies EJR.1 The PB variant of Rule X is also shown to
satisfy an approximation of the core and the axiom of price-
ability for PB. PAV is generalised to PB too, and shown to fail
EJR without the unit-cost assumption.

Contribution. We make two contributions. First, we com-
plete the study of proportionality for Phragmén and Rule X
in the PB setting with respect to the axioms mentioned above
(Table 3). To do so, we propose novel generalizations of PJR
and LP (Definitions 7 and 11) from the MWV to the PB set-
ting. Second, we provide an overview of the logical relations
between proportionality axioms in MWV and PB, establish-
ing several novel results (see Figure 1). The resulting picture
contributes to a systematization of how proportionality is in-
terpreted in PB. Only selected proofs are provided.

1Pierczyński et al. [2021] call Rule X in the PB setting ‘method
of equal shares’ (MES). For simplicity we stick to the term Rule X.
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Figure 1: Relations among proportionality axioms in PB. Dashed
lines indicate relations that only hold in MWV. Arrows are labelled
either by our results or the paper where they have been proven. Some
of the implications only hold under certain conditions or restrictions:
laminar instances (Definition 10), and unanimity affordability (u-
afford, Definition 12). Transitive arrows are omitted. Absence of
arrows denotes the existence of a counterexample.

2 Preliminaries
2.1 The Participatory Budgeting (PB) Problem
We denote the set of projects (or candidates) by C =
{c1, c2, ..., cm} and the set of voters by N = {v1, v2, ..., vn}.
Each voter i comes with a function ui assigning a utility
to all projects. In the fully general setting of utility-based
PB, ui : C → [0, 1]. In contrast, in the special case of
approval-based PB, the utility function is restricted to two
values: ui : C → {0, 1}, determining voter i’s approval
set Ai = {c ∈ C : ui(c) = 1}. The utility of a set of
projects T ⊆ C for a set of voters S ⊆ N is defined ad-
ditively as: uS(T ) =

∑
i∈S

∑
c∈T ui(c). A profile P is a

vector of the utility functions of all voters: P = (u1, ..., un).
If utilities are approval-based we denote with C(P ) the set
of all projects occurring in the approval sets in P . A func-
tion cost: C → Q+ assigns a cost to every project. The cost
of a set of projects T is given by cost(T ) =

∑
c∈T cost(c).

The total budget is denoted by l. If l is not mentioned, it is
equal to 1. Hence, an election instance (also called a PB-
instance) E = (N,C, cost, P, l) consists of a set of voters
N , a set of projects C, a cost function, a profile P , and a
budget l. If all else is clear in context, we abbreviate this to
E = (P, l). A voting rule R maps an election instance E
to a winning bundle W . A PB-instance where for all i ∈ N
ui : C → {0, 1} is called approval-PB-instance. The special
case of an approval-PB-instance in which all projects have the
same cost is called a MWV-instance. In such MWV setting,
we refer to a bundle as a committee.

2.2 Voting Rules
We focus on three proportionality-inspired rules: (sequential)
Phragmén, proportional approval voting (PAV) and Rule X.
Below, we recall the generalizations of Phragmén, PAV, and
Rule X to PB introduced by Pierczyński et al. [2021].
Phragmén Every voter gets currency continuously at the rate
of one unit of currency per unit of time. At the first mo-
ment t when there is a group of voters S who all approve
a not-yet-selected project c, and who together have cost(c)
units of currency, the rule adds c to the bundle and asks the

project cost utilities Winning bundles
c1 0.4 1 0.7 0.1 0 ✓
c2 0.3 0.3 0.4 0 0.4 ✓ ✓
c3 0.7 0.1 0.2 0.4 0.4 ✓
c4 0.35 0 0.4 0.2 1 ✓ ✓

v1 v2 v3 v4 Phragmén PAV Rule X

Table 1: The profile used in Examples 1 and 2. Each column con-
tains the utilities per project of a voter. The budget l = 1.

voters from S to pay the cost of c (i.e., the rule resets the
balance of each voter from S), while the others keep their so-
far earned money. The process stops when it would select a
project which would overshoot the budget.
PAV The winning bundle W of PAV is the bundle with
cost(W ) ≤ l that maximises the score PAV-score(W ) =∑

i∈N

(
1 + 1

2 + 1
3 + · · ·+ 1

|W∩Ai|

)
.

Rule X The rule starts by giving each voter an equal fraction
of the budget. In case of a budget of 1, each of the n voters
gets 1

n unit of currency. We start with an empty bundle W =
∅ and sequentially add projects to W . To add a project c to W ,
the voters have to pay for c. Write pi(c) for the amount that
voter i pays for c; we will need that

∑
i∈N pi(c) = cost(c).

Let pi(W ) =
∑

c∈W pi(c) ≤ 1
n be the total amount voter i

has paid so far. For ρ ≥ 0, we say that a project c /∈ W is ρ-
affordable if

∑
i∈N min( 1n−pi(W ), ui(c)·ρ) = cost(c). The

rule iteratively selects a project c /∈ W that is ρ-affordable
for a minimum ρ. Individual payments are given by pi(c) =
min( 1n − pi(W ), ui(c) · ρ). If no project is ρ-affordable for
any ρ, Rule X terminates and returns W .
Remark 1. Note that Phragmén and PAV work with
approval-based while Rule X with utility-based ballots. In
what follows, when discussing the first two rules, we will
therefore presuppose approval-PB-instances. Notice also
that all three rules are non-resolute.
Example 1. Consider the profile in Table 1. To get the ap-
proval profile needed for Phragmén and PAV, we binarize the
utility function using a threshold of 0.3: voters approve a
project when it yields utility of at least 0.3. Approved projects
are shaded. Phragmén will first select c2 at time t = 0.1,
which leaves voter v3 with 0.1 units of currency. Then at
t = 0.275, v2 and v4 can together buy c4, which leaves v1
with 0.175 and v3 with 0.275. After adding c4, the rule ends
since both remaining projects are not affordable and outputs
W = {c2, c4}. For PAV, we compute the PAV-score of four
sets: PAV-score({c1, c4}) = 3.5, PAV-score({c1, c2}) = 4,
PAV-score({c2, c3}) = 4.5, and PAV-score({c2, c4}) = 4
(clearly, smaller sets have a lower score and larger sets are
not affordable). Hence, PAV will select W = {c2, c3}. Rule X
starts by giving every voter 1

4 unit of currency. First, c4 is ρ-
affordable for ρ = 0.35

1.6 ≈ 0.219, then, for ρ = 0.4
1.8 ≈ 0.222,

c1 is ρ-affordable. After selecting c1, the sum of the remain-
ing amounts of all voters is 0.25, so the other projects are not
ρ-affordable for any ρ. Hence, Rule X returns W = {c1, c4}.

2.3 Known Proportionality Axioms
We recall axioms for PB from Pierczyński et al. [2021] that
generalize known MWV axioms. We start with the axioms of
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core and extended justified representation (EJR).
Definition 1 (Core). For a given PB-instance E =
(N,C, cost, P, l), a bundle W is in the core if for every
S ⊆ N and T ⊆ C with |S| ≥ cost(T )

l · n there exists i ∈ S
such that ui(W ) ≥ ui(T ). A voting rule R satisfies the core
property if for each PB-instance E the winning bundle R(E)
is in the core.

To define EJR, we first introduce (α, T )-cohesiveness:
Definition 2 ((α, T )-cohesiveness). A group of voters S is
(α, T )-cohesive for α : C → [0, 1] and T ⊆ C, if |S| ≥
cost(T )

l · n and if it holds that ui(c) ≥ α(c) for every voter
i ∈ S and each project c ∈ T .
Definition 3 (Extended justified representation). A rule R
satisfies extended justified representation (EJR) if for each
PB-instance E and each (α, T )-cohesive group of voters S,
there is a voter i ∈ S such that ui(R(E)) ≥

∑
c∈T α(c).

In Pierczyński et al. [2021], a weakening of EJR is consid-
ered, to which we refer as EJR-up-to-one.
Definition 4 (Extended justified representation up to one
project). A rule R satisfies extended justified representation
up to one project (EJR-up-to-one) if for each PB-instance E
and each (α, T )-cohesive group of voters S, there is a voter
i ∈ S such that ui(R(E)) ≥

∑
c∈T α(c) or for some a ∈ C

it holds that ui(R(E) ∪ {a}) >
∑

c∈T α(c).
In MWV, Definitions 3 and 4 are equivalent:

Proposition 1. Def. 3 and Def. 4 are equivalent in MWV-
instances.

We now turn to priceability, for which the notion of price
system needs to be introduced first.
Definition 5 (Price systems). A price system is a pair ps =
(b, (pi)i∈N ) where b ≥ 1 is the initial budget, and for each
voter i ∈ N , there is a payment function pi : C → R such
that (1) a voter can only pay for projects she gets at least some
utility from: if ui(c) = 0, then pi(c) = 0 for each i ∈ N and
c ∈ C, and (2) each voter can spend the same budget of b

n

units of currency:
∑

c∈C pi(c) ≤ b
n for each i ∈ N .

Definition 6 (Priceability). A rule R satisfies priceability (is
priceable) if for each PB-instance E, there exists a price
system ps = (b, (pi)i∈N ) that supports R(E), that is: (1)
for each c ∈ R(E), the sum of the payments for c equals
its price, i.e.,

∑
i∈N pi(c) = cost(c); (2) no project out-

side of the winning bundle gets any payment, i.e., for all
c /∈ R(E),

∑
i∈N pi(c) = 0; (3) there exists no non-

selected project whose supporters in total have a remaining
unspent budget of more than its cost, i.e., for all c /∈ R(E),∑

i∈N s.t. ui(c)>0

(
b
n −

∑
c′∈R(E) pi(c

′)
)
≤ cost(c).

Remark 2. The above properties are defined for PB.
Throughout the paper, when needing to refer to the MWV
specialization of a PB axiom, we will assume the axiom is
defined on MWV-instances. We say that a rule satisfies an ax-
iom in MWV-instances if, for all MWV-instances, the rule’s
winning bundle satisfies the axiom. Observe also that, since
Phragmén and PAV are defined on approval-PB-instances,
when we assess whether they satisfy an axiom, we consider
the axiom only with respect to approval-PB-instances.

3 Two Novel Axioms for PB
3.1 Proportional Justified Representation in PB
Sánchez-Fernández et al. [2017] define proportional justified
representation for MWV (we refer to it as MWV-PJR here).
We generalize this axiom to PB based on the generalisation
of EJR provided by Pierczyński et al. [2021]. Two steps are
involved: dropping the unit-cost assumption, and allowing
arbitrary utilities instead of just approval ones.

Definition 7 (Proportional justified representation). A rule
R satisfies proportional justified representation (PJR) if for
each PB-instance E and (α, T )-cohesive group of voters S,∑

c∈R(E)

(max
i∈S

ui(c)) ≥
∑
c∈T

α(c). (1)

The intuition is that, in the winning bundle, for each co-
hesive group S (cohesive in that S agrees to a certain degree
about the set of projects T ) there should be enough projects
to which at least one voter in S assigns enough utility.

Example 2. Consider the profile in Table 1, with the bun-
dle W = {c2, c3} as selected by PAV. Now consider the
group S = {v1, v2}. Probably both voters in S are happy
that c2 is selected, but they would both get more utility from
c1 than from the selected c2 or c3. Also, if each of them
would get their share of the total budget (14 ), they could to-
gether afford the set T = {c1}. Intuitively then, W is not
a fair bundle considering voters v1 and v2. Let us look at
it more formally. S is (α, T )-cohesive for α(c1) = 0.7
(α(c2), α(c3) and α(c4) are arbitrary) since the voters in
S can afford T with their share of the budget, and for both
of them u(c1) ≥ α(c1). However, Equation 1 is not sat-
isfied:

∑
c∈W (maxi∈S ui(c)) = 0.4 + 0.2 = 0.6, while∑

c∈T α(c) = 0.7. This shows that in the given election in-
stance, the bundle W does not satisfy PJR.

Our definition of PJR for PB is rather different from its
MWV variant. It requires some work to show that the pro-
posed definition reduces to the definition of MWV-PJR under
unit-cost assumption and approval preferences. First of all,
let us recall the definition of MWV-PJR:

Definition 8 (PJR for MWV [Sánchez-Fernández et al.,
2017]). An approval based voting rule R satisfies PJR for
MWV (MWV-PJR) if for every ballot profile P and committee
size k, the rule outputs a committee W = R(P, k) s.t.: for
every ℓ ≤ k and every ℓ-cohesive set of voters S ⊆ N , it
holds that |W ∩ (∪i∈SAi) | ≥ ℓ, where a set S is ℓ-cohesive
if |S| ≥ ℓ · n

k and | ∩i∈S Ai| ≥ ℓ.

We will need the following lemma:

Lemma 1. Let E = (N,C, cost, P, l) be an approval-PB-
instance where for all projects c, cost(c) = 1

k . Then: (a) for
given α : C → [0, 1] and T ⊆ C, any group of voters S ⊆ N
that is (α, T )-cohesive is also ℓ-cohesive for ℓ = |T ′| with
T ′ = {c ∈ T : α(c) > 0}; and (b) for every group S that is
ℓ-cohesive there are T ⊆ C with |T | = ℓ and α : C → [0, 1]
with α(c) = 1 for all c ∈ C, such that S is (α, T )-cohesive.

Theorem 1. MWV-PJR and PJR are equivalent in MWV-
instances.
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Proof Sketch. We show that on MWV-instances, Definitions
7 and 8 are equivalent. PJR ⇒MWV-PJR Assume that a
rule R satisfies PJR, and take an arbitrary MWV-instance
E. Because E satisfies the assumptions of unit-cost and ap-
proval based voting, the fact that R satisfies PJR boils down
to the following: for all S, α : C → [0, 1], and T ⊆ C with
|S| ≥ |T | · n

k and for which ui(c) ≥ α(c) for all i ∈ S
and for all c ∈ T , it is the case that |R(E) ∩ (∪i∈SAi)| ≥∑

c∈T α(c). Take arbitrary S ⊆ N and ℓ ≤ k and suppose
that S is ℓ-cohesive. According to Lemma 1(b), there are
T ⊆ C with |T | = ℓ and α : C → [0, 1] with α(c) = 1 for
all c ∈ C, such that S is (α, T )-cohesive. Because R satis-
fies PJR, this implies that |R(E)∩ (∪i∈SAi)| ≥

∑
c∈T α(c).

However, because of our choice of T and α, we know that∑
c∈T α(c) = |T | = ℓ, so |R(E) ∩ (∪i∈SAi)| ≥ ℓ, which

shows that R satisfies MWV-PJR. MWV-PJR ⇒PJR As-
sume that a rule R satisfies MWV-PJR. Take arbitrary MWV-
instance E, and suppose that a group S is (α, T )-cohesive.
Then according to Lemma 1(a), when we take T ′ = {c ∈ T :
α(c) > 0}, S is ℓ-cohesive for ℓ = |T ′|. Because R satisfies
MWV-PJR, it follows that |R(E) ∩ (∪i∈SAi)| ≥ ℓ = |T ′|.
By definition of T ′, |T ′| ≥

∑
c∈T ′ α(c) =

∑
c∈T α(c), so

|R(E) ∩ (∪i∈SAi)| ≥
∑

c∈T α(c) as desired.

Remark 3. To our knowledge, besides Definition 7, the only
generalization of MWV-PJR to PB is from Aziz et al. [2018].
They define an axiom called Strong-BPJR-L (where L stands
for the budget limit, to which we refer here as ℓ) that requires
the following: For a budget l, a bundle W satisfies Strong-
BPJR-L if for all ℓ ∈ [1, l] there does not exist a set of voters
S ⊆ N with |S| ≥ ℓnl , such that cost(∩i∈SAi) ≥ ℓ but
cost((∪i∈SAi)∩W ) < ℓ. It is possible to generalise this def-
inition further to allow arbitrary utilities instead of approval
votes. However, note that the requirement in this definition is
not that for every ℓ-cohesive S the utility of the projects they
all approve that are selected is at least ℓ, but rather the cost
of this set of projects. Although this is indeed a generalisation
of MWV-PJR, as is shown by Aziz et al. [2018], we consider
that the aim of PJR is to ensure a certain level of utility for ev-
ery group of voters, rather than a certain cost. Definition 7 is
equivalent to Strong-BPJR-L when assuming that a project’s
cost is directly proportional to a voter’s utility from it.

Like for EJR (Definition 4), we can add an up-to-one-
project condition to PJR:
Definition 9 (Proportional justified representation up to one
project). A rule R satisfies proportional justified represen-
tation up to one project (PJR-up-to-one) if for each PB-
instance E and each (α, T )-cohesive group of voters S,∑

c∈R(E)(maxi∈S ui(c)) ≥
∑

c∈T α(c) or for some a ∈ C

it holds that
∑

c∈R(E)∪{a}(maxi∈S ui(c)) >
∑

c∈T α(c).

3.2 Laminar Proportionality in PB
The basic idea of LP for MWV [Peters and Skowron, 2020]
is that if we know about a strict separation between different
parties, we can divide the chosen projects proportionally over
the parties. We generalize this notion to PB in the approval
voting setting by taking the budget l instead of the bundle size
k, and by using the cost of each project instead of unit-cost.

c3, 3
c2, 3 c5, 4
c1, 2 c4, 2

c6, 1
v1 v2 v3

Table 2: Example of a laminar proportional bundle W (shaded) in a
laminar election instance. Each column represents the approval set
of a voter (written beneath it), and each box shows a project with its
cost. E.g., voter v2 approves c6, c1, c2, and c3 and cost(c5) = 4.

Definition 10 (Laminar PB-instances). An approval-PB-
instance (P, l) is laminar if either: (1) P is unanimous and
cost(C(P )) ≥ l; (2) there is c ∈ C(P ) such that c ∈ Ai for
all Ai ∈ P , the profile P−c (i.e., P once we remove c) is not
unanimous and instance (P−c, l − cost(c)) is laminar (with
P−c = (A1\{c}, ..., An\{c})); or (3) There are two laminar
PB-instances (P1, l1) and (P2, l2) with C(P1) ∩ C(P2) = ∅
and |P1| · l2 = |P2| · l1 such that P = P1+P2 and l = l1+ l2.

Example 3. The instance P in Table 2 associated with the
budget l = 10 is laminar. The instance P1 with v1 and v2 and
projects c1, c2, and c3 with limit l1 = 6 satisfies the first item
of Definition 10, as does the instance P2 with only voter v3
and projects c4 and c5, and limit l2 = 3. Those two instances
can be added by Definition 10, item 3, since |P1| · l2 = 2 ·3 =
1 · 6 = |P2| · l1. Then c6 can be added by Definition 10, item
2, to get P with limit l = 6 + 3 + cost(c6) = 10.

Definition 11 (Laminar proportionality). A rule R satisfies
laminar proportionality (LP) if for every laminar PB-instance
E = (P, l), R(E) = W where W is a laminar propor-
tional bundle, i.e.: (1) if P is unanimous, then W ⊆ C(P )
(if everyone agrees, then part of the projects they agree on
is chosen); (2) if there is a unanimously approved project c
s.t. (P−c, l − cost(c)) is laminar, then W = W ′ ∪ {c} where
W ′ is laminar proportional for (P−c, l − cost(c)); or (3) If
P is the sum of laminar PB-instances (P1, l1) and (P2, l2),
then W = W1 ∪ W2 where W1 is laminar proportional for
(P1, l1) and W2 is laminar proportional for (P2, l2).

It is trivial that in case of unit-cost and budget k, these defi-
nitions are equivalent to the corresponding MWV definitions.

Example 4. Elaborating on Example 3, bundle W =
{c1, c2, c4, c6} (grey in Table 2) is laminar proportional in
that instance with a budget of l = 10. In (P1, l1), {c1, c2}
is laminar proportional, as is {c4} in (P2, l2). Hence,
{c1, c2, c4} is laminar proportional in (P1+P2, l1+ l2), and
{c1, c2, c4, c6} is laminar proportional in (P, l).

4 Proportionality Properties of Rules
Table 3 summarizes the findings of this section.

The literature already provides several results about PAV:
it does not satisfy the core, priceability, or LP in MWV (and
hence not in PB either). In MWV-instances PAV satisfies PJR,
but it does not in PB:

Proposition 2. PAV does not satisfy PJR.

We turn now to our analysis of Phragmén and Rule X.

Proposition 3. Phragmén satisfies PJR.
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PAV Phragmén Rule X
MWV PB MWV PB MWV PB

core ✗[Aziz et al., 2017] ✗[Brill et al., 2017] ✗[Peters and Skowron, 2020] ✗[Pierczyński et al., 2021]
EJR ✓[Aziz et al., 2017] ✗[Pierczyński et al., 2021] ✗[Brill et al., 2017] ✓[Peters and Skowron, 2020]✓up-to-1 [Pierczyński et al., 2021]
PJR ✓[Sánchez-Fernández et al., 2017] ✗(Prop. 2) ✓[Brill et al., 2017] ✓(Prop. 3)✓[Peters and Skowron, 2020] ✓up-to-1 (Prop. 6)
Price ✗[Peters and Skowron, 2020] ✓[Peters and Skowron, 2020] ✓(Prop. 4)✓[Peters and Skowron, 2020]✓[Pierczyński et al., 2021]
LP ✗[Peters and Skowron, 2020] ✓[Peters and Skowron, 2020] ✗(Prop. 5) ✓[Peters and Skowron, 2020] ✗(Prop. 5)

Table 3: Three rules and the properties they satisfy: ✓indicates satisfaction, ✗ failure. Shaded entries indicate new results, references to the
corresponding propositions or literature are included for each entry. Recall that PAV and Phragmén are assessed on approval-PB-instances.

Proof. Assume towards a contradiction that there exist a
group of voters S ⊆ N , a set of projects T ⊆ C, and a
function α : C → [0, 1] such that S is (α, T )-cohesive, and
for this S, α, and T , the winning bundle W of Phragmén does
not contain enough projects that voters from S like enough:∑

c∈W (maxi∈S ui(c)) <
∑

c∈T α(c). Note that in approval-
PB-instances this boils down to |W ∩∪i∈SAi| <

∑
c∈T α(c).

Because of (α, T )-cohesiveness, for every voter i ∈ S and
each project c ∈ T , ui(c) ≥ α(c), so either α(c) = 0 or
c ∈ Ai, and therefore

∑
c∈T α(c) ≤ |T ∩ ∩i∈SAi|. We

write T ′ for T ∩ ∩i∈SAi, and W ′ for W ∩ ∪i∈SAi. Hence,
|W ′| < |T ′| ≤ |T |. Let t be the moment when the rule
stops: a project c is reached that would overshoot the budget.
Clearly, cost(W ) + cost(c) > 1, but cost(W ) ≤ 1. Let x be
the amount of virtual money earned by all voters so far, so

t · n = x = cost(W ) + cost(c) + y, (2)
where y ≥ 0 is the money that non-supporters of c have
earned in the meantime. Because |W ′| < |T ′|, there must
be some project in T that is not in W . The voters in S to-
gether have earned x

n · |S|, and because S is (α, T )-cohesive,
|S| ≥ cost(T ) · n, so

x

n
· |S| ≥ cost(T ) · n · x

n
= cost(T ) · x. (3)

From (2) and the fact that cost(W ) + cost(c) > 1, it follows
that x > 1 + y (and x > 1). From (3), it follows that the
voters in S have earned enough together at time t to buy all
projects from T (and therefore from T ′), but have not done
so. Hence, either they have also paid for projects not in T ′,
or, if they only spent their money on projects in T ′, c must
be in T ′, i.e. they do have the virtual money to buy T ′ but
it would overshoot the budget. In the first case, for every
project not in T ′ that members of S pay for, |W ′| grows by
one (since they can only pay for projects they approve). In
order to keep |W ′| < |T ′|, the mean amount of money they
have paid at time t for such a project must be greater than
the mean cost of projects in T ′. Otherwise, the number of
projects they would pay for (that they approve of and that are
selected) would exceed the number of projects in T ′. How-
ever, for each project not in T ′ that voters from S pay for,
they should (as a group) pay less than the cost of any project
from T ′ not yet selected. Otherwise, they would have paid
earlier for a cheaper project from T ′. This is a contradiction.
Hence, the voters from S only spent their money on projects
from T ′, and c ∈ T ′. Let us assume that c is the last project
from T ′ that is not yet selected.2 Because the rule stops ex-
actly when c can be paid by its supporters, we know that at

2If there are more projects from T ′ not yet selected, we get that
x ≤ cost(T ′) · n

|S| , so x ≤ 1 still holds.

that point in time, the voters in S have earned exactly cost(T ′)
units of money, so t · |S| = cost(T ′). Hence, the total amount
of money earned at time t is x = t · n = cost(T ′) · n

|S| . Be-

cause S is (α, T )-cohesive, cost(T ′) ≤ cost(T ) ≤ |S|
n , so

x = cost(T ′) · n
|S| ≤

|S|
n

n
|S| = 1. However, we also had that

x > 1 + y > 1. Contradiction.

Proposition 4. Phragmén satisfies priceability.

Peters and Skowron [2020] show that Phragmén does not
satisfy EJR in MWV- and, therefore, PB-instances. Since the
core implies EJR, Phragmén does not satisfy the core neither
in MWV- nor in PB-instances.
Proposition 5. Phragmén and Rule X do not satisfy LP.

Proof sketch. LP requires any affordable unanimously ap-
proved project to be selected, but Phragmén and Rule X do
not necessarily select those if their cost is high enough com-
pared to the other projects.

Proposition 6. Rule X satisfies PJR-up-to-one.

Proof. Rule X satisfies EJR-up-to-one [Pierczyński et al.,
2021]. Theorem 4 will show that EJR-up-to-one implies PJR-
up-to-one. Hence Rule X also satisfies PJR-up-to-one.

5 Relations Between Axioms
We study the logical relationships among the axioms we in-
troduced and report on the results recapitulated in Figure 1.

5.1 Priceability, PJR, EJR, and the Core
We start by showing that PJR, EJR, and the core do not imply
priceability in MWV-instances, even in laminar ones.
Theorem 2. In laminar MWV-instances there exist bundles
that satisfy PJR, EJR, or are in the core, but are not priceable.

Since laminar MWV-instances are a specific type of MWV-
instances, which are a specific type of PB-instances, the same
result holds for MWV and PB.

In MWV-instances, every priceable bundle satisfies PJR,
as is shown by [Peters and Skowron, 2020, Prop. 1]. This
raises the question whether this relation is also present in the
PB setting. We show now that this is not the case.
Theorem 3. There are priceable bundles not satisfying PJR.

Proof sketch. PJR is based on the utility of the voters being
higher than some threshold α(c), while priceability only dis-
criminates between utilities of 0 and utilities above zero. It
is therefore possible to construct a PB-instance with a bundle
that is priceable but does not satisfy PJR.
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From this result, it follows that priceability neither implies
EJR nor the core. Priceability would otherwise imply PJR,
since the core implies EJR, and EJR implies PJR (Theorem
4). These results hold even for MWV.
Theorem 4. EJR(-up-to-one) implies PJR(-up-to-one).

5.2 Laminar Proportionality and Priceability
We first show that in MWV-instances, and therefore also in
PB-instances, priceability does not imply LP.
Theorem 5. In laminar MWV-instances there exist priceable
bundles that are not laminar proportional.

However it is worth reporting that for a class of price sys-
tems (called balanced systems) we are able to prove that the
implication goes through. Furthermore, LP implies priceabil-
ity on laminar election instances even in the PB setting.
Theorem 6. LP implies priceability in laminar PB-instances.

Proof sketch. By induction on the structure of laminar PB-
instances. We show that for every bundle W that is laminar
proportional for a laminar PB-instance (P, l), there exists a
price system ps = (b, (pi)i∈N ) where b = cost(W ).

Consider three cases. The first is the basis of the induction.
If P is unanimous with cost(C(P )) ≥ l and W is laminar
proportional for (P, l) (with cost(W ) ≤ l), then W ⊆ C(P ),
so voters can divide their budget over W . With an initial
b = cost(W ), all and only the projects in W can be bought.

In the second case, a unanimously approved project c ∈ W
such that W ′ = W\{c} is laminar proportional. By the in-
ductive hypothesis, we know that there exists a price system
ps′ with initial budget b′ = cost(W ′). Because c is unani-
mously approved, all voters could pay for c. We know that in
ps′, there was no project not in W ′ that was affordable to its
supporters. If every voter got cost(c)

n more budget, to spend en-
tirely on c, c would get funded and no voter would have more
unspent budget than before. Also, the initial budget of every
voter is now b′

n + cost(c)
n = cost(W ′)+cost(c)

n = cost(W )
n = b

n
units of money, and the initial budget is b = cost(W ) and all
the individual payment functions stay the same. Because for
every project c in W ′ the sum of the individual payments was
equal to cost(c), this is also the case for every project in W .

In the third case, the profile consists of two laminar pro-
files: P = P1 + P2 and l = l1 + l2, where W1 and W2

are laminar proportional for respectively (P1, l1), (P2, l2).
Take W = W1 ∪W2, which is by definition laminar propor-
tional for (P, l). By the inductive hypothesis, there exist price
systems ps1 = (b1, {p1,i}i∈N ) and ps2 = (b2, {p2,i}i∈N )
with initial budgets b1 = cost(W1) and b2 = cost(W2),
and that |P1| · l2 = |P2| · l1. We can now define a price
system ps that supports W as follows: ps = (b, (pi)i∈N )
with b = cost(W ) = b1 + b2, and for all voters i ∈ N ,
pi(c) = p′1,i(c) + p′2,i(c), where p′1,i and p′2,i are extended
versions of respectively p1,i and p2,i that yield zero for the
projects that those are not defined for. It is easy to check that
ps supports W according to the criteria from Def. 6.

5.3 Laminar Proportionality and the Core
Theorem 7. In laminar MWV-instances, there exist bundles
that satisfy PJR, EJR, or are in the core, but do not satisfy LP.

Theorem 8. There exist laminar proportional bundles that
do not satisfy PJR, EJR, or are not in the core.

Theorem 8 holds because of instances where there is one
relatively expensive unanimously approved project, that is in-
cluded in any laminar proportional bundle, but where there
are many cheap projects that can be satisfactory enough for a
group of voters. We show now that under certain restrictions,
laminar proportional bundles are in the core (and hence also
satisfy EJR and PJR). To do that we define a property of bun-
dles which we call unanimity-affordability (u-affordability):
Definition 12. A bundle T is u-affordable (shortly, u-afford)
w.r.t. instance (P, l) whenever for any unanimously approved
project c ∈ C(P ) there exists t ∈ T s.t. cost(t) ≥ cost(c).

Since cost(c) ≥ cost(c), the definition is also satisfied if
c ∈ T . We will show that in laminar PB-instances, a lam-
inar proportional bundle satisfies the core if it is subject to
u-afford, that is, if u-afford holds for the bundle inductively
on the structure of the instance.
Theorem 9. In laminar PB-instances, laminar proportional
bundles subject to u-afford satisfy the core.

Proof sketch. The proof is by induction on laminar PB in-
stances. Recall that a set of projects is in the core if for every
group of voters S ⊆ N and set of projects T ⊆ C such that
S can afford T with their share of the budget there is a voter
i ∈ S such that ui(W ) ≥ ui(T ). The proof then shows that if
for any unanimously approved project c in W either c is part
of T , or there is some project in T that costs at least as much
as c, then there exists a voter i ∈ S such that ui(W ) ≥ ui(T ).
The interesting case concerns the step with a unanimous can-
didate c: any group S that could possibly block the core with
bundle T should all prefer T over W or not be able to buy W .
This is impossible because by u-afford T contains a project
with a larger cost than c.

Since the core implies EJR and PJR (as showed by Pier-
czyński et al. [2021] and Theorem 4), any laminar profile also
satisfies EJR and PJR under the same restrictions. Note that
in MWV-instances there always is a project in T that has cost
of at least cost(c), so our restriction applies. Hence, there,
laminar bundles are in the core, and so satisfy EJR and PJR.
Corollary 1. In laminar MWV-instances, LP implies PJR,
EJR, and the core.

6 Conclusions and Future Work
Our study is a contribution towards the systematization of the
axiomatic landscape of proportionality in PB (Figure 1, Table
3). With respect to proportionality-inspired rules, we showed
that priceability and PB generalizations of PJR and LP do not
discriminate between Phgragmén and Rule X (unlike EJR).

We focused on the basic PB framework and on cardinal
and approval-based utilities. Extending the study to richer
PB settings (e.g., diversity constraints [Bredereck et al., 2018;
Lang and Skowron, 2018; Aziz, 2019], project groups [Jain et
al., 2021], negative attitudes [Talmon and Page, 2021], or re-
source types [Aziz and Shah, 2021]), or the yet more general
ordinal preferences setting [Aziz and Lee, 2021], are natural
avenues of future research.
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Nisarg Shah, and Piotr Skowron. Market-based ex-
planations of collective decisions. Proceedings of the
Thirty-Fifth AAAI Conference on Artificial Intelligence
(AAAI’21), 35(6):5656–5663, 2021.

[Peters, 2018] Dominik Peters. Proportionality and strate-
gyproofness in multiwinner elections. In Proceedings of
the 17th International Conference on Autonomous Agents
and MultiAgent Systems (AAMAS’18), pages 1549–1557,
Stockholm, Sweden, 2018. International Foundation for
Autonomous Agents and Multiagent Systems.
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