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Abstract

Knowledge distillation aims to transfer the infor-
mation by minimizing the cross-entropy between
the probabilistic outputs of the teacher and student
network. In this work, we propose an alternative
distillation objective by maximizing the scoring rule,
which quantitatively measures the agreement of a
distribution to the reference distribution. We demon-
strate that the proper and homogeneous scoring rule
exhibits more preferable properties for distillation
than the original cross entropy based approach. To
that end, we present an efficient implementation of
the distillation objective based on a pseudo-spherical
scoring rule, which is a family of proper and homo-
geneous scoring rules. We refer to it as pseudo-
spherical knowledge distillation. Through experi-
ments on various model compression tasks, we val-
idate the effectiveness of our method by showing
its superiority over the original knowledge distilla-
tion. Moreover, together with structural distillation
methods such as contrastive representation distilla-
tion, we achieve state of the art results in CIFAR100
benchmarks.

1 Introduction

The knowledge distillation (KD) aims to train a network by
utilizing the information given by other networks. In particu-
lar, smaller networks benefit from knowledge distillation from
a bigger network. The KD objective is consists of standard
classification loss and a distillation loss, which maximizes
the coincidence between the probabilistic outputs of student
and teacher networks. Subsequently, many distillation meth-
ods proposed distilling auxiliary information such as inter-
mediate features or attention maps. Yet, those methods do
not marginally outperform KD. Many recent works focused
on transferring the structural knowledge of teachers by us-
ing contrastive learning [Tian et al., 2019; Xu et al., 2020;
Chen et al., 2021]. However, they showed that attaching the
KD objective to contrastive objectives significantly boosts the
performance, avowing that the contrastive methods and KD
are complementary to each other.
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Figure 1: Overview on the comparison between (a) knowledge distil-
lation that maximizes likelihood and proposed (b) pseudo-spherical
knowledge distillation that maximizes pseudo-spherical scoring rule.

While the original KD uses cross-entropy loss for the distil-
lation objective, we propose alternative distillation objectives
that maximize the alignment between the probabilistic outputs
of the teacher and student network. Our method is built on a
scoring rule, which quantitatively measures the quality of a
predictive distribution with respect to a reference distribution.
Thus, we aim to optimize the student network by maximiz-
ing the scoring rule with respect to the probability of teacher
network. Among various scoring rules, we focus on pseudo-
spherical scoring rules, which is a representative family of
proper and homogeneous scoring rules, that is suitable for op-
timization on softmax operator-based probabilistic outputs. To
that end, we propose pseudo-spherical knowledge distillation,
which utilizes pseudo-spherical scoring rule for distillation
objective. We present an efficient implementation of the new
distillation objectives and provide an in-depth analysis of the
objectives. Through experiments on CIFAR-100 and Ima-
geNet model compression benchmarks, we demonstrate the
effectiveness of our new distillation methods. Especially, by
combining contrastive distillation methods, we achieve state-
of-the-art performance in CIFAR-100 benchmarks.

2 Related Work

Knowledge Distillation. Since the introduction of model
compression [Zeng and Martinez, 2000; Bucilud et al., 2006],
[Hinton et al., 2015] proposed knowledge distillation which
effectively transfers the general and comprehensive knowledge
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trained from a teacher network to a student network. It allows
the student network to learn the knowledge of the teacher
network by minimizing the cross-entropy loss between their
probabilistic outputs. Later studies focused on transferring
auxiliary information other than probabilistic outputs. For
example, [Romero er al., 2014] proposed FitNets, where the
student learns from the feature maps of the intermediate lay-
ers. [Zagoruyko and Komodakis, 2016a] proposed attention
transfer (AT), where the activated parts of the feature maps are
transferred to the student. However, [Tian et al., 2019] showed
that those methods do not easily outperform knowledge distil-
lation, even have inferior performance when the student and
teacher network have different architectural styles.

Recent works focus on passing knowledge that captures
the structural correlation between the representations by using
contrastive learning objectives.

[Tian et al., 2019] proposed contrastive representation dis-
tillation (CRD), where the contrastive objectives are used to
maximize the mutual information between teacher and student
representations. [Xu ef al., 2020] proposed SSKD, which ap-
plies self-supervised methods to refine richer representational
knowledge of a teacher network and transfer it to a student
network. Also, [Chen et al., 2021] exploits Wasserstein dis-
tance to perform contrastive learning on both global and local
scales.

Scoring Rules. In statistical decision theory [Dawid, 1998],
the scoring rule measures the utility of a predictive distribution
by assigning a numerical score on the events that materialize.
[Gneiting and Raftery, 2007] elaborates the proper scoring
rule, which necessitates the existence of the maximum. Thus,
the proper scoring rules provide attractive loss and utility func-
tions for estimation problems. Furthermore, the homogeneity
of a scoring rule has been studied for unnormalized density
estimation. [Takenouchi and Kanamori, 2017] proposed to
learn unnormalized statistical models on discrete space by
using the homogeneous scoring rule. Recently, [Yu e al.,
2021] proposed to train an energy-based model based on the
pseudo-spherical scoring rule, with application to generative
modeling on high dimensional data.

3 Preliminaries

3.1 Backgrounds on Knowledge Distillation

For a K-class classification problem, let zT, 25 € RY be
logits of teacher and student network. Then the standard KD
train the student network by minimizing following objective:

L= aﬂcls(zsa y) + 5£disl(zTa ZS)7 (1)

where y is a one-hot label and «, > 0 are balancing weights.
In addition to the conventional classification loss L, the
distillation loss Lg;sx encourages the probability of student
network to be similar to the probability of teacher network.
The probability outputs are computed by a softened softmax
operator, which is defined by the following:

()]s e exp(zi/T)
AL sy

where 7 > 0 is a temperature that regulates the sharpness
of the probability distribution. Let p” = o, (27) and p° =

@)

o, (2¥) be the probability outputs of each teacher and student
network, then the distillation objective is a cross-entropy loss
between them:

Edist<zT7 ZS) = TZH(pT7pS)a (3)

where H (p, q) = — ), pr log gy, is a cross-entropy loss, and
72 is multiplied to match the magnitude of gradient [Hinton et
al., 2015]. However, we question the optimality of the cross-
entropy objective in distilling probability outputs. To that end,
We propose novel distillation objectives by using the scoring
rule, an alternative measure that accounts for the probabilistic
discrepancy of two distributions.

3.2 Proper and Homogeneous Scoring Rule

The scoring rule evaluates the quality of a probabilistic fore-
cast by computing a score based on the predictive distribu-
tion and the events that substantiate. Formaly, let Py be a
space of all K -categorical distributions, i.e., for any p € Px,
> ke Pe = 1. Fora g € P, let us denote the scoring
rule by S(k,q) for each k € [K]. Then given a reference
distribution p € Pk, the expected score S(p, q) is defined by

S(p,q) =By [S(k, )] = Y peS(kiq), 4

ke[K]

Definition 1. [Gneiting and Raftery, 2007] A scoring rule
S : [K] x Pk — R is proper if the corresponding expected
score satisfies:

S(p,q) < S(p,p), Vp,q € Pk, (5)

and it is strictly proper the equality holds if and only if p = q.

Therefore, the proper scoring rule encourages the forecaster
to match their predictions to the true beliefs. Given a (strictly)
proper scoring rule .9, it induces generalized entropy

Hs(p) = Imax S(p,q) = S(p,p)- (6)

Then one can show that Hs(p) is a (strictly) convex function
of p, and it induces a Bregman divergence

Ds(p,q) = S(p,p) = S(p,q) = Hs(p) — S(p,q).  (7)
Also, the reverse holds from the following proposition:

Proposition 1. A scoring rule S : [K] X Px — R is (strictly)
proper iff S(p, p) is a (strictly) convex function of p.

Since our goal is to match the probability of a student net-
work to the probability of a teacher network, the proper scoring
rule is an attractive distillation objective from the following:

argmax S(p’,p¥) = arg max Zp;‘gS(k,pS) =p’, (8)
p3€PK p3EPK g

if §'is a strictly proper scoring rule.
Moreover, we introduce homogeneous scoring rule which
particularly suits for softmax based probability distributions.

Definition 2. [Parry et al., 2012] A scoring rule is homoge-
neous if

S(k,q) = S(k,A-q), YA>O0,Vke[K].  (9)
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Suppose a distribution is given by a softmax operator on

a vector z € R¥ i.e.,, ¢ = 0,(2). Then a (positive) scalar-

multiplication on g does not change the inference of a classifier
since

arg max g = arg max Ag, (10)

for any A > 0. Therefore, the homogeneity of a scoring rule
reduces the search space for ¢, which makes the optimization
more suitable. Moreover, if a scoring rule .S is homogeneous, it
suffices to compute the score with respect to the unnormalized
distribution § = exp(z). The following examples demonstrate
the popular choices for proper scoring rules.

Example 1. (log scoring rule) A log scoring rule is defined by
Siog(k, q) == log qi. Then the corresponding expected score
with respect to p is given as Sipe(p, q) = ZkE[K] i log qr,
where it is equivalent to the maximum likelihood estima-
tion (MLE). Remark that the log scoring rule is strictly proper,
but is not homogeneous.

Example 2. (spherical scoring rule) The classical spherical
scoring rule [Friedman, 1983] is defined by

dk

Sa(k, q) = Tals’ (11)
where ||q||3 = >, q}. Then for any p, q € Pk, we have
5.0) = ol L = Ipllcos Z(pa). (1)
1pll2[lall2

where (p, q) is a inner product and Z(p, q) is a angle between
p and q. Therefore, the spherical scoring rule is strictly proper
since it is maximized iff p = q. Also, since the scalar multipli-
cation on q does not change the angle, it is homogeneous.

3.3 Pseudo-spherical Scoring Rule

We introduce pseudo-spherical scoring rule [Gneiting and
Raftery, 20071, which is a family of proper and homogeneous
scoring rules that generalizes spherical scoring rule.
Definition 3. Given v > 0and q € Pk, the pseudo-spherical
scoring rule is defined as following:

dk K
S"/(kaQ) = ( > 9 (13)

lgll3+1

1
41
where qlly41 = (Xpal™) ™
Then the expected pseudo-spherical score with respect to
reference distribution p € Pk is defined as
¥
Prq
S, (0.) = Byl (ko)) = 2P (1)
lall341
Alike spherical scoring rule in Example 2, the pseudo-
spherical scoring rule is strictly proper and homogeneous.

Proposition 2. [Gneiting and Raftery, 2007] The pseudo-
spherical scoring rule S+ (p, q) is strictly proper and homoge-
neous for v > 0.

4 Pseudo-spherical Knowledge Distillation

We present pseudo-spherical knowledge distillation (PSKD),
where the knowledge of a teacher is distilled to a student by
maximizing the pseudo-spherical scoring rule.

4.1 Design of objective

Since S, (p, ¢) is homogeneous, if we let § = ¢/Z be un-
normalized distribution of ¢ with some constant Z > 0, we
have

=
- Prq
Sy(p:a) = 5,(p,7) = L Dely T (15)
HqH'y-‘,-l
Moreover, if ¢ = o, (z) for some vector z € RX, we have

5"
(Zk e(’Y+1)Zk/7) 7

where 7 > 0 is a temperature. However, maximizing S (p, q)
contains fraction term, the gradient based optimization is in-
tractable. Therefore, we define the PSKD objective £ (p, q)
by taking a logarithm to make it feasible. We present two
different approaches. First, by taking the % log(+) inside the

expected score, we have

Sy(p.q) = , (16)

: 1
L7 (p,qa) = —;Ep [log S5 (K, q)]
17
= — ) _prlogqy +log|glly+1,
2
or by taking log outside of the expected score, we have
ou 1
‘Cy t(pa q) = _; 1Og EP[S’Y(IC? Q)]
(18)

1
5 log (qu}!) +log [lg[|+1,
k

where we negate the terms to fit in minimization problem.
The negative of latter objective is called y-score [Takenouchi
and Kanamori, 2017], which is also a strictly proper and ho-
mogeneous scoring rule as it is the composition of strictly
increasing log function and pseudo-spherical scoring rule. [Fu-
jisawa and Eguchi, 2008] also called the latter objective as -y
cross-entropy, as a generalization of cross-entropy loss. In-
deed, following proposition reveal that the PSKD objectives
are generalizations of cross-entropy loss.

Proposition 3. [Yu et al., 2021] When v — 0, we have
lim £2(p, q) = lim £"(p,q) = H(p,q),  (19)
v—0 y—0

where H(p, q) = —E,[log q] is a cross-entropy loss.

Since the original KD uses cross-entropy loss for distillation,
PSKD is a generalization of KD, which is a special case when
v — 0.

Extension to negative orders. Even though the pseudo-
spherical scoring rule is defined on v > 0, we extend the
PSKD objectives to v < 0 (then the corresponding scoring
rule might not be strictly proper).

Note that the following holds from the convexity of — log
function and Jensen’s inequality:

—logE,[Sy(k, q)] < —Ep[log Sy (k, q)], (20)
thus we have
L3 (p,q) < LY (p,q), Vp,q € P,V >0,  (21)
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Figure 2: Ablation on different values of y by comparing the accuracy of student network and the CKA similarity with respect to the teacher
network. For v > 0, using £ is superior to £ and for v < 0, using £°*" is superior to £™. The teacher network is WRN 40-2 and the

student network is WRN-16-2. Experimented for 3 different seeds.

and it is reversed when v < 0. One would expect nyn to be
superior since it upper bounds E?y“t when v > 0, and E?y“t
is superior when v < 0. This is supported empirically by
comparing the performance on model compression tasks (see
section 5.1.

4.2 Implementation of PSKD

Let the logits of teacher and student network by z” and 2 re-
spectively, and let p” = o, (27) and p® = o, (2*) be the prob-
ability output of each teacher and student network with temper-
ature 7 > 0. Then from the homogeneity of pseudo-spherical

scoring score and as p7 = exp(z! /7),p° = exp(2°/7), we
have
L(p Zp logpy + log [[p° |41
TS (v+1)z2/ 22)
— 1 5 2y /T
Zmaﬁ+wJ%z} |
k k
and
ou 1 —, —_
£ (p",p®) = —;logzpf(pf)” +10g [P [ly+1
: (23)

_1 1Og ZP Ry

Note that both objectives can be simply implemented by a
simple log-sum-exp function, and requires no additional com-
putation compared to the original cross-entropy.

Note that the gradient of Lg“t is given by:

aﬁout 1
8;5 = _; (O-T (ZT + ’YZS) —0r ((’Y + 1)25)) .

Since exp(z/7) ~ 1 + z/7 for sufficiently large 7 and by
assuming that the logits have zero-mean as in [Hinton et al.,

log Z D /T

(24)

2015], we have 0. (z) ~ % Thus, it follows that
8£out 1
525~ e 0D
] (25)
T s
= (T - 5%).
On the other hand, the gradient of /3%" is given by:
acin 1
= e () o v+ 1)), @9
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and by using similar logic, we have

&Cin 1
e - LRl S T

Therefore for large 7, the PSKD objective conducts logit
matching, and for small 7, it focuses on having the same
label for student and teacher (i.e. label matching) similar to
KD [Hinton et al., 2015].

Finally, the complete objective is consists of standard clas-
sification loss and pseudo-spherical distillation loss as in
eqn. (1):

L=ala+pr°LL, i€ {out,in} (28)

where o, 8 > 0 are balancing weights and £., can be both Ei/”
and ,C?Y“t. Note that we multiply 72 since the gradient scales
as 1/72.

S Experiment

For the experiments, we demonstrate the effectiveness of
PSKD on model compression tasks. First, we conduct ab-
lation on PSKD objectives with respect to different values
of . Then, we compare PSKD to cutting-edge distillation
methods on CIFAR-100 and ImageNet benchmarks.

5.1 Ablation Study

Effect of v. First, we conduct ablation studies on the per-
formance of PSKD with different values of +. Given a pre-
trained wide ResNet 40-2 [Zagoruyko and Komodakis, 2016b]
teacher network, we train wide ResNet 16-2 student network
on CIFAR-100. For evaluation, we report top-1 test accuracy
of student network and the centered kernel alignment (CKA)
similarity [Kornblith et al., 2019] of teacher and student net-
work. The CKA similarity is a reliable measure of the sim-
ilarity of two neural representations, which is invariant to
orthogonal transformation and isotropic scaling. Thus, high
CKA similarity indicates that the student learns similar repre-
sentations to the teacher. We took the output of the penultimate
layer (i.e. after average pooling) to calculate the CKA similar-
1ty.

Figure 2 demonstrates the effect of -y for both Eg“t and
L'iy". We observe that the test accuracy of student networks

distilled by LI increases as ~ increases from -1 to 1, while
the CKA similarity remains unchanged. On the other hand,
the student networks distilled by Ei;“t achieve their maximum
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Teacher WRN-40-2 WRN-40-2 resnet56 resnetl10 resnetl10 resnet32x4  vggl3

Student WRN-16-2 WRN-40-1 resnet20  resnet20 resnet32 resnet8x4 vgg8
Teacher 75.61 75.61 72.34 74.31 74.31 79.42 74.64
Student 73.26 71.98 69.06 69.06 71.14 72.50 70.36
KD 74.92 73.54 70.66 70.67 73.08 73.33 72.98
FitNet 73.58 72.24 69.21 68.99 71.06 73.50 71.02
AT 74.08 72.77 70.55 70.22 72.31 73.44 71.43
Sp 73.83 72.43 69.67 70.04 72.69 72.94 72.68
VID 74.11 73.30 70.38 70.16 72.61 73.09 71.23
RKD 73.35 72.22 69.61 69.25 71.82 71.90 71.48
PKT 74.54 73.45 70.34 70.25 72.61 73.64 72.88
AB 72.50 72.38 69.47 69.53 70.98 73.17 70.94
FT 73.25 71.59 69.84 70.22 72.37 72.86 70.58
CRD 75.48 74.14 71.16 71.46 73.48 75.51 73.94
CRD+KD 75.64 74.38 71.63 71.56 73.75 75.46 74.29
WCoRD 75.88 74.73 71.56 71.57 73.81 75.95 74.55
WCoRD+KD 76.11 74.72 71.92 71.88 74.20 76.15 74.72
SSKD 75.93 75.74 71.25 71.13 73.69 76.03 75.03
PSKD (Ours) 76.01 74.06 71.30 70.91 73.6 75.24 74.14
CRD+PSKD (Ours) 76.53 74.96 71.88 71.77 74.19 76.38 74.46
SSKD+PSKD (Ours) 76.09 75.78 71.32 71.38 74.03 76.94 75.14

Table 1: CIFAR-100 test accuracy (%) of student networks trained with various distillation methods where the teacher and student have
similar architectural style. The citations and comparisons are in Appendix. Each results are provided by author, and for SSKD, we re-run the

experiment to compare for same teacher network. Average over 5 runs.

around v = —0.5 and it drops when ~ becomes larger. Also,
the CKA similarity significantly drops as -y increases. Remark
that when distilling by E?Y“t, the CKA similarity is strongly
correlated with the test accuracy of student networks, yet it
doesn’t hold when distilling with Lfyn.

For the case when a student is trained by EQ”, the CKA
similarity doesn’t change for different values of ~, showing
that the value of v on distilling representational knowledge
doesn’t vary. However, the test accuracy varies as y becomes
larger. We provide analysis by the following gradient. From
eqn. (27), recall that the gradient of £ can be approximated
by a logit matching between 2T and (y + 1)z°. Thus when
the logit of a teacher network has a high value, the larger value
of v makes student logit easier to follow the teacher logit.

From eqn. (25), the approximation on the gradient of Eg’”
is a logit matching between z” and z°, which is independent
to v. But, from eqn (24), the gradient of ﬁg“t is expressed

by the difference between o (27 + v2°) and o (( + 1)2%).

Then for v > 0, the softmax output becomes smoother as
v increases, thus the gradient becomes smaller and reduces
the effect of distillation. Therefore, ﬁ‘v’“t has relatively better
performance when v < 0.

Comparison of two PSKD objectives. We further compare
two objectives by conducting experiments on various teacher
and student combinations. We choose v = —0.5 and v = 1.0
for baseline. Table 2 reports the test accuracy of student
networks trained with different PSKD objectives and values
of 7. Remark that £°* outperforms £ when v = —0.5
and £ outperforms £°%* when v = 1.0, ascertaining the
hypothesis asserted in section 4.1. While £ with v = 1.0
and £°“! with v = —0.5 achieve similar performances, the
former achieves slightly better performance overall. Therefore,
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biecti WRN-40-2  resnetl10 resnet32x4  vggl3

v ObJECVe  WRN-16-2  resnet32 resnet8x4 vgg8

05 ﬁf’”‘ 76.01 73.27 75.49 73.94

’ Ln 75.69 73.26 75.35 73.88

1.0 Cf’u‘ 74.92 71.59 75.24 70.76

' cn 75.92 72.89 75.58 73.65
Table 2: Ablation on the distillation objective when + is positive

and negative. We report the test accuracy of student network. For
each task, all the hyperparameters are same except the value of vy and
distillation objective. Average over 3 runs.

we use £°% with v = —0.5 for the rest of the experiments.

5.2 Main Results

Setup. We follow model compression benchmarks that were
proposed in CRD [Tian et al., 2019]. For experiments on
CIFAR-100, there are 13 teacher-student combinations where
7 are of similar architectures and 6 are of different architec-
tures. Those architectures include resnet [He et al., 20161,
vgg [Simonyan and Zisserman, 2014], and ShuffleNet [Ma ez
al., 2018; Zhang et al., 2018]. We used pre-trained teacher
models provided in the official CRD repository !. For the
experiment on ImageNet, we used the official PyTorch pre-
trained ResNet-34 for a teacher and ResNet-18 for a student.

Combination with other distillation methods. Recently,
many distillation methods resort to transfer structural knowl-
edge of teacher networks by using contrastive learning. It has
been empirically verified that using the contrastive distilla-
tion method and KD simultaneously improves performance,

'https://github.com/HobbitLong/RepDistiller
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Teacher vggl3 ResNet50 ResNet50 resnet32x4 resnet32x4 WRN-40-2
Student MobileNetV2  MobileNetV2 vgg8 ShuffleNetV1  ShuffleNetV2  ShuffleNetV1
Teacher 74.64 79.34 79.34 79.42 79.42 75.61
Student 64.6 64.6 70.36 70.5 71.82 70.5
KD 67.37 67.35 73.81 74.07 74.45 74.83
FitNet 64.14 63.16 70.69 73.59 73.54 73.73
AT 59.40 58.58 71.84 71.73 72.73 73.32
SP 66.30 68.08 73.34 73.48 74.56 74.52
VID 65.56 67.57 70.30 73.38 73.40 73.61
RKD 64.52 64.43 71.50 72.28 73.21 72.21
PKT 67.13 66.52 73.01 74.10 74.69 73.89
AB 66.06 67.20 70.65 73.55 74.31 73.34
FT 61.78 60.99 70.29 71.75 72.50 72.03
CRD 69.73 69.11 74.30 75.11 75.65 76.05
CRD+KD 69.94 69.54 74.58 75.12 76.05 76.27
WCoRD 69.47 70.45 74.86 75.40 75.96 76.32
WCoRD+KD 70.02 70.12 74.68 75.77 76.48 76.68
SSKD 71.65 72.27 76.20 78.10 78.82 7743
PSKD (Ours) 69.99 69.21 74.67 75.27 75.77 75.92
CRD+PSKD (Ours) 69.97 70.71 75.11 75.72 76.81 76.67
SSKD+PSKD (Ours) 71.73 72.60 76.19 78.03 78.81 77.67

Table 3: CIFAR-100 test accuracy (%) of student networks trained with various distillation methods where the teacher and student have
different architectural style. The citations and comparisons are in Appendix. Each results are provided by author except for SSKD, which we
re-run the experiment to compare for same teacher network. Average over 3 runs.

| Teacher Student | AT KD CC CRD WCoRD SSKD | PSKD
Top-1 26.69 30.25 2930 2934 29.38 30.04 28.83 28.51 28.38 28.47
Top-5 8.58 10.93 10.00 10.12 10.20 10.83 9.87 9.84 9.33 9.51

Table 4: Top-1 and Top-5 error rates (%) of student network ResNet-18 on ImageNet validation set.

showing that they are complementary to each other. We show
that using PSKD and contrastive distillation together further
improves the performance. To that end, we add the contrastive
distillation objective L., to our objective:

,C = Ol,ccls + B*C'y + nﬁconv

where «, 8,17 > 0 are balancing weights. For contrastive
methods, we experiment on both CRD [Tian et al., 2019] and
SSKD [Xu et al., 2020].

Results on CIFAR-100 dataset. Table 1 compares the per-
formance of various distillation methods when teacher and
student share similar architectural styles. We observe that
PSKD outperforms KD and other baselines except for the
contrastive distillation methods. The contrastive methods
such as CRD [Tian et al., 2019], SSKD [Xu et al., 2020]
and WCoRD [Chen et al., 2021] exhibit slightly better perfor-
mance than PSKD as they transfer structural information of
teacher network. We observe that using PSKD and contrastive
methods together can further boost the performance. In ad-
dition to CRD and SSKD, model compression with PSKD
achieves state-of-the-art performance in 5 out of 7 tasks, show-
ing the effectiveness of PSKD.

Table 3 compares the performance when the teachers and
students are of different architectures. Remark that the dis-
tillation methods using the information extracted from inter-
mediate layers may perform worse when the architectures of

(29)

teacher and student differ, but since PSKD only uses the out-
put of a network, it doesn’t rely on architecture-specific cues.
Also, when using PSKD with contrastive methods, we achieve
state-of-the-art results in 5 out of 6 tasks.

Results on ImageNet. Table 4 shows the results of model
compression on ImageNet. Remark that our PSKD achieves
lower error rates than KD and all other distillation methods
except SSKD. Surprisingly, even though PSKD does not rely
on transferring structural information, it achieves better per-
formance than CRD and WCoRD. Meanwhile, PSKD enjoys
simpler implementation and faster training.

6 Conclusion

We present pseudo-spherical knowledge distillation that gener-
alizes knowledge distillation by using pseudo-spherical scor-
ing rule. We propose two novel loss functions for pseudo-
spherical knowledge distillation and provide an empirical and
qualitative analysis. Our method achieves state-of-the-art re-
sults on CIFAR-100 and ImageNet supervised model compres-
sion, together with structural knowledge distillation methods.
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