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Abstract

Ordinal embedding (OE) aims to project objects
into a low-dimensional space while preserving their
ordinal constraints as well as possible. Generally
speaking, a reasonable OE algorithm should simul-
taneously capture a) semantic meaning and b) the
ordinal relationship of the objects. However, most
of the existing methods merely focus on b). To ad-
dress this issue, our goal in this paper is to seek a
generic OE method to embrace the two features si-
multaneously. We argue that different dimensions
of vector-based embedding are naturally entangled
with each other. To realize a), we expect to decom-
pose the D dimensional embedding space into D
different semantic subspaces, where each subspace
is associated with a matrix representation. Unfor-
tunately, introducing a matrix-based representation
requires far more complex parametric space than
its vector-based counterparts. Thanks to the alge-
braic property of quaternions, we are able to find
a more efficient way to represent a matrix with
quaternions. For b), inspired by the classic chordal
Grassmannian distance, a new distance function is
defined to measure the distance between different
quaternions/matrices, on top of which we construct
a generic OE loss function. Experimental results
for different tasks on both simulated and real-world
datasets verify the effectiveness of our proposed
method.

1 Introduction

Ordinal Embedding (OE) aims to embed objects into a space
such that the distances between the embeddings satisfy the
constraints of the relative comparisons (also called ordinal
relationships) as much as possible. This problem has first
been studied by Shepard [Shepard, 1962a; Shepard, 1962b]
and Kruskal [Kruskal, 1964a; Kruskal, 1964b], and lately has
drawn wide interests in the multimedia, information retrieval
and computer vision communities.

Most of the existing ordinal embedding methods pursue the
vector-based representations of objects. Specifically, denote
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Figure 1: Comparison between two types of ordinal embedding
mechanism.The upper part shows that the vector-based method
might be hard to simultaneously capture the semantic meaning and
ordinal relationships. The lower part demonstrates the proposed
method represents each object as a set of subspace, modeling the
semantic concepts in an explicit manner.

x,, xp and x. as the vector representations of object a, b and
¢, respectively. If object a is more similar to object b than
object ¢, then OE tries to push x, and x; together while pull
x, and . away. We illustrate this convention in the upper
part of Fig. (1).

Intuitively, a good representation should convey both the
semantic meanings (for example, the toasted salmon and
the marinated pork in Fig. (1) are rich in protein) and the
ordinal relationships (for example, the toasted salmon is more
similar to the marinated pork than the Herb salad). How-
ever, the vector-based representation and the corresponding
element-wise similarity function, e.g., Minkowski distance,
cosine similarity, hamming distance, etc, might fail to simul-
taneously capture the above two information well. This is
because the objects are mapped into a single common high-
dimensional space so that it is hard to disentangle different
dimensions to express different semantics. For example, the
toasted salmon and the marinated pork are semantically re-
lated w.r.t the concept ’rich in protein’. However, a simple
vector-based representation is hard to explicitly model such a
concept.

To avoid such a problem, we propose to model an object as
a set of semantics subspace, with each subspace representing
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a potential semantic concept, as opposed to a single vector-
based representation. By doing so, we hope to establish an
explicit connection between the overall similarity in the em-
bedding space and the semantic concepts.

Then two key problems arise: 1) how to formulate a sub-
space? 2) how to measure the distance across subspaces? To
solve the first problem, we might resort to a matrix-based rep-
resentation in the sense that each linear subspace corresponds
to a matrix. At first glance, one might directly represent an
object by a matrix. However, this requires a huge number of
parameters. In this paper, we propose to embed objects into
a D-dimensional quaternion space. Thanks to the algebraic
and geometric properties of quaternions, we are able to find a
more efficient way to represent a matrix. To be more specific,
aquaternion g = w+x-i+y-j+ z - k corresponds to at least
a 4 X 4 matrix and a 3 x 3 matrix. In this sense, these ma-
trices only require 4 parameters. Therefore, a D-dimensional
quaternion suffices to express D semantic subspaces in a par-
simonious manner.

In terms of the second problem, on top of the quaternions,
we only need to find a distance function for quaternion em-
beddings. Traditional methods [Zhang et al., 2019] project
the quaternion embeddings into the high-dimensional Eu-
clidean space and then adopt the Euclidean distance. Obvi-
ously, this strategy loses the algebraic and geometric prop-
erties of quaternions. Hence, it may not utilize the semantic
subspace well. To overcome this limitation, inspired by the
chordal Grassmannian distance [Bengtsson er al., 2007], we
define a new distance function for the matrices corresponding
to quaternions rather than the quaternions vectors. As a key
trait, the proposed distance function could measure the sim-
ilarity between two sets of matrices, encapsulating multiple
semantic subspaces into a unified measurement.

We summarize the contributions of this work as follows:

e We present an early trial to reformulate the ordinal em-
bedding problem in a quaternion space with matrix-
based representations. Using matrix-based representa-
tion learning, we model an object as a set of subspaces
with each subspace implying an inherent concept in the
similarity comparisons.

e Inspired by chordal Grassmannian distance, a new dis-
tance function is proposed to measure the similarity for
matrix-based representations established from quater-
nions.

e Experiments on both simulated and real datasets demon-
strate that the proposed method achieves a convincing
improvement over existing vector-based methods.

2 Related Work
2.1 Ordinal Embedding

In recent years, the ordinal embedding in the Euclidean space
has been extensively studied. This problem is first stud-
ied by [Shepard, 1962a; Shepard, 1962b; Kruskal, 1964a;
Kruskal, 1964b]. Subsequently, under a margin-loss-based
setting, GNMDS [Agarwal et al., 2007] find a low-rank
kernel matrix to make embedding satisfy the triplet con-
straints. Based on the probabilistic model setting, CLK
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[Tamuz ef al., 2011] samples responses to adaptively choose
triplet-based relative-similarity queries. STE and t-STE [Van
Der Maaten and Weinberger, 2012], assuming the Bradley-
TerryLuce noise model [Luce, 2012], think relative-similarity
triplets are insufficient for obtaining a truthful embedding of
objects, where the embeddings are learned from both rela-
tively similar and dissimilar triplets instead. Since the simi-
larity of objects would not be consistent with different tasks,
POE [McFee and Lanckriet, 2011] integrates heterogeneous
data to conform to the similarity measure optimally. SPE
[Shaw and Jebara, 2009] and LOE [Terada and Luxburg,
2014] are proposed to generate embedding that preserves the
ordinal constraints and the dataset’s density structure simul-
taneously. Meanwhile, SVRG-SBB [Ma er al., 2019] accel-
erates the calculation of the ordinal embedding process by
stochastic variance reduced gradient. However, all the above
methods consider OE in the Euclidean space. HOE [Suzuki
et al., 2019] is the first to extend the problem to the hyper-
bolic space, which can express hierarchical structure more
effectively. Two types of ordinal embedding methods with
different embedding spaces are summarized in Appendix C.

2.2 Distance Function

Generally speaking, there are three kinds of distance func-
tions defined on point to point, point to subspace, and sub-
space to subspace respectively. Point to point distance can
be denoted by d(z1,x2), the distance between two points
x1 and x2, usually called Euclidean distance. Point to sub-
space distance can be denoted by d(z, S), the distance from
point x to the subspace S, which is called L2-Hausdorff dis-
tance in [Moghaddam and Pentland, 1997; Turk and Pent-
land, 1991]. Subspace to subspace distance can be denoted
by d(S1, S2), the distance between two subspaces 57 and Ss.
The principal angle is a commonly used concept in subspaces,
which has a good performance [Nishiyama et al, 2005;
Wolf and Shashua, 2004]. [Sun and Cheng, 2006] gives the
relationship between the similarity and distance of the sub-
spaces, designing a general construction framework of sub-
space. [Zuccon et al., 2009] analyzes the semantic difference
between subspace distance and Euclidean distance in infor-
mation retrieval. As for applications, subspace distance is
widely used in many computer vision fields such as classifi-
cation [Liu et al., 2011], clustering [Wang et al., 2016], and
face recognition [Wang er al., 2008; Pang et al., 2009], which
all achieve promising performance.

3 Methodology

In this section, we describe our proposed method in detail.
As shown in Fig. 2, we try to model each object with a set of
subspaces/matrices. We start by elaborating on the problem
setting. Then introduce how to get matrix-based representa-
tion in the quaternion space and define a distance function to
measure the similarity between two objects’ representations.

3.1 Problem Setting

Given N objects and the ordinal relationship triplets

S ={(a,b,¢) | a,b,c € [N], a#b#c},
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Figure 2: The framework of our proposed method. We first embed objects in the ordinal triplets into the quaternion space, then transform the
quaternion vectors to collections of matrices. We aim to make the obtained quaternion embeddings satisfy the ordinal constraints as much as
possible. Finally, we apply them for image retrieval tasks. For example, when finding the similar food of Chocolate Cake with the pink edge,
we get the Chocolate Muffins with similar ingredients and Cupcakes with similar taste shown on the left of the figure.

where [N] = {1,..., N} and object a is more similar to ob-
ject b than it is to object c. Given some distance function
d(-,-), the OE problem aims to learn the representations of
objects, denoted as {x1, X2, ..., 2N}, such that the follow-
ing objectives hold as much as possible:

d(@e, xp) < d(xq, ),V (a,b,c) €.

3.2 Representations in Quaternion Space

Existing OE methods like EOE[Agarwal et al., 2007; Terada
and Luxburg, 2014] and HOE[Suzuki et al., 2019] represent
the objects as vectors. However, as is stated in Sec. 1, tradi-
tional methods might be insufficient to capture latent seman-
tic information. To overcome the limitation, in this paper, we
adopt quaternions to represent an object as a set of subspaces.

A quaternion vector consists of one real part and three
imaginary parts, definedasq = w+x -1 +y -5+ 2 -k,
where w, x,y, z are D dimensional real vectors and 2, 7,
k are imaginary units that satisfy the following Hamilton’s
rules:

i? = 3% =k*=ijk=—1,
ij =k =—j1, jk=1=—kj, ki =3 = —ik.
In the following two subsections, we show that a quater-
nion corresponds to at least two matrices. One is a 4 X 4 ma-

trix termed as representation matrix, the other one isa 3 x 3
matrix called rotation matrix.

Representation Matrix of a Quaternion
Let w;, x;, y;, z; be the i-th dimension of w, x,y, z respec-
tively. Then quaternion Q; = w; +x; - i +y; - j + z; - k is
associated with a 4 x 4 matrix as follows:

Wi —Ti Y &
Ti Wi —Z Y
Q= : ey
Yi Zi w;  —X
Zi Yo I W;

We term this matrix form as the representation matrix of a
quaternion. Interestingly, this matrix formulation preserves
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many algebraic properties of quaternions, such as: the quater-
nion addition and multiplication correspond to matrix addi-
tion and matrix multiplication; the conjugate of Q); corre-
sponds to the transpose of Q;; Q; could be projected onto
four matrix basis with projected values being w;, x;, y;, z;, re-
spectively, and the four matrix basis satisfying similar Hamil-
ton’s rules (expect that the multiplication of three skew-
symmetric matrix basis equals to the identity matrix —I).

Besides, from a representation matrix @;, we could eas-
ily obtain the original quaternion @Q;. Seeing the above good
properties, we consider the representation matrix as a candi-
date matrix formulation of quaternions. Next, we continue to
derive another matrix formulation.

Rotation Matrix of a Quaternion
It is noteworthy that a quaternion rotation p’ = Q;pQ; L can
be algebraically manipulated into a matrix rotation p’ = R;p,
where R; is the rotation matrix given by:
i1 T2 T13
R;= |ro1 722 T3 (2)
31 T32 T33

where ) 5 ) )
T =W X Y — 2

T2 = 23y — 2wz,
r13 = 2x;2; + 2wy,
ro1 = 22;Y; + 2w, 24,

2 2 2 2
T2 = Wit — T + YT — 27,
T3 = 2y;z; — 2w;z;,
r31 = 2X;2 — 2wiY;,

r32 = 29;2; + 2w; 24,
2 2 2 2
T3z = Wit —Ti" — Y~ + 2",

This matrix form preserves the geometric properties of
quaternions.  Besides, according to [Bar-Itzhack, 2000;
Markley, 2008], the original quaternion @Q; can also be re-
stored from the rotation matrix R;.
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3.3 Distance between Two Quaternions

Next, we elaborate on how to calculate the distance between
two quaternion embeddings. Traditional methods [Zhang et
al., 2019] project the quaternion embedding into the high-
dimensional Euclidean space. Specifically, given a quater-
nion vector ¢ € RP** we can obtain a vector § =
{w,x,y,z} € R*". Then the distance between two quater-
nion vectors gi, g2 can be calculated by the inner product,
ie., dp(q1,q2) = \/(dl —@2)T(q1 — @2). Straightforward
as it seems to be, such a distance function makes the quater-
nion space degenerate into the Euclidean space.

Remind that we aim to represent each object with a set of
subspaces so that the distance should reflect the distance be-
tween two subspaces. We know that a matrix could span a
linear subspace. Then it is a natural idea to measure the dis-
tance of two quaternion embeddings based on their matrix
reformulation.

Then how to calculate the distance between two matrices?
In this paper, inspired by the classic chordal Grassmannian
distance [Bengtsson et al., 2007], we proposed a distance
function to calculate the distance between two quaternion em-
beddings. The chordal Grassmannian distance is defined as
follows

d(A,B) = \/m—tr(AB), AcO™, BEO™ (3)

where A and B denote a pair of matrices, ¢r(-) is the trace of
a matrix, m is the dimension of the matrix, and O™ denotes
the set of all m x m orthogonal matrices.

Herein, we would like to point out that the representa-
tion matrix @; and the rotation matrix R; are both orthog-
onal matrices as long as w? + z? + y? + 27 = 1 for a
quaternion ¢; = w; + x; -t + y; - j + 2z; - k. On top of
this, our distance function is based on the chordal Grassman-
nian distance. For each D-dimension quaternion embedding
ga={q1,---,G,---,q9p}, we could obtain D 4 x 4 represen-
tation matrices {Q1, -+ ,Qs, -+ ,Qp} and D 3 x 3 rotation
matrices {Ry, -+, R;, -+, Rp}. Let M; € R™*™ denote
either Q; (m = 4) or R;(m = 3). We could construct a new
diagonal matrices M with My, M, ..., M as the diagonal
sub-matrices, i.e.,

M, ... ... 0

0 ... ... Mpl ,. .-
where the omitted parts are all zero matrices. The distance
function between two quaternion embeddings q, and g is
defined as follows

dQ(ga; @v) = /mD — tr(MaM?)
= \/mD — Zil tr(MgMY),

where M is the i-th diagonal sub-matrices of the matrix M*¢
corresponding to the quaternion vector q,.

&)
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3.4 Optimization Objective

On top of the quaternion embeddings and the developed dis-
tance function, our optimization objective is to learn the rep-
resentations of objects {q1, g2, . .., gn}, such that:

dg(xa, ) < do(xa, ),V (a,b,c) € S.

hold as much as possible. Let £ be the loss function of one
triplet. Then the loss function is developed as:

1
L= E Z 5(‘{%7%,%}3‘1@), (6)

(a,b,c)eS

where |S| is the number of triplets. In the experiments, we
implement different loss functions such as the GNMDS loss
function [Agarwal et al., 2007; Terada and Luxburg, 2014]
and the CKL loss function [Tamuz et al., 2011]. The readers
are referred to Appendix A for more details.

4 Experiments

In this section, we conduct extensive experiments to verify the
effectiveness of our proposed method on one synthetic dataset
and three real-world datasets. We show a detailed description
of the four datasets in the Appendix B.

4.1 Synthetic Dataset

Evaluation metrics. We adopt testing error as our evalua-
tion metric, which is defined as the ratio of the wrongly pre-
dicted triples in the test set. For sake of better credibility of
our experiments, we also provide the mean and standard de-
viation of the test error.

Competitors. We compare our method against two types
of vector-based ordinal embedding: one is in the Euclidean
space (EOE [Agarwal er al., 2007]) and other one is in the
Hyperbolic space (HOE [Suzuki er al., 2019]). To further
demonstrate the effectiveness of our proposed QOE, we ap-
ply five different loss functions (see Appendix A) on top of
EOE, HOE and QOE (ours), respectively. More specifically,
the five losses include: 1) GNMDS;: GNMDS loss function
[Terada and Luxburg, 2014] with ¢ = 1; 2) GNMDS,: GN-
MDS loss function with ¢ = 2; 3) CKL [Tamuz et al., 2011];
4) STE [Van Der Maaten and Weinberger, 2012]; 5) t-STE.
Ours; and Ours; represent QOE based on the representation
matrix @ in Eq.(1), and the rotation matrix R in Eq.(2), re-
spectively. For HOE and Ours, we report the best results on
five loss functions.

Implementation details. To ensure a similar total number
of parameters to make fair comparisons, when the dimension
of real vectors in EOE or HOE is D, we set the dimension of
quaternion vectors is D /4. We conduct experiments for D =
{4,8,16}. We apply random initialization for embedding and
choose Adam [Kingma and Ba, 2015] as optimizer. The batch
size is set to 512, learning rating A = 0.1 and the number of
epochs is set to 200 for all methods. During training, if the
optimal results of several epochs are not updated, we will end
the training early. The experimental environment is shown
in the appendix D. All experiments are conducted on Ubuntu
16.04.6 LTS, with NVIDIA TITAN RTX. The algorithm is
written in Python 3.6.8 and uses the deep learning framework
called TensorFlow 1.14.



Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)

| D=4 D=8 D=16

GNMDS; | 0.2769 £+ 0.0027  0.2638 £ 0.0014  0.2573 + 0.0015

GNMDS, | 0.4233 £0.0066 0.3317 £ 0.0021  0.3112 + 0.0019

EOE | CKL 0.2744 + 0.0010  0.2713 +0.0028  0.2706 + 0.0003

STE 0.3380 + 0.0050  0.3199 +0.0130  0.3099 + 0.0044

t-STE 0.2644 £+ 0.0016 0.2367 £ 0.0006

HOE \ 0.2839 £ 0.0020  0.2574 £ 0.0051  0.2259 + 0.0214

Ours; w/o dis 0.2770 £ 0.0013  0.2684 £ 0.0069  0.2382 + 0.0015
Ours; 0.2756 £ 0.0010  0.2588 £ 0.0071

Ours, w/o dis 0.1762 £+ 0.0014

Oursa

Ours;|
Ours,
HOE
t-STE
STE

CKL]|
GNMDS;|
GNMDS;

0.65 0.70 0.75 0.80 0.85 0.70

(a) D=4

0.75

0.80
AUC
(b) D=8

0.85

070 0.75 0.80 0.85 0.9

(c) D=16

Table 1: Testing errors (mean =+ standard deviation) on synthetic
dataset. The best method is marked as

Figure 3: The AUC of different methods on Music dataset.

, and the second is marked

as
| D=4 D=8 D=16

GNMDS; | 0.2323 +0.0012  0.2087 £ 0.0005  0.2028 + 0.0003
GNMDS, | 0.2244 £+ 0.0004  0.2084 £+ 0.0007  0.2010 + 0.0002
EOE | CKL 0.2766 + 0.0001  0.2532 +0.0002  0.2516 + 0.0020
STE 0.1805 + 0.0003
t-STE 0.2896 + 0.0018  0.2736 +0.0011  0.2592 + 0.0005
HOE \ 0.2572 £ 0.0013  0.2153 +0.0007  0.1985 + 0.0005
Ours; w/o dis 0.2847 +£0.0093  0.2076 £ 0.0053  0.2011 + 0.0019

Ours; 0.3148 £ 0.0114  0.2032 + 0.0044
Ours, w/o dis 0.2294 £+ 0.0017  0.2042 +0.0012  0.1739 £ 0.0012

Ourssy

Table 2: Testing errors (mean 4 standard deviation) on Music

Artists dataset.

Results.

The results are presented in Tab. 1, from which we

can observe that Our QOE achieves a clear margin in perfor-

| D=4 D=8 D=16

GNMDS; | 0.4488 +£0.0127 0.4247 £0.0139  0.4165 + 0.0115

GNMDS, | 0.4467 +0.0144 0.4337 £0.0134  0.4281 + 0.0094

EOE | CKL 0.4033 £ 0.0094  0.3833 +0.0125  0.3040 + 0.0008

STE 0.4488 £ 0.0127  0.3850 + 0.0161  0.3782 + 0.0149

t-STE 0.4007 £ 0.0163  0.3792 +0.0092  0.3382 + 0.0144

HOE \ 0.4271 £0.0128 0.4037 £ 0.0140 0.3793 £ 0.0111

Ours; w/o dis 0.3831 £ 0.0100 0.3694 £ 0.0095 0.3295 4+ 0.0132
Ours

Oursy w/o dis 0.3789 £ 0.0179  0.3643 +0.0145  0.3285 £ 0.0127
Oursa

Table 3: Testing errors (mean = standard deviation) on Food dataset.

mance gain over all baselines on three different dimensions.
This shows that the matrix-based representation can better
model ordinal relationships and better capture the latent se-
mantic information of objects than vector-based representa-
tion methods. Besides, Ours, obtains the minimum error in
most cases while Ours; is the second best in most cases. This
shows that the rotation matrix may better model the inherent
properties of quaternions than the representation matrix.

4.2 Music Artists Dataset

Implementation details. The batch size 1,024, learning
rating A = 0.5 and the epochs number 100 are used for all
methods. During training, if the optimal results of several
epochs are not updated, we will end the training early. The
other settings are the same as setting on the synthetic dataset.

Results. As shown in Tab. 2, our proposed method also
outperforms competitors. In particular, Oursy improves the
best competitor’s performance by 6.43%, 9.31%, 20.00% on
three dimensions, respectively. We also report AUC (the other
datasets do not have class labels, thus we can not calculate
AUC on them), which is shown in Fig. 3, from which we can
see our proposed method also outperforms the competitors.
Therefore, the effectiveness of matrix-based representation is
again validated.

4.3 Food Dataset

Implementation details. We set the batch size to 1,024,
the learning rating A = 0.05 and the number of epochs to 80

2070

‘ D=4 D=8 D=16

GNMDS; | 0.2953 +0.0045 0.2840 £ 0.0055  0.2784 + 0.0020

GNMDS, | 0.3301 £0.0352  0.3261 £ 0.0029  0.3227 + 0.0051

EOE | CKL 0.2791 £ 0.0005 0.2742 4+ 0.0005  0.2759 + 0.0002

STE 0.2703 £ 0.0020  0.2531 £ 0.0021  0.2470 £ 0.0025

t-STE 0.3255 £ 0.0065 0.3156 4+ 0.0036  0.3078 + 0.0044

HOE | 0.3896 4 0.0193  0.2791 £ 0.0047  0.2606 + 0.0029

Ours; w/o dis 0.2821 £ 0.0188  0.2642 4+ 0.0099  0.2589 + 0.0131

Ours; 0.2427 £ 0.0027
Oursz w/o dis 0.2749 £ 0.0188  0.2458 £ 0.0161

Oursa

Table 4: Testing errors (mean =+ standard deviation) on Bird dataset.

for all methods. Other settings are the same as the synthetic
dataset.

Results. The testing errors for split ratio of 0.3 are recorded
in Tab. 3. It shows that our proposed method still consistently
outperforms all baselines over test error metric. Specifically,
Ours; outperforms the best competitor by 30.32%, 46.12%,
42.76% on three dimensions, respectively. As the proportion
of the test set increases, the errors of each method are increas-
ing. It is easy to understand that the smaller training set will
result in over fitting, and embedding cannot satisfy the ordinal
constraints well. This shows that QOE is more robust.

4.4 Bird Dataset

The testing errors of bird dataset are recorded in Tab. 4. It
shows that our proposed method still consistently outper-
forms both baselines over testing errors metric. Specifically,
Ours, outperforms the best competitor by 36.88%, 40.22%,
42.42% on three dimensions, respectively. The clear mar-
gin in performance gain validates the effectiveness of the pro-
posed QOE methods.
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| matrix(3 x 3)

GNMDS; | 0.2284 + 0.0039
GNMDS, | 0.2445 £ 0.0018
STE 0.2269 £ 0.0045
t-STE 0.2581 £ 0.0086

oursi; (D = 8)

0.2558 +0.0013
0.2035 £ 0.0021

oursa(D = 8)

0.1698 + 0.0046
0.2032 £ 0.0044

Table 5: Testing errors on Music Artists dataset for QOE (D = 8)
and random matrix (the size is 3 X 3).

Figure 4: T-SNE of the learned embeddings on Food dataset.

4.5 Embedding Visualization

We visualize the embeddings learned by our methods on Food
dataset and Bird dataset, as shown in Fig. 4 and Fig. 5. For
Food dataset, from Fig. 4, we see that the learned embeddings
shows good clustering behavior with desserts gathered into
the bottom right. The meats are close to each other into the
left, as are the salads into the bottom middle and baking goods
into top left. As for the Bird dataset, from Fig. 5 we see that
the learned embeddings also cluster into different groups and
each cluster represent category of birds. The classification
effect shown in both figures demonstrate that the proposed
QOE method is able capture semantic meanings thanks to the
proper-structured matrix-based representations.

4.6 Ablation Study

We compare the performance of using quaternions (Ours) and
using random matrix. To ensure that the total number of
parameters is similar, we compare between 3 X 3 random-
initialized matrices and 2-dimensional quaternion vectors
(D = 8). The results are shown in Tab. 5. As shown in Tab. 5,
in most cases, QOE performs better than using random matri-
ces, which shows that our QOE method is both efficient and
effective.

Furthermore, we split datasets into training/test sets by dif-
ferent split ratios [0.2,0.3, ...,0.8], where the split ratio is
equal to the proportion of the test set to the total dataset. For
each split ratio, several experiments are performed and we
report the mean and standard deviation of testing errors, as
shown in Fig. 6. From the figure, as the proportion of the test
set increases, the errors of each method are increasing. How-
ever, our QOE is shown to perform better when there is less
training samples, which shows that our method is more robust
to over-fitness and has better generalization performance.
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Figure 5: Embeddings of the Bird dataset constructed by the Ours;
and Ourse with D = 4 and GNMDS; loss function. The 1 — 10 in
the legend represent different categories of birds.

0.4+

~- EOE GNMDS;

-~ EOE GNMDS,
EOE CKL

=~ EOESTE

-~ EOEt-STE

~ HOE

~~ Oursy
Ours;

error

0.34

0.24

072 074 0?6 078
Figure 6: The testing error on Food dataset with different split ratios
with D = 4.

5 Conclusion

In this work, we propose a matrix-based representation learn-
ing to model the similarity relationships among objects.
Specifically, we adopt the quaternion space as the embed-
ded space, where every quaternion vector corresponding to an
object can be converted into a collection of matrices, which
spans a subspace of the embedded space. Furthermore, in-
spired by the classic chordal Grassmannian distance, a new
distance function is defined to measure the similarity of dif-
ferent subspaces. We also conduct experiments on synthetic
and several real datasets to verify our proposed method’s ef-
fectiveness, which achieve promising experimental results.
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