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Abstract
In Real-Time Heuristic Search (RTHS) we are
given a search graph G, a heuristic, and the ob-
jective is to find a path from a given start node to
a given goal node in G. As such, one does not
impose any trajectory constraints on the path, be-
sides reaching the goal. In this paper we consider
a version of RTHS in which temporally extended
goals can be defined on the form of the path. Such
goals are specified in Linear Temporal Logic over
Finite Traces (LTLf), an expressive language that
has been considered in many other frameworks,
such as Automated Planning, Synthesis, and Re-
inforcement Learning, but has not yet been stud-
ied in the context of RTHS. We propose a general
automata-theoretic approach for RTHS, whereby
LTLf goals are supported as the result of searching
over the cross product of the search graph and the
automaton for the LTLf goal; specifically, we de-
scribe LTL-LRTA*, a version of LSS-LRTA*. Sec-
ond, we propose an approach to produce heuristics
for LTLf goals, based on existing goal-dependent
heuristics. Finally, we propose a greedy strategy
for RTHS with LTLf goals, which focuses search
to make progress over the structure of the automa-
ton; this yields LTL-LRTA*A. In our experimen-
tal evaluation over standard benchmarks we show
LTL-LRTA*A may outperform LTL-LRTA* sub-
stantially for a variety of LTLf goals.

1 Introduction
Real-time heuristic search [Korf, 1990] (RHTS) is an ap-
proach to solving search problems by interleaving search and
execution. It is important for applications in which there is lit-
tle time to search before an action has to be executed. Some
applications are videogames and highly dynamic robotics.

As originally defined, RTHS consists of reaching a goal
state on a given search graph. However, many real-time ap-
plications may require agents to satisfy temporally extended
goals (i.e., eventually fetch the key and then reach the door;
eventually board the spaceship while avoiding locations with
mud). Such kinds of goals, which impose constraints over
the trajectory of states traversed by the agent, are typically

represented in linear temporal logic (LTL) in areas such
as automated planning [Cresswell and Coddington, 2004;
Baier and McIlraith, 2006; Kabanza and Thiébaux, 2005;
Gerevini et al., 2009; Simon and Röger, 2015], synthesis [De
Giacomo and Vardi, 2015; Bonet et al., 2020], and reinforce-
ment learning [Toro Icarte et al., 2018; Camacho et al., 2019;
Vaezipoor et al., 2021].

In this paper 1 we consider adding goals expressed in lin-
ear temporal logic over finite traces (LTLf) [De Giacomo and
Vardi, 2013] to RTHS. Thus, we assume we are given a search
graph G, a vertex of G where the agent is initially at, and an
LTLf formula φ specifying legal trajectories for the agent.
The problem consists of moving the agent through one of
such trajectories.

We take a standard automata-theoretic approach in which
we use the fact that an LTLf formula φ has a corresponding
finite-state automatonAφ which accepts the traces defined by
φ. We consider the cross product between the search space
and the automata to propose LTL-LRTA*, a version of LSS-
LRTA* [Koenig and Sun, 2009] that searches over the cross-
product between the search graph and Aφ.

But simply considering search over the cross-product rep-
resentation does not address the important problem of guid-
ing real-time search. To that end, we present two orthogonal
contributions aimed at guiding search for LTLf goals. First,
we present a method to construct a heuristic function for any
LTLf goal assuming we have a goal-independent heuristic ĥ
in hand, which is such that ĥ(s, g) estimates the cost of a path
from a state s to a given goal state g. Second, we propose
automata subgoaling, a novel approach to carry out search
within the RTHS algorithm that prioritizes “making progress”
in the automaton for the LTLf formula. This is accomplished
by ordering the search frontier considering the distance ∆(q)
between the current automaton state q to an accepting state of
Aφ, and using A*’s priority function f = g+h as a tie breaker
rather than as the main guiding function. When applying this
principle to LTL-LRTA* we obtain LTL-LRTA*A. We prove
LTL-LRTA*A is complete—under standard assumptions—
when the goal is such that its automaton’s graph structure
does not have loops, excluding self-loops.

Since no algorithms for RTHS with LTLf goals exist, the

1Our source code and appendix are publicly available at
https://github.com/Jamidd/RTHS-with-LTLf-Goals
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objective of our experimental evaluation was to find the
strengths and weaknesses of the algorithms we propose. For
our experiments we use standard grids, Starcraft maps and
mazes, using a number of LTLf goals. We show that LTL-
LRTA*A may outperform LTL-LRTA* by a significant mar-
gin. The relative performance of both algorithms depends on
the quality of the heuristic being used. We conclude that us-
ing the information captured by the automaton for the goal,
either by exploiting the automaton to build a heuristic or by
using automata subgoaling, is important.

Although we are the first to propose to use the structure of
the goal’s automaton to guide search in RTHS, this idea, as
a general concept, is not new. Indeed, it has been considered
before in planning with LTL goals [Kabanza and Thiébaux,
2005], but in a way that is not compatible with RTHS. Fur-
thermore, the idea of using subgoaling has also been consid-
ered before in regular RTHS [Bulitko and Björnsson, 2009;
Hernández and Baier, 2011]. The way in which we incorpo-
rate subgoaling, by changing the priority of Open, is, how-
ever, fundamentally different from previous work.

While in this paper we incorporate our techniques in LSS-
LRTA*, a generalization of LRTA* [Korf, 1990], our prin-
ciples are general and can be applied to a number of other
RTHS algorithms.

2 Real-Time Heuristic Search
Real-time heuristic search (RTHS) is an approach to solving
search problems [Korf, 1990]. A key characteristic of the ap-
proach is that the amount of computation for decision making
is bounded by a constant B, after which one or more actions
may be performed. If the problem has not been solved yet,
B more units of computation are allowed for a new decision-
making episode. The loop repeats until the problem is solved.

A final-state search problem P = (S,E, c, sstart, G) is a
tuple, where (S,E, c) is a search graph, S is a set of states,
E ⊆ S×S is a finite set of directed edges, c : S×S 7→ (0,∞]
is a cost function, sstart ∈ S is the initial state, G ⊆ S is a
set of goal states.

We denote the set of neighbors of state s as N(s), for-
mally defined as N(s) = {t | (s, t) ∈ E}. A path π from
s1 to sn is a sequence of states (s1, s2, . . . , sn) such that
(si, si+1) ∈ E for all i ∈ {1, · · · , n − 1}. Any path from
sstart to a goal state in G is a solution to the search problem
P = (S,E, c, sstart, G). The cost of path π, denoted by c(π),
is the cumulative cost of all the edges traversed in π; that is,
c(π) =

∑n−1
i=1 c(si, si+1). State s is a dead end if there is no

path from s to a state in G.
To help the agent solve a search problem, RTHS algorithms

use a heuristic function h : S → [0,∞], such that h(s) esti-
mates the cost of a path from s to a goal state in G. A heuris-
tic function h is consistent iff h(s) = 0 for every state s ∈ G
and h(s) ≤ c(s, t) + h(t) for every (s, t) ∈ E. The perfect
heuristic h∗ is a heuristic such that h∗(s) denotes the cost of
a minimum-cost path between s and a state in G. Heuristic h
is admissible iff h(s) ≤ h∗(s) for every s ∈ S. Consistency
implies admissibility.

A typical RTHS algorithm runs a main loop in which
search is carried out in the vicinity of the current state. Such

a search may not exceed a given computation bound, usually
given in terms of the maximum number of states which can
be expanded during search. The information gathered during
search is used to (1) decide which state the agent will move to,
and (2) to update the heuristic function. This process repeats
until finding a goal state.

3 Search Problems with LTLf Goals
In this section, we formally define search problems with LTLf
goals. To do so, we first describe the semantics of LTLf [Bi-
envenu et al., 2006; De Giacomo and Vardi, 2013]. We then
show how to transform LTLf formulas into goals and heuris-
tics for a search problem. All the theorems from
this section are proven in Appendix A.

3.1 LTLf Goals and Automata
LTLf extends propositional logic with temporal operators
such as next(⃝), weak-next( ), and until(U). As in proposi-
tional logic, LTLf formulas are defined over a set of proposi-
tional symbols P . However, unlike propositional logic, LTLf
formulas are satisfied with respect to traces, which are se-
quences of truth value assignments to the propositions in P .

To use LTLf in real-time search, we define the semantics
of LTLf with respect to paths on a search graph. To that end,
we assume the agent is capable of sensing the truth value of
propositions on a given state. We formalize this notion using
a labelling function L : S 7→ 2P , which maps each state
s ∈ S to a set of propositions in P , which are true in s.

Given a path π = (s0, s1, . . . , sn) in a search graph, we say
that π satisfies an LTLf formula φ with respect to L, denoted
π |= φ, iff π[0] |= φ, where, for every i ∈ {0, . . . , n}:

1. π[i] |= p iff p ∈ L(si), where p ∈ P .

2. π[i] |= ¬φ if π[i] ̸|= φ.

3. π[i] |= (φ ∧ ψ) if π[i] |= φ and π[i] |= ψ.

4. π[i] |= ⃝φ if i < n and π[i+ 1] |= φ.

5. π[i] |= φ if i < n implies that π[i+ 1] |= φ.

6. π[i] |= φUψ if π[i] |= ψ for some k ≥ i and π[j] |= φ
for every j ∈ {i, . . . , k − 1}.

The connectives ∨ (or), □ (always), and ♢ (eventually) can
be defined in terms of the above, as (φ∨ ψ) def

= ¬(¬φ∧¬ψ),
♢φ

def
= trueUφ, and □φ

def
= ¬♢¬φ.

A useful feature of LTLf is that any formula can be trans-
lated into an equivalent deterministic finite-state automaton
(DFA) using standard libraries, such as Spot [Duret-Lutz et
al., 2016] or LTLf2DFA [Fuggitti, 2019]. In the context of
real-time search, translating an LTLf formula φ into a DFA
results in a DFA Aφ = (Q, 2P , δ, qstart, F ), where Q is
a finite set of automaton states, 2P is the power set of the
propositions in P (i.e., the range of the labelling function),
δ : Q × 2P → Q is the transition function, qstart ∈ Q is
the initial state, and F ⊆ Q is the set of accepting states.
Then, a path π = (s1, . . . , sn) in the search graph is ac-
cepted by Aφ iff qn ∈ F , where qi+1 = δ(qi,L(si)) for
all i ∈ {1, . . . , n − 1} and q1 = qstart. In other words, Aφ

accepts π iff, starting from qstart and updating the DFA state
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according to δ and π, the DFA ends in an accepting state. Fi-
nally, we note that π |= φ iff Aφ accepts π by construction.
We could say that the i-th automata state, represents the i-th
sub-problem to be solved in order to complete the goal. Be-
low we use notation ∆(q) to represent the minimum number
of transitions required to reach an accepting state in Aφ from
q. As such, ∆(q) = 0 if q ∈ F , and ∆(q) = ∞ if there is no
path in Aφ from q to an accepting state.

3.2 Running Example
As a simple example, consider the grid world shown in Fig-
ure 1a, which includes an agent, walls, and four marked loca-
tions: a, b, c, and d. We might consider that each marked lo-
cation represents a subtask that the agent can solve by reach-
ing that location. In this domain, we can define the set of
propositional symbols P = {a, b, c, d} and its corresponding
labelling function L such that p ∈ L(s) iff the proposition p
is true in state s (i.e., the agent is at location p). Now we can
consider different LTLf goals for the agent in this domain. For
instance, ♢a (i.e., eventually a) requires that the agent reaches
a cell marked with a. The previous task might be considered
a standard goal in RTHS. However, LTLf goals allow us to de-
fine more complex, temporally extended goals. Some exam-
ples include to solve task a and then task b (i.e., ♢(a∧⃝♢b)),
to avoid states in which certain property d holds (i.e., □¬d),
or combinations of LTLf goals (e.g., ♢(a ∧⃝♢b) ∧□¬d).

Figures 1b and 1c show examples of two more complex
LTLf goals with their corresponding DFAs. The first LTLf
goal asks the agent to solve all the subtasks in alphabetical
order. The second LTLf goal is similar to the first LTLf goal
but it also forces the agent to solve the subtasks in strict order.
That means that, if the agent solves task b before solving task
a, then the agent fails at solving overall task.

3.3 LTLf Search Problems (LSP)
Now we formally define a search problem with an LTLf goal.
Intuitively, a search problem with an LTLf goal is like any
other search problem but where the objective for the agent is
to traverse a sequence of states that satisfies an LTLf formula
instead of reaching a particular goal state.
Definition 1 (LTLf Search Problem (LSP)).
An LTLf search problem P = (S,E, c, sstart,P, φ,L) is a
tuple, where (S,E, c) is a search graph, sstart ∈ S is the
start state, φ is an LTLf formula over a set of propositions P ,
and L : S 7→ 2P is a labelling function.

Now we formally define what is a solution to an LSP.
Definition 2 (Solution to an LSP).
Let P be an LSP. A path π = (s1, . . . , sn) is a solution to
P iff π is a path over the search graph (S,E, c) from the
initial state (i.e., s1 = sstart) and π |= φ with respect to L.
Moreover, the solution cost of π is c(π) =

∑n−1
i=1 c(si, si+1).

A standard technique to solve search problems with tempo-
rally extended goals is to exploit the cross-product between
the automaton and the search graph [Bacchus et al., 1997;
Baier and McIlraith, 2006]. By doing so we can compile
away the temporal goal, transforming the LSP into a regular
search problem. An important advantage of this transforma-
tion is that it allows solving an LSP with any off-the-shelf

RTHS algorithm. The formal definition of a cross-product
LSP and the equivalence between solving the LSP and the
corresponding cLSP follows.
Theorem 1 (Cross-product LSP (cLSP)). Given an LSP
P = (S,E, c, sstart,P, φ,L) , let the DFA for φ be Aφ =
(Q, 2P , δ, qstart, F ). Finally, let Pφ be the cross-product LSP
(cLSP) defined as (Sφ, Eφ, cφ, sstartφ, Gφ) such that:

1. Sφ = S ×Q,
2. ((s, q), (t, r)) ∈ Eφ iff (s, t) ∈ E and r = δ(q,L(t)),
3. cφ((s, q), (t, r)) = c(s, t),
4. sstart φ = (sstart, qstart), and
5. (s, q) ∈ Gφ iff q ∈ F .

Then path π = (s1, . . . , sn) is a solution to P iff πφ =
((s1, q1), . . . , (sn, qn)) is a solution to Pφ, where q1 =
qstart, s1 = sstart, and qi+1 = δ(qi,L(si+1)), for every
i ∈ {1, . . . , n− 1}. In addition, c(π) = cφ(πφ).

3.4 Heuristics for LSPs
The cross-product transformation allows us to solve any LSP
with an off-the-shelf RTHS algorithm. However, heuristics
are key for the performance of any heuristic search algorithm,
including RTHS algorithms. While users of heuristic search
algorithms are aware of methods to construct heuristics for a
given standard search problem P with final-state goals, their
techniques may not be readily applicable for building heuris-
tics for LSPs. In this section we present a simple approach to
generate a heuristic for any given LTLf formula from an ex-
isting final-state heuristic for the same underlying problem.

More specifically, assume that given a search graph (S,E)

and a cost function c, we have a heuristic ĥ(s, t) that esti-
mates the cost of a path from s to t. Henceforth we call these
heuristics goal-independent, since they receive the goal as a
parameter. For many search problems with fixed goal states
(i.e., 15-puzzle, Pancacke problem) goal-dependent heuris-
tics can be easily generated after a simple state transforma-
tion. These state transformations may be even applicable to
Pattern-database heuristics, which are goal-dependent. In ad-
dition, domain-independent heuristics typically used in plan-
ning [Bonet and Geffner, 2000; Hoffmann and Nebel, 2001;
Helmert, 2006] are goal-independent.

Now we show how given a heuristic ĥ(s, t) for search
graph (S,E, c) and an LTLf formula φ we can construct a
heuristic hφ.
Definition 3 (The cross-product heuristic).
Given an LSP P = (S,E, c, sstart,P, φ,L) and a goal-
independent heuristic ĥ : S × S 7→ [0,∞) for G = (S,E, c),
we define the cross-product heuristic hφ : S × Q 7→ [0,∞)
as follows. Let Aφ = (Q, 2P , δ, q0, F ) be the DFA represen-
tation of the LTLf formula φ. And let Sq ⊆ S be the set of all
states that cause a transition from q ∈ Q to q′ ∈ Q such that
q ̸= q′ while an accepting state can be reached from q′ inAφ.
That is, Sq = {s ∈ S | q′ = δ(q,L(s)), q ̸= q′,∆(q′) <∞}.
Then,

• hφ(s, q) = 0 if q ∈ F .
• hφ(s, q) = ∞ if ∆(q) = ∞.
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(a) A grid world in which proposi-
tions a, b, c, d are true in certain
cells.

qi

q1

q2

q3

q4

a

b

c

d

¬a

¬b

¬c

¬d

(b) DFA for ♢(a∧⃝♢(b∧⃝♢(c∧⃝♢d))),
which requires the agent to solve all sub-
tasks in alphabetical order.

qi

q1

q4

q2

q3
a

b
c

d ∨ b ∨ c
d ∨ c

d
¬a

¬b ¬c
(c) DFA for □¬d ∧ (¬(b ∨ c)U a) ∧
(¬cU b) ∧ ♢(a ∧ ⃝♢(b ∧ ⃝♢c)), which
is similar to the task of (b) but forces the
agent to solve the subtasks in strict order.

Figure 1: Running example with two conceivable LTLf goals. Transitions in the DFAs have been simplified using the fact that there is no
state in which two propositions are true. In addition, states containing no outgoing transitions are assumed to have a self-loop with ‘true’.

• hφ(s, q) = min
t∈Sq

c̃(s, t) + hφ(t, δ(q,L(t))), otherwise.

where c̃(s, t) = max(ĥ(s, t), ϵ) and ϵ is the minimum cost of
any transitions in G. That is, ϵ = min{c(s, t) | (s, t) ∈ E}.

Intuitively, hφ(s, q) estimates the cost to go from (s, q) to
a goal state (s∗, q∗) ∈ Gφ by solving a simplification of the
LSP P . This simplification consists of only considering the
subset of states Sq ⊆ S that can change the current DFA
state q. Then, the cost to go from s ∈ S to t ∈ Sq , which
might not be connected in the original LSP, is given by the
heuristic ĥ(s, t). The system of equations from Definition 3
simply states the standard constraints that define a solution to
the shortest path problem that results from solving the simpli-
fied version of P [Wolsey, 1998]. Note that we introduced ϵ
to ensure that all the cost are greater than zero in the simpli-
fied problem. This ensures that any solution to the system of
equations will indeed reach an accepting state (if that state is
reachable) in the simplified problem.

As an example, let us consider two possible cross-product
heuristics for our running example (Figure 1a). In this do-
main, the cost of performing any action is equal to 1. There-
fore, a simple heuristic for this problem is ĥ1(s, t) = 1 if
s ̸= t and zero otherwise. Let s be the current state of the
agent in Figure 1a and φ be the LTLf formula from Figure 1b.
Here, the cross-product heuristic will simply sum ĥ1(s, sa),
ĥ1(sa, sb), ĥ1(sb, sc), and ĥ1(sc, sd). Then, h1φ(s, qstart) =
4 because, to reach an accepting state in the simplified prob-
lem, the agent has to hit locations a, b, c, and d.

We note that ĥ1 is a particularly naive heuristic for this
problem. A better heuristic would be to use the Manhattan
distance ĥM to construct the cross-product heuristic hMφ . The
Manhattan distance ĥM (s, t) estimates the cost to go from
s to t by counting the number of moves needed to go from
s to t if we ignore all obstacles. In the running example,
hMφ (s, qstart) = 48 because that is the sum of the Manhattan
distances to go through the states s, sa, sb, sc, and finally sd.

On the theoretical side, we now show that the cross-product
heuristic hφ(sφ) inherits properties from its base heuristic

ĥ(s, t). In particular, if ĥ is admissible (resp. consistent) for
G, then hφ is admissible (resp. consistent) for Pφ. As a result,
the two previously discussed heuristics, namely h1φ and hMφ ,
are consistent for the running example.

Theorem 2 (Properties of the cross-product heuristic). Let
P = (S,E, c, sstart,P, φ,L) be an LSP, Pφ be the cLSP
for P , and ĥ : S × S 7→ [0,∞) be a heuristic for G =
(S,E, c). Let hφ be the cross-product heuristic constructed
from P and ĥ. Then, the following two properties hold. First,
if ĥ is admissible for G then hφ is admissible for Pφ. And
second, if ĥ is consistent for G then hφ is consistent for Pφ.

On the practical side, we note that the effectiveness of com-
puting the cross-product heuristic hφ(s, q) depends on the
cardinality of Sq . In particular, the complexity of computing
hφ(s, q) by solving the resulting shortest path-problem using
Dijkstra is O(v2), where v = 1 +

∑
q∈Q |Sq|. In some prob-

lems, such as in grid worlds, |Sq| is much smaller than |S|
and, thus, hφ can be precomputed for all cross-product states
(s, q) ∈ S×Q in just a few seconds. However, computing hφ
might be a challenge in highly combinatorial problems, such
as the 15-puzzle. For those cases, we devise two possibilities.
One option is to compute hφ using methods other than Dijk-
stra’s. For instance, h1φ can be computed by only looking at
the DFA, meaning that the complexity of computing h1φ can
go down to O(|Q|2) regardless of the size of the Sq sets.

Another option is to approximate hφ by removing the re-
cursion from Definition 3. That is, to define h̃φ(s, q) ex-
actly as hφ(s, q), but when q ̸∈ F and ∆(q) < ∞, then
h̃φ(s, q) = min{c̃(s, t) | t ∈ Sq}. We will refer to h̃φ as a
myopic heuristic. h̃φ has two nice properties. First, Theo-
rem 2 also applies to h̃φ. Second, the complexity of comput-
ing h̃φ(s, q) is just O(|Sq|). However, h̃φ is weaker than hφ
since h̃φ(s, q) ≤ hφ(s, q) for all (s, q) ∈ S×Q. We formally
discuss all these properties in Appendix A.3.
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Algorithm 1: LTL-LRTA*, a simple variant of LSS-
LRTA* that solves an LSP by carrying out search over
the cross-product representation.

Input : An LSP P = (S,E, c, sstart,P, φ,L), the DFA for
φ defined as (Q, 2P , δ, qstart, F ), a heuristic
h : S ×Q 7→ [0,∞), and a positive integer k

Effect: The agent is moved through a path from sstart to a
goal state in G if a path exists

1 (snow, qnow)← (sstart, qstart)
2 while qnow ̸∈ F do
3 Open,Closed← Bounded-A∗(snow, qnow)
4 if Open is empty then
5 print “no solution”
6 abort execution
7 π ← path from (snow, qnow) to state at the top of Open
8 Dijkstra-Update(Open,Closed)
9 for each (s, q) in π

10 (snow, qnow)← (s, q)
11 Move agent to snow

4 Real-Time Search for LSPs
We have shown that an LSP can be solved by solving its
equivalent cLSP problem which does not have a temporally
extended goal. Furthermore, we described an approach to
compute heuristics to guide search for the cLSP. In this
section we present two RTHS approaches for solving cLSPs.
The first one, our baseline approach, is a straightforward
modification of LSS-LRTA*. The second one is a greedy
algorithm that we call automata subgoaling, which, as
we show later, may lead to significantly improved perfor-
mance when solving cLSPs. We note that all the
theoretical results from this section
are proven in Appendix B.

4.1 RTHS over the Cross-Product State Space
The first technique we propose is straightforward from The-
orem 1, which establishes the equivalence between searching
over an LSP or its cross product with the automaton for the
LTLf formula. Algorithm 1 describes LTL-LRTA*, a sim-
ple variant of LSS-LRTA* [Koenig and Sun, 2009] which re-
ceives an LSP P and searches over the corresponding cLSP.

LTL-LRTA* takes as input an LSP P , the DFA for the LTLf
goal φ, a heuristic function h : S × Q 7→ [0,∞) over the
cross-product states, and a positive integer k. Even though
we assume the agent moves over graph (S,E), in its main
loop, LTL-LRTA* maintains variables snow and qnow which
are such that (snow, qnow) is the state of the corresponding
cLSP where the agent is at.

The only algorithmic difference between LTL-LRTA* and
LSS-LRTA* is that search is carried out over the cross-
product representation. Specifically for the search part of
the algorithm, LTL-LRTA* invokes Bounded-A∗ in Line 3.
Bounded-A∗ takes (snew, qnew) as the root of the search,
and expands nodes using the transition function for automa-
ton Aφ; as such, to compute the neighbors of (s, q) it simply
iterates over each neighbor t of s, generating a state of the
form (t, δ(q,L(t))). As any standard A* implementation, the
priority used in theOpen priority queue is given by f = g+h,

where g(s, q) is the cost of the best path found so far to state
(s, q), and h is the heuristic function. Bounded-A∗ stops af-
ter k expansions have been made or when the goal is at the top
of Open. Finally, for decision-making, just like LSS-LRTA*
does, LTL-LRTA* traverses path π from the current state to
the state at the top ofOpen, that is, the one with the lowest f -
value (Line 7; Algorithm 1). For the heuristic update (Line 8),
the algorithm uses a version of Dijkstra’s algorithm which
receives the Open and Closed datastructures previously re-
turned by Bounded-A∗, just like LSS-LRTA* would do. Af-
ter the execution of Line 8, for every element (s, q) inClosed
it holds that h(s, q) = min(t,r)∈N(s,q) c(s, t) + h(t, r).

LTL-LRTA* was designed to be equivalent to LSS-LRTA*
when run over the cLSP for P , Pφ. It therefore inherits the
following property of LSS-LRTA*.

Theorem 3. Let P be an LSP, and let Pφ =
(Sφ, Eφ, cφ, sstart φ, Gφ) be its corresponding cLSP. More-
over, let hφ be a consistent heuristic for Pφ. Then LTL-
LRTA*, run over P and hφ is guaranteed to find a solution to
P if a solution exists and no dead end in (Sφ, Eφ) is reach-
able from sstartφ.

4.2 Automata Subgoaling
The efficiency of LTL-LRTA* depends mainly on the quality
of the given heuristic hφ. Now we present a technique which
exploits the structure of the automaton Aφ as an additional
source of guidance. The main intuition is that we can under-
stand automaton states as ‘subgoals’ and focus the search on
states in which progress is made on the automaton structure.

We implement this in Bounded-A∗, by changing the pri-
ority of Open to be computed as (∆(q), f(s, q)) for a state
(s, q), and assuming a lexicographic ordering. As such, as
soon the search finds a state (s, q) such that q is ‘closer’ to
an accepting state than any other state in Open, search fo-
cuses on such states, since such states will be pushed to the
top of Open. Since order is lexicographic, the f function
still guides search within states that are equally closer to an
accepting state. The pseudo-code is in Appendix C.

If the DFA has no cycles (although it might have self-
loops), then LTL-LRTA*A is guaranteed to solve the LSP.
This property is stated in the following theorem.

Theorem 4. Let P be an LSP, and Pφ be its corresponding
cLSP. Assume Pφ contains no dead-end states reachable from
sstart φ and that any path πφ = ((s1, q1), . . . , (sn, qn)) from
sstart φ is such that ∆(qi) < ∆(qj) for every i, j such that
1 ≤ i < j ≤ n when qi ̸= qj . Then LTL-LRTA*A, run over
P using a consistent hφ finds a solution to P if a solution
exists.

5 Empirical Evaluation
Since no approaches to RTHS with LTLf goals exist, the main
objective of our empirical evaluation was to understand what
was the effectiveness of the various techniques we propose.
Therefore, we compare LTL-LRTA* and LTL-LRTA*A using
different heuristic functions over three well-known bench-
marks and five LTLf goals.
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Configuration No. best solution Sol. gap

Heuristic Domain LTL Ties LTLA LTL / LTLA

h1
φ

Rooms 1020 0 1980 1.295

StarCraft 1213 0 1787 1.158

Maze 1272 0 1728 1.137

hM
φ

Rooms 841 635 1524 1.020

StarCraft 461 2008 531 1.002

Maze 588 1716 696 1.005

h̃M
φ

Rooms 20 0 2980 31.912

StarCraft 27 0 2973 11.564

Maze 169 1 2830 3.106

Total 5611 4360 17029 2.328

Table 1: Results for different Maps-Heuristic combinations

5.1 Experimental Setup
We tested LTL-LRTA* and LTL-LRTA*A with various prob-
lems, heuristics, and goals. We ran experiments on three fam-
ilies of grid problems proposed by Sturtevant [2012]: Rooms,
Starcraft, and Maze.2 In these domains, the agent can only
move to empty cells, and each cell can be either empty or
blocked. To build a search graph from the grid we con-
nect each cell to its 4 immediate cardinal neighbors and the
cost for every graph edge is 1. In addition, we randomly
marked vertices of the graph with letters from the alphabet
in {a,b, . . . ,i}.

We evaluated the performance of LTL-LRTA* and LTL-
LRTA*A using two cross-product heuristics: h1φ and hMφ , and
one myopic heuristic: h̃Mφ . Intuitively, h1φ(s, q) is equal to
the minimum distance between q and an accepting state in
the DFA, where the cost of transitioning between DFA states
is always 1. hMφ works similarly to h1φ(s, q), but the cost to
move between DFA states is given by the Manhattan distance
between the environment states that the agent must reach to
cause that transition. Finally, the myopic heuristic h̃Mφ is sim-
ply the Manhattan distance between the current state and the
closest state that would cause a transition in the DFA. More
details can be found in Section 3.4.

We evaluated the algorithms using five different LTLf
goals. These goals exploit a wide range of the features that
LTLf provides. As such, some of these goals include complet-
ing a sequences of tasks (e.g., the agent has to solve a set of
tasks in order), partial order tasks (e.g., some tasks must be
solved before other tasks), disjunctive tasks (e.g., the agent
can either do task 1 or task 2), and safety constraints (e.g., the
agent must ensure that a condition holds as it solves the main
task). These five goals are formally described in Appendix D.

5.2 Comparison of RTHS Methods for LSPs
A summary of our results is shown in Table 1. In total, we
ran 27, 000 experiments. These considered 5 LTLf goals, 3

2In Rooms we used all the maps with 8× 8 rooms. In Maze we
used the maps with hallways of width 32. In Starcraft we used the
maps: BlastFurnance, CatwalkAlley, Crossroads, Enigma, Infermo,
FloodedPlains, SpaceAtoll, Octopus, ValleyofRe, WheelofWar.

domains (i.e., rooms, starcraft, and maze), 10 maps per do-
main, 5 problem instances per map (where each instance is a
different placement of the letters in the map), 6 lookahead val-
ues (with k ∈ {32, 64, 128, 256, 512, 1024}), and 3 heuristics
(h1φ, hMφ , and h̃Mφ .). When placing letters in the maps, we ei-
ther placed three letters of each type (i.e., three a’s, three b’s,
etc) or twenty-five.

Table 1 compares the performance of LTL-LRTA* and
LTL-LRTA*A using two main metrics. The first metric is the
number of best solution, which is the number of times that an
algorithm found a better than the other. In the table, column
LTL refers to the number of problems where LTL-LRTA*
found a better solution than LTL-LRTA*A and column LTLA

refers to the number of problems where LTL-LRTA*A found
a better solution than LTL-LRTA*. We also included the
number of ties. As the table shows, LTL-LRTA*A tends
to find better solutions than LTL-LRTA*A. Indeed, LTL-
LRTA*A found the best solution in 17, 029 problems out
of 27, 000 (and tied in 4, 360). The table also shows that
the advantage of LTL-LRTA*A over LTL-LRTA* is prob-
lem dependent. For instance, the performance of both meth-
ods is quite similar in StarCraft when using hMφ , whereas
LTL-LRTA*A solves almost every problem faster than LTL-
LRTA* in Rooms when using h̃Mφ .

The second performance metric is the solution gap. This
metric compares the quality of the solutions found by each
method. Specifically, we computed the solution gap by divid-
ing the cost of the solution found by LTL-LRTA* by the cost
of the solution found by LTL-LRTA*A, and then reported the
geometric mean of these ratios across all the experiments. As
Table 1 shows, LTL-LRTA*A found solutions that were over
2.3 times better than the solutions found by LTL-LRTA* on
average. However, we only see large gaps for the case of the
myopic heuristic h̃Mφ . When using the cross-product heuris-
tic h1φ, LTL-LRTA*A finds solutions that are around 1.2 times
better. And when using hMφ , LTL-LRTA*A is only marginally
better than LTL-LRTA*. We believe that part of the reason
why LTL-LRTA*A performs similar to LTL-LRTA* in this
latter case is that hMφ is a well-informed (although expensive)
heuristic. In particular, hMφ already propagates back the in-
formation that moving to DFA states that are closer to an
accepting state decreases the heuristic value. As such, or-
dering Open by ∆ does not make a large difference in the
algorithm’s performance.

We performed a per-lookahead analysis, customary in the
RTHS literature. We observed that when a significant differ-
ence in solution cost exists between LTL-LRTA* and LTL-
LRTA*A such differences are similar across different looka-
head values. In addition, we observed no relevant differences
between goal types. A detailed analysis is included in the
Appendix, Tables 5-14.

Finally, we note that LTL-LRTA* and LTL-LRTA*A have
identical computational complexity given the same heuristic.
For that reason, the fact that LTL-LRTA*A tends to find better
solutions than LTL-LRTA* also implies that LTL-LRTA*A
finds solutions faster than LTL-LRTA*.
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Configuration Time gap w.r.t. h1
φ

# items Domain hM
φ hM

φ +A h̃M
φ +A

3 items
Rooms 9.542 9.256 7.963
StarCraft 3.161 3.084 2.922
Maze 1.016 0.994 1.003

25 items
Rooms 3.395 3.420 3.327
StarCraft 2.449 2.381 2.490
Maze 1.532 1.518 1.631

100 items
Rooms 2.233 2.379 2.444
StarCraft 2.359 2.303 2.428
Maze 1.936 1.992 2.340

Total 2.512 2.501 2.538

Table 2: Runtime results using different heuristics. # items corre-
sponds to the number of instances of the same letter that appear in
the map. Time gap is defined as the ratio between the runtime ob-
tained by LTL-LRTA*A using h1

φ and the corresponding algorithm.

5.3 Comparison of Heuristics for LSPs
Now we compare the performance of different heuristics for
solving LSPs. In Section 3.4, we proposed two ways to com-
pute heuristics for LSPs: the cross-product heuristics and the
myopic heuristics. The myopic heuristics are weaker than the
cross-product heuristics, but they are faster to compute. In
particular, the complexity of computing the myopic heuristic
is O(|Sq|) whereas the complexity of computing the cross-
product heuristic is O(v2), where v = 1 +

∑
q∈Q |Sq|. Re-

call that Sq ⊆ S is the subset of states that change the current
DFA state q ∈ Q to some q′ ∈ Q, such that ∆(q′) < ∞.
Thus, we would expect that a cross-product heuristic will usu-
ally find better solutions than a myopic heuristic but, depend-
ing on the size of Sq , a myopic heuristic might find solutions
faster than a cross-product heuristic. To verify this behav-
ior empirically, we ran experiments using different numbers
of duplicated letters on each map. As the number of letters
increases, the size of Sq also increases since there are more
locations that the agent could reach in order to change the
current DFA state.

Table 2 shows a runtime comparison between the cross-
product heuristic hMφ and the myopic heuristic h̃Mφ . That is, it
reports how fast each method is able to find a solution for the
LSP, without carrying about the quality of such a solution.
The table normalizes the performance of each method with
respect to the performance of LTL-LRTA*A using h1φ. Thus,
a performance of 9.5 means that the method solved the LSP
9.5 times faster than LTL-LRTA*A using h1φ. Specifically,
the table reports the performance of three methods:

• hMφ refers to LTL-LRTA* using hMφ ,

• hMφ +A refers to LTL-LRTA*A using hMφ , and

• h̃Mφ +A refers to LTL-LRTA*A using h̃Mφ .
The results in Table 2 show the following. When we

only have three instances of each letter (i.e., |Sq| is relatively
small), the cross-product heuristic hMφ dominates. However,
as we increase the number of instances of each letter, the my-
opic heuristic h̃Mφ tends to solve LSPs faster (on average) than
the cross-product heuristic hMφ . In addition, solutions found

Configuration Solution gap w.r.t. h1
φ

# items Domain hM
φ hM

φ +A h̃M
φ +A

3 items
Rooms 30.012 30.256 21.056
StarCraft 4.11 4.112 3.587
Maze 1.008 1.006 0.980

25 items
Rooms 11.162 11.530 9.526
StarCraft 5.381 5.402 5.155
Maze 1.847 1.867 1.862

100 items
Rooms 4.791 5.037 4.535
StarCraft 4.94 4.959 4.709
Maze 2.602 2.675 3.063

Total 4.558 4.628 4.240

Table 3: Solution cost analysis using different heuristics. # items
corresponds to the number of instances of the same letter that appear
in the map. Solution gap is defined as the ratio between the solution
cost obtained by LTL-LRTA*A using h1

φ and the corresponding al-
gorithm.

by the cross-product heuristic are usually better than the so-
lutions found by the myopic heuristic.

Table 3 reports the solution gap between each method
with respect to LTL-LRTA*A using h1φ, for the same algo-
rithm configurations as Table 2. It shows that the cross-
product heuristic hMφ tends to find better solutions than my-
opic heuristics, regardless of the number of instances of each
letter. This behavior is expected since the cross-product
heuristic is stronger than the myopic heuristic.

Therefore, the decision of using a cross-product heuristic
or a myopic heuristic is application- (and problem-) depen-
dent. If the goal is to find the best possible solution, it is
better to use a cross-product heuristic. However, if the goal
is to get any solution as fast as possible and the Sq sets are
large, then it might be better to use a myopic heuristic.

6 Conclusion

In this paper, we studied how to incorporate temporally ex-
tended goals into RTHS. We proposed to encode such goals
using LTLf and formally defined search problem with LTLf
goals, which we called LSPs. We exploited the relationship
between LTLf and DFAs to construct a cross-product version
of an LSP (cLSP). A cLSP can be solved by any off-the-
shelf RTHS method. We studied different ways in which the
structure of the DFA can be used to improve the performance
of RTHS methods when solving a cLSP. Specifically, we (i)
showed how to use the DFA to compute heuristics and (ii)
proposed LTL-LRTA*A, an algorithm that guides the search
exploiting the DFA’s structure. We studied the theoretical
properties of our heuristics and algorithm. Our empirical re-
sults showed the benefits of exploiting the DFA structure for
LSP solving.
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